12 research outputs found

    The influence of anisotropic growth and geometry on the stress of solid tumors

    Get PDF
    Solid stresses can affect tumor patho-physiology in at least two ways: directly, by compressing cancer and stromal cells, and indirectly, by deforming blood and lymphatic vessels. In this work, we model the tumor mass as a growing hyperelastic material. We enforce a multiplicative decomposition of the deformation gradient to study the role of anisotropic tumor growth on the evolution and spatial distribution of stresses. Specifically, we exploit radial symmetry and analyze the response of circumferential and radial stresses to (a) degree of anisotropy, (b) geometry of the tumor mass (cylindrical versus spherical shape), and (c) different tumor types (in terms of mechanical properties). According to our results, both radial and circumferential stresses are compressive in the tumor inner regions, whereas circumferential stresses are tensile at the periphery. Furthermore, we show that the growth rate is inversely correlated with the stresses’ magnitudes. These qualitative trends are consistent with experimental results. Our findings therefore elucidate the role of anisotropic growth on the tumor stress state. The potential of stress-alleviation strategies working together with anticancer therapies can result in better treatments

    The role of malignant tissue on the thermal distribution of cancerous breast

    Get PDF
    The present work focuses on the integration of analytical and numerical strategies to investigate the thermal distribution of cancerous breasts. Coupled stationary bioheat transfer equations are considered for the glandular and heterogeneous tumor regions, which are characterized by different thermophysical properties. The cross-section of the cancerous breast is identified by a homogeneous glandular tissue that surrounds the heterogeneous tumor tissue, which is assumed to be a two-phase periodic composite with non-overlapping circular inclusions and a square lattice distribution, wherein the constituents exhibit isotropic thermal conductivity behavior. Asymptotic periodic homogenization method is used to find the effective properties in the heterogeneous region. The tissue effective thermal conductivities are computed analytically and then used in the homogenized model, which is solved numerically. Results are compared with appropriate experimental data reported in the literature. In particular, the tissue scale temperature profile agrees with experimental observations. Moreover, as a novelty result we find that the tumor volume fraction in the heterogeneous zone influences the breast surface temperature

    Mathematical modeling of the interplay between stress and anisotropic growth of avascular tumors

    Get PDF
    In this work, we propose a new mathematical framework for the study of the mutual interplay between anisotropic growth and stresses of an avascular tumor surrounded by an external medium. The mechanical response of the tumor is dictated by anisotropic growth, and reduces to that of an elastic, isotropic, and incompressible material when the latter is not taking place. Both proliferation and death of tumor cells are in turn assumed to depend on the stresses. We perform a parametric analysis in terms of key parameters representing growth anisotropy and the influence of stresses on tumor growth in order to determine how these effects affect tumor progression. We observe that tumor progression is enhanced when anisotropic growth is considered, and that mechanical stresses play a major role in limiting tumor growth

    Self-confined light waves in nematic liquid crystals

    Get PDF
    The study of light beams propagating in the nonlinear, dispersive, birefringent and nonlocal medium of nematic liquid crystals has attracted widespread interest in the last twenty years or so. We review hereby the underlying physics, theoretical modelling and numerical approximations for nonlinear beam propagation in planar cells filled with nematic liquid crystals, including bright and dark solitary waves, as well as optical vortices. The pertinent governing equations consist of a nonlinear Schrödinger-type equation for the light beam and an elliptic equation for the medium response. Since the nonlinear and coupled nature of this system presents difficulties in terms of finding exact solutions, we outline the various approaches used to resolve them, pinpointing the good agreement obtained with numerical solutions and experimental results. Measurement and material details complement the theoretical narration to underline the power of the modelling

    Analytical formulas for complex permittivity of periodic composites. Estimation of gain and loss enhancement in active and passive composites

    No full text
    The asymptotic homogenization method is applied to complex dielectric periodic composites. An equivalence to coupled dielectric problems with real coefficients is shown. This is similar to a piezoelectric problem: an out-plane mechanical displacement and an in-plane electric potential establishing a correspondence principle. Closed-form formulas for the complex dielectric effective tensor in the case of a square array of circular inclusions embedded in a matrix are given. These formulas are written in terms of a real and symmetric matrix which facilitates the implementation of the computational scheme. We also get similar formulas for multilayered complex dielectric composites. The real closed-form formulas are advantageous for estimating gain and loss enhancement properties of active and passive composites in certain volume fraction intervals. Numerical computations are performed and the results are compared with other approaches showing the usefulness of the obtained formulas. This may be of interest in the context of metamaterials

    A Semi-Analytical Heterogeneous Model for Thermal Analysis of Cancerous Breasts

    No full text
    International audienceIn the present work coupled stationary bioheat transfer equations are considered. The cancerous breast is characterized by two areas of dissimilar thermal properties: the glandular and tumor tissues. The tumorous region is modeled as a two-phase composite where parallel periodic isotropic circular fibers are embedded in the glandular isotropic matrix. The periodic cell is assumed square. The local problem on the periodic cell and the homogenized equation are stated and solved. The temperature distribution of the cancerous breast is found through a numerical computation. A mathematical and computational model is integrated by FreeFem++

    A gradient-driven mathematical model of anti-angiogenesis

    No full text
    In this paper, we present a mathematical model describing the angiogenic response of endothelial cells to a secondary tumour. It has been observed experimentally that while the primary tumour remains in situ, any secondary tumours that may be present elsewhere in the host can go undetected, whereas removal of the primary tumour often leads to the sudden appearance of these hitherto undetected metastases?so-called occult metastases. In this paper, a possible explanation for this suppression of secondary tumours by the primary tumour is given in terms of the presumed migratory response of endothelial cells in the neighbourhood of the secondary tumour. Our model assumes that the endothelial cells respond chemotactically to two opposing chemical gradients: a gradient of tumour angiogenic factor, set up by the secretion of angiogenic cytokines from the secondary tumour; and a gradient of angiostatin, set up in the tissue surrounding any nearby vessels. The angiostatin arrives there through the blood system (circulation), having been originally secreted by the primary tumour. This gradient-driven endothelial cell migration therefore provides a possible explanation of how secondary tumours (occult metastases) can remain undetected in the presence of the primary tumour yet suddenly appear upon surgical removal of the primary tumour
    corecore