1,526 research outputs found

    Are there so many congeneric species of chironomid larvae in a small stream?

    Get PDF
    The co-occurrence of larvae of congeneric chironomid species is common in natural stream assemblages, and raises the problem of finding mechanisms to explain the co-existence of species with similar ecological requirements. In this contribution, we explored the co-occurrence of chironomid larvae belonging to congeneric species within four genera of chironomids: Cricotopus, Eukiefferiella, Orthocladius and Rheocricotopus (with 2, 7, 2 and 4 species, respectively) in the headwaters of a small Mediterranean calcareous stream. Due to the intrinsic, natural spatial and temporal variability in these habitats, we studied three different sites at two different seasons within the annual hydrological cycle (spring vs summer samples), and each microhabitat unit was surveyed with an effort proportional to its cover at the sampling site. The Outlying Median Index method was used to distinguish the niches of the different chironomid species in relation to the hydraulic features and substrates within each site. Our results showed that hydraulic features helped to improve discrimination between the niches of five congeneric species of Eukiefferiella, and the same occurred within the species belonging to Cricotopus and Orthocladius, although niche overlap was high in general. One Rheocricotopus species was associated to algal substrate.  Schoener’s co-occurrence at the microhabitat scale was low among the congeneric species found in our study, suggesting exclusion mechanisms. Flow regime, substrate type and shifts in environmental conditions may favor the settlement of some species to the detriment of other congeneric ones, but other mechanisms such as lottery competition, diffusion competition or predation should be considered in further studies

    Ecological genomics of adaptation to unpredictability in experimental rotifer populations

    Get PDF
    Elucidating the genetic basis of phenotypic variation in response to different environments is key to understanding how populations evolve. Facultatively sexual rotifers can develop adaptive responses to fluctuating environments. In a previous evolution experiment, diapause-related traits changed rapidly in response to two selective regimes (predictable vs unpredictable) in laboratory populations of the rotifer Brachionus plicatilis. Here, we investigate the genomic basis of adaptation to environmental unpredictability in these experimental populations. We identified and genotyped genome-wide polymorphisms in 169 clones from both selective regimes after seven cycles of selection using genotyping by sequencing (GBS). Additionally, we used GBS data from the 270 field clones from which the laboratory populations were established. This GBS dataset was used to identify candidate SNPs under selection. A total of 76 SNPs showed divergent selection, three of which are candidates for being under selection in the particular unpredictable fluctuation pattern studied. Most of the remaining SNPs showed strong signals of adaptation to laboratory conditions. Furthermore, a genotype-phenotype association approach revealed five SNPs associated with two key life-history traits in the adaptation to unpredictability. Our results contribute to elucidating the genomic basis for adaptation to unpredictable environments and lay the groundwork for future evolution studies in rotifers

    Genomic signatures of local adaptation to the degree of environmental predictability in rotifers

    Get PDF
    Environmental fuctuations are ubiquitous and thus essential for the study of adaptation. Despitethis, genome evolution in response to environmental fuctuations —and more specifcally to thedegree of environmental predictability– is still unknown. Saline lakes in the Mediterranean regionare remarkably diverse in their ecological conditions, which can lead to divergent local adaptationpatterns in the inhabiting aquatic organisms. The facultatively sexual rotifer Brachionus plicatilis showsdiverging local adaptation in its life-history traits in relation to estimated environmental predictabilityin its habitats. Here, we used an integrative approach —combining environmental, phenotypic andgenomic data for the same populations– to understand the genomic basis of this diverging adaptation.Firstly, a novel draft genome for B. plicatilis was assembled. Then, genome-wide polymorphisms werestudied using genotyping by sequencing on 270 clones from nine populations in eastern Spain. As aresult, 4,543 high-quality SNPs were identifed and genotyped. More than 90 SNPs were found tobe putatively under selection with signatures of diversifying and balancing selection. Over 140 SNPswere correlated with environmental or phenotypic variables revealing signatures of local adaptation,including environmental predictability. Putative functions were associated to most of these SNPs, sincethey were located within annotated genes. Our results reveal associations between genomic variationand the degree of environmental predictability, providing genomic evidence of adaptation to localconditions in natural rotifer populations

    An alien ectosymbiotic branchiobdellidan (Annelida: Clitellata) adopting exotic crayfish: a biological co-invasion with unpredictable consequences

    Get PDF
    Invasive alien species present a global threat to biodiversity, particularly where pathogens and symbionts are involved. Branchiobdellidans are clitellate annelids with an obligate ectosymbiotic association primarily on astacoidean crayfish. There are several examples of branchiobdellidan species adopting a geographically exotic host where endemic and exotic crayfishes cohabit the same water body. The first records of a western North American branchiobdellidan, Xironogiton victoriensis, adopting the eastern North American crayfish, Procambarus clarkii, in 2 river basins in Spain provide further evidence of the ectosymbionts’ tolerance to adopt an exotic host. Given worldwide translocations of these and other commercial crayfish species, limnologists and agency managers need to be alert for further introductions of X. victoriensis and other branchiobdellidans. Impacts of these exotic ectosymbionts on habitat and biota at a new location are unknown, as are their consequences on native biodiversity

    Modes, mechanisms and evidence of bet hedging in rotifer diapause traits

    Get PDF
    In this contribution, we review our knowledge on bet-hedging strategies associated with rotifer diapause. First, we describe the ecological scenario under which bet hedging is likely to have evolved in three diapause-related traits in monogonont rotifer populations: (1) the timing of sex (because diapausing eggs are produced via sexual reproduction), (2) the sexual reproduction ratio (i.e. the fraction of sexually reproducing females) and (3) the timing of diapausing egg hatching. Then, we describe how to discriminate among bet-hedging modes and discuss which modes and mechanisms better fit the variability observed in these traits in rotifers. Finally, we evaluate the strength of the empirical evidence for bet hedging in the scarce studies available, and we call for the need of research at different levels of biological complexity to fully understand bet hedging in rotifer diapause

    Spatial scale effects on taxonomic and biological trait diversity of aquatic macroinvertebrates in Mediterranean streams

    Get PDF
    We examined the effect of spatial scale on aquatic macroinvertebrate communities in Mediterranean streams from six basins distributed across southern Europe, including Spain, France, Italy, and Greece. We classified the studied streams according to their long-term aquatic regime into the three following types: (i) permanent (P), (ii) intermittent with summer pools (I-P), and (iii) intermittent with summer dry channels (I-D). For each stream type, we analyzed taxonomic and trait diversity, as well as the composition of the macroinvertebrate community, following a spatially nested design at three spatial scales of analysis: microhabitat (substratum patches), mesohabitat (pools vs. riffles), and macrohabitat (streams). In order to assess intrinsic seasonal variability in streams from the Mediterranean region, 20 Surber samples were taken from each stream according to meso- and microhabitat frequency in the wet and the dry season during 2010. Given the need for adaptation to specific hydrological conditions and the fact that microhabitats should encompass the niche requirements of particular taxa, we hypothesized that this spatial scale would have a greater influence on macroinvertebrate taxa composition and biological traits than the other two larger spatial scales in intermittent streams. We observed that patterns in the relative importance of variance components across hierarchical spatial scales changed with time because low flow or droughts altered both mesohabitat preva - lence and microhabitat composition. Our results confirm the importance of the microhabitat scale in I-P streams in the wet season but not in the dry one, when a loss of microhabitat diversity occurred. Stream-to-stream variability was more important in P and I-D streams. Our study also explored the relationships between traits and aquatic regimes. We found that aquatic macroinvertebrates inhabiting permanent streams exhibited traits related to the longer duration of life cycles in these rivers (e.g. large size of adult stages) and adaptations to flowing conditions (e.g. modes of aquatic dispersal), whereas aquatic macroinvertebrates inhabiting intermittent streams with summer pools had traits adapted to depositional conditions and ecological preferences for confined habitats (i.e. disconnected pools without flow). Finally, aquatic macroinvertebrates from intermittent streams with summer dry channels had adaptations conferring ability to survive periods with no water (e.g. modes of aerial dispersal, resistant stages). These results indicate that microhabitat conditions should not be neglected as they can play an important role in certain situations

    Intrinsic Subtypes and Gene Expression Profiles in Primary and Metastatic Breast Cancer

    Get PDF
    Biological changes that occur during metastatic progression of breast cancer are still incompletely characterized. In this study, we compared intrinsic molecular subtypes and gene expression in 123 paired primary and metastatic tissues from breast cancer patients. Intrinsic subtype was identified using a PAM50 classifier and χ 2 tests determined the differences in variable distribution. The rate of subtype conversion was 0% in basal-like tumors, 23.1% in HER2-enriched (HER2-E) tumors, 30.0% in luminal B tumors, and 55.3% in luminal A tumors. In 40.2% of cases, luminal A tumors converted to luminal B tumors, whereas in 14.3% of cases luminal A and B tumors converted to HER2-E tumors. We identified 47 genes that were expressed differentially in metastatic versus primary disease. Metastatic tumors were enriched for proliferation-related and migration-related genes and diminished for luminal-related genes. Expression of proliferation-related genes were better at predicting overall survival in metastatic disease (OSmet) when analyzed in metastatic tissue rather than primary tissue. In contrast, a basal-like gene expression signature was better at predicting OSmet in primary disease compared with metastatic tissue. We observed correlations between time to tumor relapse and the magnitude of changes of proliferation, luminal B, or HER2-E signatures in metastatic versus primary disease. Although the intrinsic subtype was largely maintained during metastatic progression, luminal/HER2-negative tumors acquired a luminal B or HER2-E profile during metastatic progression, likely reflecting tumor evolution or acquisition of estrogen independence. Overall, our analysis revealed the value of stratifying gene expression by both cancer subtype and tissue type, providing clinicians more refined tools to evaluate prognosis and treatment. Cancer Res; 77(9); 1-9. ©2017 AACR

    Nut production in Bertholletia excelsa across a logged forest mosaic: implications for multiple forest use

    Get PDF
    Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1–2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù

    Epigenetic profiling linked to multisystem inflammatory syndrome in children (MIS-C): A multicenter, retrospective study

    Get PDF
    Background Most children and adolescents infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain asymptomatic or develop a mild coronavirus disease 2019 (COVID-19) that usually does not require medical intervention. However, a small proportion of pediatric patients develop a severe clinical condition, multisystem inflammatory syndrome in children (MIS-C). The involvement of epigenetics in the control of the immune response and viral activity prompted us to carry out an epigenomic study to uncover target loci regulated by DNA methylation that could be altered upon the appearance of MIS-C. Methods Peripheral blood samples were recruited from 43 confirmed MIS-C patients. 69 non-COVID-19 pediatric samples and 15 COVID-19 pediatric samples without MIS-C were used as controls. The cases in the two groups were mixed and divided into discovery (MIS-C= 29 and non-MIS-C= 56) and validation (MIS-C= 14 and non-MIS C = 28) cohorts, and balanced for age, gender and ethnic background. We interrogated 850,000 CpG sites of the human genome for DNA methylation variants. Findings The DNA methylation content of 33 CpG loci was linked with the presence of MIS-C. Of these sites, 18 (54.5%) were located in described genes. The top candidate gene was the immune T-cell mediator ZEB2; and others highly ranked candidates included the regulator of natural killer cell functional competence SH2D1B; VWA8, which contains a domain of the Von Willebrand factor A involved in the pediatric hemostasis disease; and human leukocyte antigen complex member HLA-DRB1; in addition to pro-inflammatory genes such as CUL2 and AIM2. The identified loci were used to construct a DNA methylation profile (EPIMISC) that was associated with MIS-C in both cohorts. The EPIMISC signature was also overrepresented in Kawasaki disease patients, a childhood pathology with a possible viral trigger, that shares many of the clinical features of MIS-C. Interpretation We have characterized DNA methylation loci that are associated with MIS-C diagnosis. The identified genes are likely contributors to the characteristic exaggerated host inflammatory response observed in these patients. The described epigenetic signature could also provide new targets for more specific therapies for the disorder.Copyright (c) 2022 The Author(s). Published by Elsevier Ltd
    corecore