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Politécnica de Madrid, 28040 Madrid, España.
dDepartment of Mechanical and Aerospace Engineering, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003,

USA.
eInstituto de Computação. Universidade Federal Fluminense. CEP:24210-346, Rı́o de Janeiro, Brasil.

Abstract

Solid stresses can affect tumor patho-physiology in at least two ways: directly, by compressing cancer and
stromal cells, and indirectly, by deforming blood and lymphatic vessels. In this work, we model the tumor
mass as a growing hyperelastic material. We enforce a multiplicative decomposition of the deformation
gradient to study the role of anisotropic tumor growth on the evolution and spatial distribution of stresses.
Specifically, we exploit radial symmetry and analyze the response of circumferential and radial stresses to (a)
degree of anisotropy, (b) geometry of the tumor mass (cylindrical versus spherical shape), and (c) different
tumor types (in terms of mechanical properties). According to our results, both radial and circumferential
stresses are compressive in the tumor inner regions, whereas circumferential stresses are tensile at the pe-
riphery. Furthermore, we show that the growth rate is inversely correlated with the stresses’ magnitudes.
These qualitative trends are consistent with experimental results. Our findings therefore elucidate the role of
anisotropic growth on the tumor stress state. The potential of stress-alleviation strategies working together
with anticancer therapies can result in better treatments.

Keywords: tumor modeling; anisotropic growth; stress; hyperelasticity.

1. Introduction

Tumor growth involves the generation of mechanical forces both within the tumor and between the tu-
mor and the host tissue. The development of a tumor could be closely associated with the generation and
accumulation of mechanical stresses [35, 37]. These mechanical forces, coupled with neovascularization,
can induce abnormal solid and fluid stresses that facilitate tumor progression and hinder the response to
various anti-cancer treatments ([17]). As shown in several experimental studies (see e.g. [11, 6, 7, 39]),
mechanical stresses can determine in part the progression of solid tumors. Solid stresses ([17])) can affect
tumor patho-physiology directly, by compressing cancer and stromal cells, and indirectly, by deforming
blood and lymphatic vessels [37]. On one hand, cell compression can alters gene expression, cancer cell
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proliferation, apoptosis and invasiveness, stromal cell function, and extracellular matrix synthesis and orga-
nization ([6, 39]). On the other hand, compression of blood and lymphatic vessels can reduce the delivery
of oxygen, nutrients and drugs. Compromising the effectiveness of anti-cancer therapies ([22, 35]). Anti-
cancer therapies by stress-relief have been proposed to improve and complement drug treatments delivery
efficacy ([35, 16]). These strategies are based on the reduction of the stress levels, which causes reopening
of compressed tumor blood vessels, thus leading to enhanced fluid and, in turn, drug transport within the
tumor mass. In [36] it is shown that pharmacological depletion of tumor stroma with saridegib (i.e. an
inhibitor of the sonic hedgehog pathway ([17])), alleviates stress levels and increases blood vessels diameter
and tumor perfusion without affecting vascular density. In [21], the authors show that the use of saridegib
improves the effectiveness of chemotherapy in murine pancreatic cancers and increases the mice survival
rate. Furthermore, clinical studies in humans show that antiangiogenic agents can normalize tumor vascula-
ture, so patients whose tumor blood perfusion increases survive longer ([16]). Morover, in [23] and [19], the
authors solve the homogenized fluid and drug transport models developed in [34] and [24] for vascularized
tumors, respectively. Their analysis, which was extended to mechanic deformations in [26], supports the
argument that geometric regularization of the microvasculature improves transport of blood and advected
drugs transported into the tumor mass. Cancer evolution is extremely complex and cannot be reduced only
to its mechanical stress response; however some features in the tumor progression can be associated with
the generation and accumulation of mechanical stresses.

An increased awareness of the mechanical response of a growing tumor mass can also contribute to a
more informed design of anti-cancer therapies that rely on cancer tissue destruction, such as those based on
ultasounds. For example, the High-Intensity Focused Ultrasound (HIFU) is a well-known technique which
exploits ultrasounds to remove the malignat tissue. In fact, it has been successfully applied in the treatment
of solid tumors (pancreas, liver, colon, etc.) ([1]). Although tissue destruction takes normally place via ther-
mal ablation, the interest in mechanical HIFU (where ultrasounds are used to generate mechanical ablation)
is increasing (see, e.g. [12]), and its working mechanisms are strongly related to the mechanical response
of different tissue types. Moreover, mechanical forces can be used for medical simulations involving the
discover of tumors ([18]). Our study is therefore motivated by the importance of stresses in determining
tumors’ progression and treatment. Given the lack of in vivo data, the development of theoretical investiga-
tions that can provide reliable predictions can support the design of effective anti-cancer treatments.

In the present work we model the tumor mass as a growing hyperelastic material and investigate the
role of anisotropic tumor growth on tumor stresses. Growth take place when conversion of mass is present
from one constituent to another, and once a mixture is considered then there are subtle issues concerning
boundary conditions that have to be clearly discussed (see e.g. [13, 14, 15]). In particular, we assume that
the solid tumor is surrounded by a compressible, isotropic and hyperelastic medium. We extend the analysis
reported in [32] by performing for the first time a parametric analysis in terms of (a) degree of anisotropy, (b)
tumor shape (cylindrical versus spherical), and (c) tumor types that are characterized by different mechanical
properties. In fact, cylindrical and spherical tumor shapes have been experimentally observed as shown in
[9] and [41], respectively.

The reminder of this work is organized as follows. In Section 2 we describe the multiplicative decom-
position of the deformation gradient tensor to account for both the elastic response and growth of the tumor
contributions. The theory of materials with evolving natural configurations developed by Rajagopal and
co-workers (see for instance [28]) is used since it permits to model growth and stress-induced deformation
separately. In Section 3 we introduce the Ciarlet’s strain energy function which is exploited to model the
hyperelastic response of the tumor. In Section 4 we introduce the balance equations for mass and linear
momentum. In section 5 we describe the adopted evolution law for growth. In Section 6 we summarize the
mathematical model and then specialize it for spherical and cylindrical geometries, assuming radial symme-
try in both cases. In Section 7 we present and discuss our results obtained via numerical simulations of the
mathematical model. In Section 8 we present our conclusions.
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2. Multiplicative decomposition of the deformation gradient tensor

Tumor growth is modeled using the multiplicative decomposition of the deformation gradient tensor F.
In fact, the essential difficulty in formalizing the dynamics of biological growth is the simultaneous modeling
of the change in mass and how the latter affects the stresses. The theory of materials with evolving natural
configurations ([13])overcomes this complexity by separating such stress contributions ([3]). Then,

F = FelG, (1)

where Fel describes the local deformation from the natural configuration κel (the natural configuration is the
reference configuration chosen to represent the elastic responses of the material) to the actual configuration
κt and it is associated with the elastic response of the material. On the other hand, the tensor G is directly
connected to growth, and therefore it is referred to as the growth tensor. Now, since G is introduced, an
additional constitutive equation must be postulated. In this sense, it is known that most soft biological
tissues possess a highly anisotropic microstructure. Thus, we take the following form for the growth tensor
([32, 20])

G = g2I + (g1 − g2)ng ⊗ ng, (2)

where I is the identity tensor and g1 and g2 account for parallel and perpendicular anisotropic contributions
with respect to ng, respectively.

3. Constitutive relations

According to experimental evidences, tumors can be considered as compressible materials ([11]). In
particular, the response from the natural configurations is modeled considering the tumor as an isotropic,
compressible and non-linear hyperelastic solid, where the material response is the same for each natural
configuration. As a matter of fact, several constitutive functions have been used in the modeling of tumor
tissue. In the recent study by [40], the authors showed that the experimental stress-strain response of two
tumor types (MCF10CA1a and SW620) is better fitted to an exponential constitutive equation compared to
the widely used neo-Hookean and Blatz-Ko models. However, they found that the evolution of stress and
growth rate of the tumor are independent from these specific constitutive relations. This is the reason why
we adopt the simplified Ciarlet strain energy function ([5]).

ψ =
λ

4

(
IIIB − ln IIIB − 1

)
+
µ

2

(
IB − ln IIIB − 3

)
, (3)

where λ and µ are the Lamé’s constants and IB and IIIB are the first and third principal invariants of the
left Cauchy-Green deformation tensor B = FFT , respectively. Now, like κel is chosen as the reference
configuration representing the elastic responses of the material and assuming that material properties do not
change during growth. The Cauchy stress tensor can be written as ([5]),

σel = σ(Bel) =
2ρr√
IIIBel

∂ψel

∂Bel
Bel, (4)

where ρr denotes the density field in the Lagrangian description and Bel = Fel(Fel)T .
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4. Balance equations

In the present work, the well-known mass balance equation with a source term is used ([29]),

ρ̇ + ∇ · (ρv) = ρΓ, (5)

where ρ is the mass density, v is the velocity field and ρΓ is the mass supply rate. In particular, ([30])

ρ =
ρr

Jel
, (6)

where Jel = detFel. Moreover, Γ has the following form,

Γ = tr(ĠG−1). (7)

On the other hand, ignoring inertial terms, the linear momentum equation read as ([29])

∇ · σel = 0, (8)

where body forces and interaction terms have been neglected. Recently, the action of body forces and inter-
action terms on tumor growth has been investigated in [31] and [32], respectively. Focusing on the adhesion
mechanisms between cells and the extracellular matrix, the authors in [27] have proposed constitutive mod-
els for the interaction terms.

5. Evolution law for growth

Tumor mechanical responses and interactions with the surrounding tissue influence its growth. In this
sense, the process of growth can not be unlinked to stresses and deformations of the body. Then, an evolution
law that accounts for these contributions needs to be postulated. In particular, any proposed law must obey
the constraint (6). On the other hand, considering the dissipation principle of [2] and following the procedure
made in [30],

Γ = tr
[
K−1

(
−ψI + Jel(Fel)Tσ(Fel)−T + M

)]
, (9)

where K is a symmetric positive definite tensor and M governs the growth process and is referred to as the
accretive forces tensor ([31] and [2]). Thus, (6) together with (2) and ng = er, gives

ġ1

g1
+ 2

ġ2

g2
= Γ. (10)

In particular, in the present work it is assumed that g1 = αg2, with α being a positive constant. Notice that
α is a model parameter that accounts for the degree of anisotropy. In particular, the isotropic formulation of
the model is obtained for α = 1. Then, Eq. (10) rewrites,

ġ2 =
Γ

3
g2. (11)

Now, it is reasonable to assume that growth is proportional to the nutrient concentration n. In this sense,
if a body grows, a stimulus must be provided as well as a supply of energy, in this case driven by the
nutrients. We denote by ne the part of the nutrient concentration that provides the energy for tumor growth.
Then, as the energy for growth supplied externally is related to the accretive forces and is referred to the
tensor M, we postulate that M = γneI, where γ is a model parameter ([32]). On the other hand, it is
introduced an expression to relate tumor growth with the levels of solid stresses. Following [32], we take
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K = (β(n − nd)(1 + εσ̄))−1 I, where β is a positive constant, n > nd with nd being the part of n dedicated to
carry out functions, like plastics (forming the structure of the organism as well as allowing its growth) and
regulators (controlling the chemical reactions resulting from the cell metabolism). Besides, ε is a constant
that describes the dependence of Γ on the stress and σ̄ = tr(σ)/3 is the bulk solid stress ([40]). We remark
that other expressions for Γ are also possible. For instance, to model contact inhibition in [10] is considered
that the growth term depends on a switch mechanism based on the compression levels, using a monotonic
mollifier of the step function.

6. Mathematical model

The mathematical model can be summarized using equations (8) and (11), together with a diffusion
equation describing the evolution of the nutrients concentration at a material point. Specifically,

∇ · σel = 0, (12)

ġ2 =
Γ

3
g2, (13)

ṅ = δ∆n − 3(ζ + n)
ġ2

g2
, (14)

with δ being a diffusion constant and ζ a proportionality constant ([32]). The system (12)-(14) is solved with
the following initial and boundary conditions

Initial conditions (t = 0) Boundary conditions (t > 0)
u = u0, [[n · u]] = 0, on ∂u
n = n(u, t), [[nσel]] = 0, on ∂σ
G = I, n = c, on ∂,

(15)

where u is the displacement vector field, u0 is the initial displacement, n is the outward normal vector to the
tumor surface, [[•]] represents the jump evaluated across the interface, ∂ = ∂u ∪ ∂σ is the tumor boundary
and c is a positive constant. We specify directly the boundary conditions for n in the tumor center later on,
when we specialize the model assuming radial symmetry.

6.1. Cylindrical kinematics
We investigate tumor growth and solid stresses for a tumor with cylindrical geometry. Some tumors

adopt this particular shape, for example, ductal carcinoma in situ (DCIS) of the breast represents the initial
growth stage of breast cancer ([8]). At this point, the tumor is non invasive, being confined by the basement
membrane of the duct. In particular, we describe and formulate the mathematical model using a cylindrical
coordinate system. Then, (R,Θ,Z) and (r, θ, z) give the cylindrical coordinates in the reference and deformed
configurations respectively, where R, r > 0, −π/2 ≤ Θ, θ < π/2 and Z, z > 0. Moreover, it is assumed that
the deformation of the body will be given only in the radial direction, i.e., r = r(R, t), Θ = θ and Z = z.

6.2. Spherical kinematics
In [11], it is shown that tumors growing in free suspension adopt a spherical shape, while those growing

within an agarose gel take an ellipsoidal geometry due to anisotropic stresses exerted by the gel. In partic-
ular, the incorporation of an isotropic elastic law in the model suggest the fact that the tumor is modeled
in a spherical shape. In particular, we describe and formulate the mathematical model using a spherical
coordinate system. Then, (R,Θ,Φ) and (r, θ, φ) give the spherical coordinates in the reference and deformed
configurations respectively, where R, r > 0, −π/2 ≤ Θ, θ < π/2 and −π ≤ Φ, φ < π. Moreover, it is
assumed that the deformation of the body will be given only in the radial direction, i.e., r = r(R, t), Θ = θ

and Φ = φ.
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6.3. Dimensionless formulation of the mathematical model
The process of non-dimensionalization is considered to rescale the system of variables according to

their characteristic quantities. Particularly, tumor radius is rescaled by a characteristic length L := 10−1cm
and the time scale by τ := L2D−1, where D := 1.157407 × 10−7cm2s−1 ([4]). The density is rescaled by
ρr = 10−2Kgcm−3, the nutrient concentration by its corresponding value at the boundary (c) and the stress
by µ. The non-dimensional parameters of the model are summarized as follows:

R = LR̃, r = Lr̃, ρ = ρrρ̃, n = cñ, ne = cñe, nd = cñd, ζ = cζ̃, σ = µσ̃,

Γ = τ−1Γ̃, γ = µc−1γ̃, β = (µc)−1β̃, ε = µ−1ε̃ and δ = Dδ̃. (16)

According to Eqs. (12)-(14) the system to be solved has the form,

(σ̃rr
el )
′

r̃′
+ m

σ̃rr
el − σ̃

θθ
el

r̃
= 0, (17)

ġ2 =
β̃(ñ − ñd)(1 + ε̃ ˜̄σ)

3
tr

(
(−ψ̃I + Jel(Fel)T σ̃(Fel)−T + γ̃ñeI)

)
g2, (18)

˙̃n = δ̃

(
1
r̃′

(
ñ′

r̃′

)′
+ m

ñ′

r̃r̃′

)
− 3(ζ̃ + ñ)

ġ2

g2
, (19)

where •′ = ∂ • /∂R̃, σ̃rr
el = αρrR̃g3

2

((
(r̃′)2/(α2g2

2) − 1
)

+ (λ/(2µ))
(
(r̃′)2r̃2/(α2R̃2g6

2) − 1
))
/(r̃′r̃) and

σ̃θθel = αρrR̃g3
2

((
r̃2/(R̃2g2

2) − 1
)

+ (λ/(2µ))
(
(r̃′)2r̃2/(α2R̃2g6

2) − 1
))
/(r̃′r̃).

In Eqs. (17) and (19) the constant m (m = 1, 2), indicates the corresponding mathematical model,
i.e. if m = 1 the mathematical model for the cylindrical deformation described in Section 6.1 is obtained,
otherwise if m = 2, we are in presence of the spherical deformation problem defined in Section 6.2 . In
particular, the system (17)-(19) is solved with the following initial and boundary conditions,

Initial conditions (t = 0) Boundary conditions (t > 0)
r̃ = r̃0, [[r̃]] = 0, on ∂u
ñ = 1

2c

((
LR̃
3

)2
+ 1

)
, [[σ̃rr]] = 0, on ∂σ

G = I, ñ′ = 0, in o,
ñ = 1, on ∂,

(20)

where “o” denotes the tumor center.

7. Numerical simulations

In this section, the numerical results corresponding to the dimensionless mathematical model (17)-(20)
are discussed. In particular, the numerical method was implemented in Python. As a strategy to obtain
numerical solutions of the proposed models the time is assumed discrete, which allows to have a discrete
version of the time-continuous problems.

The objective of this work is not to study the effect of stresses on tumor growth. We refer the reader
to [32] where mechanical modulation of growth by solid stresses are investigated. In the present study,
growth and stresses are studied for various tumor types and tumor shapes (cylindrical and spherical) under
the effect of the stress applied by a surrounding medium. The tumor-surrounding host tissue is considered as
a hyperelastic and compressible solid material which is deformed by the growing solid tumor. In particular,
the deformation of the external tissue take place only in the radial direction and the Ciarlet strain energy
function given by (3) is selected to represent its stress-strain response. For the external medium, the bulk
modulus provided in [33] for 0.5% agarose gel, i.e. κh = 0.01199898 Ncm−2 and νh = 0.18, are chosen. The
present model is not constrained to the particular form of the stress law for the surrounding solid, that it just
addresses the interactions between the tumor and the surrounding host tissue.

6



7.1. Cylindrical geometry

Mechanical material properties measured for the murine mammary adenocarcinoma MCaIV in [36]
are used, i.e. the shear modulus µ = 0.4999575 N/cm2 and the bulk modulus κ = 0.66661 N/cm2. The
Poisson ratio is set to ν = 0.2 ([30] and [40]). We also fix the dimensionless parameters to β̃ = 1/µ̂, with
µ̂ representing the numerical value of µ (i.e. without the dimension); ñd = (1 − 2 × 10−5)ñ, γ̃ñe = 10−1ñ,
ε̃ = 1.875159, δ̃ = 10−9 and ζ̃ = 10−1.

In Fig. 1 (A) the evolution of the breast tumor type MCaIV’s radius versus time is displayed for the case
of the isotropic formulation, i.e. for α = 1. At first glance, it is noticed that even when the model does not
consider a lack of nutrients during the tumor evolution, its growth slows down in time. This behavior is due
to the presence of the host tissue at the tumor boundary which is modulating its growth. In addition, in Fig.
1 (B) and (C), the distribution of the stresses for different instants of time are shown. In this particular case
of isotropic growth, we can note that tumor stresses are almost constants in space. Now, we consider an
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Figure 1: (A) Radius evolution of the murine mammary adenocarcinoma MCaIV versus time with α = 1.(B) Radial stress and (C)
circumferential stress for different instants of time for the murine mammary adenocarcinoma MCaIV.

anisotropic formulation, i.e. we set α , 1. As observed in Fig. 2, the anisotropic form of the growth tensor
G influences the tumor stress behavior. In a previous work ([32]), it is shown how this specific anisotropic
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Figure 2: Effect of the anisotropy on (A) radial stress and (B) circumferential stress of the breast tumor type MCaIV for the fixed
instant t = 10 days.

form of the tensor G (Eq. (2)) influences the growth of a tumor. Here, in a same way the anisotropic
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property affects tumor stresses. As pointed out in [17], stress can be direction dependent, that is they can
be compressive in the interior of the tumor in both the radial and circumferential directions, whereas at the
interface with the host tissue, radial stresses can be compressive, and circumferential stresses can be tensile.
As shown in Fig. 2, this behavior is predicted by the mathematical model when anisotropy is considered,
particularly for α > 1 (i.e. when g1 > g2). Specifically, for α > 1, radial and circumferential stresses
are compressive in the spatial interior, whereas at the interface with the host tissue, circumferential stresses
are tensile. We remark that the value of the stresses at the periphery are constrained to the election of the
surrounding medium strain energy and mechanical constants.

7.2. Spherical geometry

The present study can be extended in order to compare growth and stresses for the same type of tumor
but with different shapes. The murine mammary adenocarcinoma MCaIV is chosen as an example. In this
sense, in Fig. 3 (A) it is shown the radius evolution in time for the tumor type MCaIV with cylindrical (blue)
and spherical (red) shapes. Interestingly, with cylindrical geometry it reaches a higher radius. Moreover, it
is noticed that radial stresses for both geometries are almost identical (see Fig. 3 (B) and (C) and (D) first
line). However, in Fig. 3 (B) and (C) and (D) (second line), it is observed that circumferential stresses differ,
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Figure 3: (A) Comparison between the radius evolution of the murine mammary adenocarcinoma MCaIV for different geometries
and α = 1.2. (B) Radial and circumferential stress distributions for the fixed instant t = 10 days of the murine mammary adeno-
carcinoma MCaIV for different geometries. (C) Horizontal strip of color corresponds to the radial (first line) and circumferential
(second line) stress values for the tumor type MCaIV with cylindrical shape. (D) Horizontal strip of color corresponds to the radial
(first line) and circumferential (second line) stress values for the tumor type MCaIV with spherical shape.
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not in behavior but in numerical values. Specifically, circumferential stresses are more compressive when
considering a spherical shape for the tumor.

7.3. Comparison of results

In order to continue with the study the spherical shape for the tumor is chosen. The present model pre-
dicts experimental findings obtained by [36], where tumors with higher stress levels exhibit a slower growth,
presumably owing to reduced cancer cell proliferation and increased apoptosis. In particular, the mechanical
materials properties given in Tab. 1 for three tumor types ([36]) are considered. In the experimental study

Table 1: Mechanical material properties of the tumor types considered.
Tumor Type (Cancer cell line) Bulk modulus κ (Ncm−2) Shear modulus µ (Ncm−2)

Melanoma (MU89) 0.2533118 0.189984
Colon (LS174T) 0.399966 0.2999745

Glioma (U87) 2.66644 1.99983

by [36], tumors with higher stress levels exhibited a slower growth. In this sense, in Fig. 4 is observed a
comparison between the growth of the tumors considered in Tab. 1. It is evident, that in the same lapse
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 r

ad
iu
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m
)

0.01

0.012

0.014

0.016

0.018

0.02

MU89 growth
LS174T growth
U87 growth

Figure 4: Comparison between the radius evolution of the tumor types considered in Tab. 1 with α = 1.2.

of time, the human melanoma MU89 grows more than the human colon adenocarcinoma LS174T and the
human gliobastoma U87. In fact, the numerical results agree with the study reported in [36]. Specifically,
the tumor with the higher stress levels (human gliobastoma U87) is the one that grows slower, meanwhile
the tumor type with the lower stress levels (human melanoma MU89) grows faster. This can be observed
in Fig. 5, where it is shown the radial and circumferential stresses for the human melanoma MU89 and the
human gliobastoma U87.

8. Conclusions

In the present work, a continuum mechanical model is proposed to study the role of anisotropic tumor
growth on tumor stresses. We found that radial and circumferential stresses are compressive in the spatial
interior, whereas at the periphery, circumferential stresses are tensile. These numerical results are consistent
with experimental findings. Moreover, the results agree with the fact that tumors with higher stress levels
grow slower, meanwhile tumors with lower stress levels grow faster. Given the fact that the current treatment
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Figure 5: (A) Radial and circumferential stress distributions for the fixed instant t = 10 days and α = 1.2. (B) Horizontal strip
of color corresponds to the radial (first line) and circumferential (second line) stress values for the human melanoma MU89.
(C) Horizontal strip of color corresponds to the radial (first line) and circumferential (second line) stress values for the human
gliobastoma U87.

situation still needs to innovate, mechanical models could generate big potential to find new paths for cancer
treatment.

Challenging further developments include (a) the extension of the model to vascularized tumors, (b) the
generalization to a poroelastic mechanical behavior of the malignant mass (see, e.g. [25] for a homogenized
model of (linear) growing poroelastic materials), (c) the coupling with suitable mathematical models which
describe transport of macromolecules (see, e.g. the homogenized models [34, 24] for vascularized, rigid and
non-growing tumors), as well as nanoparticles delivery (see [38] for a review on the subject), and (d) the
impact of tumor stresses on geometry and hydraulic properties of the blood vessels.

A systematic theoretical study of mathematical models which account for tumor stresses can contribute
to the development of new approaches for cancer diagnosis and treatment and the reduction of invasive
clinical trials.

Acknowledgments

AR gratefully acknowledges the Program of Postdoctoral Scholarships of DGAPA from UNAM, Mex-
ico. JM and RP acknowledge support from the Ministry of Economy in Spain under the project reference
DPI2014-58885-R. Thanks to the Project (7515) Métodos Fı́sico-Matemáticos para el estudio de nuevos
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