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• Review of the nonlinear optics of nematic liquid crystals.

• Reviews the physics and engineering background.

• Reviews the mathematical modelling of the nonlinear optics.

• Includes comparisons between experimental results and mathematical modelling.

• Includes details of the mathematical modelling.
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Abstract

The study of light beams propagating in the nonlinear, dispersive, birefringent and
nonlocal medium of nematic liquid crystals has attracted widespread interest in the last
twenty years or so. We review hereby the underlying physics, theoretical modelling and nu-
merical approximations for nonlinear beam propagation in planar cells filled with nematic
liquid crystals, including bright and dark solitary waves, as well as optical vortices. The
pertinent governing equations consist of a nonlinear Schrödinger-type equation for the
light beam and an elliptic equation for the medium response. Since the nonlinear and
coupled nature of this system presents difficulties in terms of finding exact solutions, we
outline the various approaches used to resolve them, pinpointing the good agreement
obtained with numerical solutions and experimental results. Measurement and material
details complement the theoretical narration to underline the power of the modelling.

1 Introduction

The study of nonlinear dispersive waves originally arose in the context of fluid mechanics, with
water waves on the surface of a fluid being a major area of study. The pioneering work by
G.G. Stokes, Lord Rayleigh and J. Boussinesq is notable and is analysed, summarised and set
in context in the classic book by Lamb [1]. Of note to the present review, in 1834 J. S. Russell
observed a new form of water wave, a “wave of translation,” now termed solitary wave, on the
Union Canal on the western side of Edinburgh, Scotland, U.K., which he later verified with
experiments in a wave tank [2]. The new wave was of humped shape, surprising at the time
as it was assumed that all waves are essentially Fourier series consisting of oscillatory modes.
The reason that such a hump shaped wave can exist is that a solitary wave is a nonlinear

wave which cannot be predicted on the basis of linear or weakly nonlinear theory [3]. Solitary
waves were placed on a sound theoretical basis by Boussinesq in 1871 [4] and Korteweg and
de Vries in 1895 [5]. Boussinesq derived a weakly nonlinear, long wave approximation to the
water wave equations, the Boussinesq equation, with the (now) famous sech2 solitary wave
profile. Korteweg and de Vries essentially derived a uni-directional form of the Boussinesq
equation, now known as the Korteweg-de Vries (KdV) equation [3]. With this sound footing
the theoretical study of solitary waves became a backwater, with a dedicated short section
in the classic text [1]. This radically changed with the discovery in 1967 that the KdV
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equation is exactly integrable in a Hamiltonian sense, with its solution determined by the
method of inverse scattering [6]. This prompted an explosion of research into nonlinear
dispersive waves, with the resulting discovery that many other such equations are integrable
using inverse scattering [3, 7, 8]. These include the nonlinear Schrödinger (NLS) equation,
of major interest here, the Sine-Gordon equation and Toda chain, among many others. One
consequence of a nonlinear dispersive wave equation being integrable is that N interacting
solitary waves of this equation do so “cleanly,” with a mere phase shift, but without a change
of shape. Due to this particle-like behaviour, the term soliton was coined for the solitary
wave solutions of integrable equations. The words soliton and solitary wave are therefore not
interchangeable, as a soliton is a specific type of solitary wave, a distinction which is not
always observed in the general literature, and even less in experimental reports.

Accompanying this research on nonlinear dispersive waves was its extension into several
areas beyond classical water wave theory, including optics, plasma physics and magnetism
[3, 8] as well as biology [9]. In addition to these applications to specific areas, new methods to
analyse nonlinear dispersive wave equations were developed [3]. One such powerful method
is Whitham modulation theory, used to analyse slowly varying modulated waves [3, 10]. It
assumes a slowly varying periodic wavetrain and gives a set method to determine modula-
tion equations for its slowly varying parameters, such as amplitude, wavenumber and mean
height. Whitham modulation theory not only determines the stability of nonlinear dispersive
wavetrains, but is the only known approach to find modulated solutions such as dispersive
shock waves, better known as undular bores in fluids [11]. This paper will relate research
in and illustrate a particular application of nonlinear wave theory to nonlinear light beams
in nematic liquid crystals (NLC) [12, 13, 14]. The key work was the reported evidence that
bulk NLC can support stable optical solitary waves— termed nematicons— based on reori-
entation [15]. As discussed in the next Sections, the equations governing the nonlinear optics
of reorientational nematic liquid crystals are (2 + 1) dimensional and consist of an NLS-type
equation for the light beam and an elliptic one for the material response [16]., These equations
are not integrable, as witnessed by the fact that nematicons do not interact cleanly [16]. To
term nematicons as solitons is therefore not strictly correct, as understood in the applied
mathematics literature; in applied physics and optics, however, nematicons are commonly
referred to as reorientational (spatial) solitons, nonlocal solitons, self-confined waves in soft
matter etc. While it is known that (2 + 1) dimensional solitary waves governed by NLS-type
equations are unstable, exhibiting catastrophic collapse above a power threshold and decaying
into diffractive radiation below it [17], this instability does not occur in nematicons as the
medium is “nonlocal,” in that its response extends far beyond the waist of the beam excitation
[16, 18, 19]. The issue of nonlocality will be taken up in detail in Section 3. A major obstacle
to the analysis of the pertinent model is that there are no general exact solutions, even in
(1 + 1) dimensions. This lack of exact solitary wave, or periodic wave, solutions implies that
standard analytical nonlinear wave techniques, such as Whitham modulation theory, can-
not be applied in standard form, let alone inverse scattering. The NLC equations can, of
course, be solved numerically, e.g., with pseudo-spectral methods [20, 21] as such techniques
are highly suitable for nonlinear dispersive wave equations. Hence, as discussed in Section 4,
analytical progress on the nonlinear optics of nematic liquid crystals requires other approx-
imate approaches, including variational methods, an extension of the classical Rayleigh-Ritz
approach, as well as extensions of Whitham modulation theory for which a knowledge of ex-
act periodic wave solutions is not needed. As shown in Section 6, surprisingly, but stemming
from the highly nonlocality of NLC in many situations, the exact profile of a nematicon is
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not necessary in order to analyse its propagation.
It is intuitive that, in the presence of absorption, light beams propagating through NLC

can act as energy sources able to heat the medium. This heat is important as the optical
properties of NLC, such as refractive indices, elasticity and birefringence, are temperature
dependent [22, 23, 24]. Thermo-optic nonlinear changes in NLC can be self-defocusing, while
optical reorientation is self-focusing, so that thermal and reorientational effects in response
to specific light polarizations can act in opposition. Standard undoped NLC, such as 5CB
and E7, are nearly pure dielectric and the thermal contributions are weak; nevertheless these
can be enhanced through the addition of dyes [25] or nano-particles [26]. These thermo-optic
effects on nematicon behaviour and propagation are addressed in Section 7.

Since their initial report in terms of reorientational self-guided and diffraction-less wave-
packets [15], there has been a large amount of experimental investigations of nematicons,
their interactions and control, and other nonlinear optical waves, such as optical vortices, in
nematic liquid crystals [16]. A great stimulus to the theoretical study of nonlinear optics
in NLC has come from these observations and the need to model them. When comparing
experimental and theoretical results, NLC are— in some senses— more versatile than fluids
such as water and the atmosphere, as the latter are affected by extra effects such as viscosity,
turbulence etc. which are not generally accounted for in models. Conversely, light beams in
NLC mainly suffer from Rayleigh scattering, leading to decay on millimetre distances, so the
results from models and experiments are more prone to good agreement. Section 6 illustrates
techniques used to model experiments with light beams in NLC, showing that the approaches
mentioned in the previous paragraph yield model equations whose solutions are an excellent
match with measurements.

2 Physical background

The physical background and some details on the geometry of nonlinear light beams in planar
cells filled with nematic liquid crystals will now be summarised, so that the mathematical
analysis and modelling of the succeeding sections can be understood in context. It will be
shown that these models, which can be reduced to simpler forms based on the underlying
physics, give accurate agreement with experimental results.

Nematic liquid crystals are fluids with a regular crystalline structure encompassing orient-
ational order and positional randomness [12]. The word “nematic” derives from the ancient
Greek word nematos (νηµατoσ) meaning thread, as NLC are metaphases consisting of an-
isotropic (elongated) molecules with their dominant (long) axes oriented along a preferred
angular direction. The latter is termed the molecular director and usually indicated by the
unit vector n. The valence electrons of these molecules can move more easily along the dir-
ector, as their backbones are based on benzine rings [13, 14], so that these non-polar NLC
molecules are easily polarised in the presence of electric fields. The electronic polarizability of
the resulting dipoles and, consequently, the NLC polarization field vector, are usually larger
along n than across it as the benzine rings are linked along the molecular director, yielding
refractive indices n‖ > n⊥ for electric fields parallel and orthogonal to n, respectively, which
characterize NLC as positive uniaxial crystals with optic axis corresponding to n [3, 12].
The two (plane wave) eigensolutions corresponding to a given wavevector k are ordinary and
extra-ordinary waves, with electric field either orthogonal to both k and n or co-planar with
them, respectively. The extra-ordinary waves in NLC are dispersive and nonlinear through
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reorientation [3, 13, 14, 27]. The optical solitary waves addressed in this paper consist of
extra-ordinary eigenwaves [28, 29], although ordinary wave beams have been reported to self-
focus and confine via a thermo-optic response through light absorption in dye-doped NLC
[30, 31, 32, 33], as summarised in Section 7. Wavepackets with mixed eigenstates and polar-
ization evolution owing to birefringence would be subject to geometric phases [34, 35] and
compensate diffraction [36, 37, 38], but their self-trapping is not dealt with here.

Let us consider a light beam propagating in NLC with its wavevector k at an angle θ with
respect to n. If the wavepacket is linearly polarised as an extraordinary-wave, e-wave (with
the electric field E coplanar with n and k), its phase velocity c is θ dependent with

c(θ) =
c0

ne(θ)
= c0

[(

n2⊥ − n2‖

)

sin2 θ + n2‖

]1/2

n⊥n‖
, (1)

where c0 is the speed of light in a vacuum. Its Poynting vector is also θ dependent and forms
a walk-off angle δ with respect to the wavevector [3, 39, 40], given by

δ(θ) = − 1

ne(θ)

dne(θ)

dθ
. (2)

At the same time, the dipoles induced by light in the anisotropic molecules react to the
electric field E of the beam, with the resulting electromagnetic torque acting on them. This
torque Ω is given by

Ω = ǫ0∆ǫ (n ·E) (n×E) , (3)

where ǫ0 is the dielectric susceptibility of the vacuum and ∆ǫ = n2‖ − n2⊥ the anisotropy
at optical frequencies. The torque Ω, counteracting the elastic intermolecular forces of the
nematic medium, acts to reorient the excited dipoles (and therefore the director n) to a
larger angle θ + φ, with φ the all-optical (nonlinear) contribution [13, 27]. This response
increases the e-wave refractive index ne, resulting in self-focusing, which eventually supports
the formation of graded-index waveguides able to balance beam diffraction and sustain (2+1)D
solitary wave-packets, nematicons [16, 41]. Nematicons are spatial optical solitary waves
which can be excited by coherent/incoherent light in common NLC mixtures at mW (milli-
Watt) power levels by Gaussian or bell-shaped input beams which are a few micrometers
wide [16, 28]. For a typical NLC birefringence n‖ − n⊥ ≈ 0.2 (or larger) in the visible or
near-infrared at room temperature, the maximum walk-off angle of a beam launched with k

parallel to the down cell direction Z is about 7o (or larger). This occurs for an orientation
θ ≈ π/4, which also maximizes the nonlinear optical response [18]. As will be shown below,
the beam evolution is governed by a nonlinear Schrödinger (NLS) type equation in the slowly
varying, paraxial approximation. For NLS-type equations, an input wavepacket will evolve to
a steady solitary wave in a non-monotonic, oscillatory fashion, in contrast to the monotonic
evolution for Korteweg-de Vries-type equations, with diffractive radiation shed in the process
[7]. Owing to beating with this shed radiation, which is trapped by the transverse refractive
potential, nematicons breath versus propagation and exhibit power dependent oscillations
in peak intensity and transverse size [19]. Under approximations, to be discussed below,
this radiation can be assumed to be fully guided, so that the beam never reaches a “true”
steady state. In typical samples this radiation is shed on very long propagation scales and
the so-called Snyder-Mitchell model [42], which assumes that no diffractive radiation is shed
on evolution, retains its validity. Nevertheless, while care must be taken about its long term
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predictions due to the neglect of power leakage and losses, in realistic conditions— with finite
propagation lengths and proper excitations— nematicons can exhibit a steady appearance
with uniform confinement and invariant profile [15].

The generation of nematicons can be mathematically modelled by a partial differential
equation (PDE) for the nonlinear reorientational response when extraordinary-wave light
beams propagate in the sample, coupled with a PDE governing the response of the perturbed
uniaxial dielectric. Physical, dimensional, laboratory coordinates will be denoted by capital
letters, (X,Y,Z), while non-dimensional coordinates by lower case letters, (x, y, z). In the
next section, the governing equations will be made dimensionless.

The optically induced reorientation angle φ is governed by the elliptic equation

K∇2φ+

[

1

4
ǫ0∆ǫ|A|2 +

1

2
∆ǫLFE

2
LF

]

sin (2(θ + φ− δ)) = 0, (4)

where A is the envelope of the dominant transverse component of the electric field (note that
the transverse magnetic field would be more accurate in describing e-wave propagation, see
Refs. [43, 44]). ELF is the root mean square amplitude of a low-frequency (LF) electric field
applied across the NLC thickness to control its background orientation θ, with ∆ǫLF the LF
dielectric anisotropy. Such a contribution describes biased samples with an external voltage
to pre-adjust the angle θ to the desired value in order to tune the nonlinearity and avoid a
threshold response. The latter stems from the Freedericks transition when Ω = 0 because
n and E are mutually orthogonal [14, 27], so that a minimum optical power is required to
reorientate the nematic molecules, which is undesired as such relatively high powers can lead
to medium heating and other unwanted effects. K is a single scalar quantifying the elastic
response of the medium. Based on elastic continuum theory, in fact, the spatial distribution
of the molecular director undergoes three macroscopic distortions, namely splay, twist and
bend, with their energies expressed by

ǫsplay =
1

2
K1(∇ · n̂)2, ǫtwist =

1

2
K2(n̂ · ∇ × n̂)2, ǫbend =

1

2
K3|n̂×∇× n̂|2 (5)

respectively, and Ki, i = 1, 2, 3, are the pertinent elastic coefficients in the Frank formalism
[45]. Choosing a single scalar K for all of these elastic constants greatly simplifies the model
without introducing significant error when describing the interaction of a fully ordered nematic
phase with electromagnetic eigenwaves.

The beam propagation can— in principle— be described by Maxwell’s equations. How-
ever, the resulting system of equations is too involved to enable any mathematical modelling,
with numerical solutions being the only course [46, 47, 48]. Since most typical experimental
conditions can be assumed weakly nonlinear and with a slowly-varying electric field envelope
for the beam (that is, with variations over a length scale much longer than the wavelength
of the light), a standard multiple scales analysis reduces Maxwell’s equations to an NLS-type
equation, as is standard for nonlinear, dispersive waves [3, 8, 49]. Hence, in the slowly varying,
weakly nonlinear, paraxial approximation the evolution of the beam propagating down the
sample along Z in the principal plane defined by the coplanar optic axis n and wavevector k,
containing also the Poynting vector S, the optical field is governed by

2ik0ne(θ)

[

∂A

∂Z
+ tan δ

∂A

∂T

]

+
∂2A

∂X2
+
∂2A

∂Y 2
+ k20∆ǫ

[

sin2(θ + φ)− sin2 θ
]

A = 0, (6)

where k0 is the plane wave propagation constant in vacuum and (T,Z) the principal plane with
T = (X,Y ). Here, δ, θ and φ are angles in (T,Z), and A is the envelope of the electric field
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Figure 1: Schematic of typical planar NLC cell configurations showing director orientations.
(a) Homogeneous molecular orientation in the width plane (y, z), (b) homogeneous molecular
orientation in the thickness plane (x, z). The walk-off angle δ and the wavevector k of the
light beam are shown.

linearly polarized in the same plane. Despite the unavoidable photon scattering stemming
from dielectric inhomogeneities (Rayleigh scattering) and the consequent power dissipation, no
optical losses have been incorporated in the NLS-type equation (6). The two equations (4) and
(6) form a non-dissipative, saturating, nonlinear wave system, inasmuch as the reorientation
angle cannot exceed (0, π/2). In addition, the nematic liquid crystals’ response is nonlocal
as the response of the fluid, both elastically and optically, tends to be much wider than
the transverse size of the wavepacket. Solitary waves governed by the (2 + 1) dimensional
NLS equation are unstable, decaying into radiation below a power threshold and exhibiting
catastrophic collapse above it [17]. The nematic system (4) and (6) is a (2 + 1)D NLS-type
equation free of this instability and catastrophic collapse due to its nonlocal and saturating
character [49, 50]. This is witnessed by the director equation (4) being elliptic, so its solution
at any point depends on the solution in the whole sample domain, which is the mathematical
equivalent of the physical concept of nonlocality. The model (4) and (6) supports stable
self-confinement in two transverse dimensions, with robust solitary waves capable of mutual
interactions [51, 52]. The latter can be attractive or repulsive depending on the nonlocal
range, the separation, the coherence and the relative phase, with a richer phenomenology
than their local (Kerr-type) and thermo-optic counterparts [53, 54, 55, 56, 57, 58, 59, 60].

Figure 1 shows a schematic of standard planar cell configurations encompassing (i) homo-
geneous orientation in the plane (Y,Z) of the sample width or (ii) homogeneous distribution
of the molecular director in the plane (X,Z) of the sample thickness. When studying beam
evolution in the (Y,Z) plane, geometry (i) allows one to observe walk-off and transverse
displacement [61], whereas geometry (ii) permits electro-optical control of the background
director orientation θ when applying a voltage via thin film (transparent) electrodes on the
cell (upper and lower) interfaces [15]. The latter are chemically treated (e.g., with polyimide)
and mechanically rubbed to ensure anchoring of the NLC molecules and therefore uniform
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director distribution (angle θ) in the bulk of the sample by means of the elastic forces. The
usual separation between the interfaces is of order 100 µm to avoid beam interaction with the
boundaries and vignetting effects, but thicknesses as low as 30 µm have been employed as
well [62, 63]. Thinner glass interfaces are often mounted at the input and output of the cell
in order to seal it and prevent undesired beam depolarization due to the formation of menisci
(with unpredictable θ) at the air/NLC boundaries [15, 45].

The optics of and several photonics applications of nematicons have been reviewed over
the years [16, 29, 41, 45]. Among the most salient effects and phenomena involving nematicons
which have been investigated to date, it is worth underlying that these reorientational spa-
tial solitons are able to guide co-polarised (extra-ordinary wave) signals confined within the
multimodal reorientational index well ∆ne = ne(θ+φ)−ne(θ), regardless of their wavelength
[64, 65, 66, 67, 68, 69]. Moreover, since NLC can reorient under external stimuli, such
as low-frequency external electric fields, nematicon waveguides can be steered in direction
by applying a voltage across the thickness of the cell [61, 70, 71] or in its principal plane
[72, 73, 74, 75, 76], such that the background orientation θ is electro-optically modified and,
consequently, the inherent walk-off is also. Likewise, external magnetic fields can affect the
distribution of the molecular director [77, 78, 79]. Moreover, as the walk-off depends on the
overall orientation, δ = δ(θ + φ), in the highly nonlinear regime with φ comparable to θ
nematicons can undergo power dependent self-routing [44, 80]. Since the evolution of spatial
solitary waves is essentially governed by their main wavevector, nematicons propagating across
a graded-index or abrupt dielectric interface are subject to standard or anomalous refraction
(depending on the angle of incidence and the orientation of the optic axis) [81, 82, 83], as
well as total internal reflection and lateral beam displacement [84, 85]. They also exhibit con-
finement bistability in cavityless geometries versus beam power [86, 87, 88], applied voltage
[89] and angle of incidence [90] and are able to form multicolour, vector and cluster states
[55, 91, 92, 93, 94, 95]. Finally, reorientational solitons can coexist/compete with either elec-
tronic [65, 96, 97] or thermal responses in NLC [30, 31, 32, 98, 99, 100, 101], yielding novel
features in suitably doped materials [67, 102, 103, 104, 105]. The mathematical modelling of
the control and manipulation of nematicons will now be discussed below.

3 Nematic Equations

The full, dimensional equations governing the propagation of a light beam in nematic liquid
crystals consist of (4) for the NLC response and (6) for the electric field of the beam. As
stated in Section 2, the field equation is an NLS-type equation coupled to an elliptic equation
for the medium response. The coupling through reorientation is highly nonlinear. Therefore,
the system (4) and (6) is difficult to study analytically, with fully numerical approaches the
only way to obtain solutions [46, 47, 48]. However, typical light beams used in experiments
are of milli-Watt power [16, 28]. For such low powers the optical response φ is small compared
with the imposed director angle θ, |φ| ≪ θ. In that limit, the system (4) and (6) can be partly
linearised by expanding the trigonometric functions in Taylor series to O(φ). Furthermore,
the equations can be simplified by non-dimensionalising the variables. Let us assume that the
input wavepacket is a Gaussian beam with power P0, width W and electric field of amplitude
E , related by

P0 =
π

2
ΓE2W2, with Γ =

1

2
ǫ0c0ne. (7)
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For a typical transverse distance W and a typical down cell length D, the non-dimensional
space variables (x, y, z) and electric field u can be chosen as

Z = Dz, X =Wx, Y =Wy, A = Eu. (8)

Non-dimensionalising (4) and (6) we find

D =
4ne

k0∆ǫ sin 2θ
and W =

2

k0
√
∆ǫ sin 2θ

, (9)

with the non-dimensional governing equations [48, 62, 63, 106, 107]

i
∂u

∂z
+ iγ∆

∂u

∂x
+

1

2
∇2u+ 2φu = 0, (10)

ν∇2φ− 2qφ = −2|u|2. (11)

Here, the Laplacian ∇2 is in the transverse variables (x, y), the strength of the elastic response
is measured by ν and the strength of the low frequency pre-tilting field by q, given by

ν =
4πΓKW2

ǫ0∆ǫP0W 2 sin 2θ
, q =

4∆ǫLFE
2
LF | cos 2θ|

ǫ0∆ǫE2 sin 2θ
. (12)

In addition, the walk-off term in the electric field equation (10), ∆ = tan δ, gains a scaling
factor γ,

γ =
2ne√

∆ǫ sin 2θ
. (13)

For the typical experimental parameter values cited in Section 2 [16, 28], the nonlocality
parameter ν is O(100) [18, 19, 48, 62, 63, 108]. Note that if the walk-off ∆ is constant, then
it can be factored out via the phase transformation

u(x, z) = U(x, z)ei(
1

2
γ2∆2z−γ∆x), (14)

resulting in

i
∂U

∂z
+

1

2
∇2U + 2φU = 0, (15)

ν∇2φ− 2qφ = −2|U |2. (16)

While the equations (10) and (11) have been introduced in the context of light beam
propagation in nematic liquid crystals, they are much more general. In particular, the same
system governs the propagation of light beams in a thermo-optical material for which the
refractive index depends on temperature [109, 110, 111, 112]. In this case, the variable φ is
the medium temperature. The usual system used for thermo-optical media has the parameter
q = 0, but it can be argued that the structure of the temperature response along z results
in a term equivalent to the pre-tilt q in (11) [109, 113]. A system of equations similar to
the nematic system also arises in so-called α models of fluid turbulence [114, 115]. Finally,
systems of equations resembling the nematic equations (15) and (16) arise in astrophysics.
These include the Schrödinger-Newton equations, which arise as a simple model of quantum
gravitation [116, 117]. Solitary wave solutions of the Schrödinger-Poisson system, which are
the nematic equations with q = 0 in the director equation (16), have been used to model
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dark matter [118] and the interaction between ordinary and dark matter [119]. The analogy
between the nematic equations (in the context of thermo-optic media) has been exploited
as analogues of galactic dark matter interactions in order to understand the implications of
dark matter models [120]. We argue that the present work, presented through the optics of
nematic liquid crystals, then has much broader implications.

The nematic equations (10) and (11), or (15) and (16), can be extended to N incoherently
interacting beams [92]

i
∂Ui

∂z
+

1

2
Di∇2Ui + 2AiφUi = 0, i = 1, . . . N, (17)

ν∇2φ− 2qφ = −2Ai

N
∑

i=1

|Ui|2. (18)

The electric field equations (17) are general, in that the N beams can have different wave-
lengths, so that the diffraction coefficients Di and the coupling coefficients Ai can be distinct
for each beam. However, for the near-infrared and visible light employed in experiments these
coefficients differ by no more than a few percent and so can be taken equal [92, 95].

In their ordered state and with extraordinary waves, nematic liquid crystals are self-
focusing, so that the refractive index ne increases with beam intensity |u|2 and can support
bright solitary waves, nematicons. NLC can be used as self-defocusing media when acting
on temperature or by the addition of azo dyes [121]. The actual response of the NLC due
to absorbing dyes is complicated by the Janossy effect [33, 122], as well as by changes in the
order parameters [121]. A simple and convenient approximation in the electric field equation
(15), or (10), is a defocussing reorientation, so that

i
∂U

∂z
+

1

2
∇2U − 2φU = 0. (19)

It has been shown both experimentally [121] and analytically [123] that azo-doped NLC
support dark solitary wave, dark nematicon, solutions.

It is known from numerical solutions that the nematic equations have a solitary wave
solution [19], which has been observed experimentally [15, 16, 28]. However, even in its semi-
linearised form (10) and (11), there are no known general exact solutions for ν 6= 0. It is
noted that in the fully local limit with ν = 0 the equations (15) and (16) reduce to the NLS
equation, which in (1+1) dimensions is integrable with known N -soliton solutions. However,
in the highly nonlocal case of physical relevance with ν large [18, 19, 62, 63, 108], the only
available exact nematicons are isolated solutions for fixed relations between the parameters
ν and q and given beam amplitude and width [88, 124]. General solitary waves, conversely,
have an arbitrary amplitude which determines the width [3].

In (1 + 1) dimensions, a nematicon is sought in the form

u = f(x)eiσz , θ = g(x), (20)

where f and g are real. Substituting these into the nematic equations (10) and (11) gives
that the nematicon is the solution of

d2f

dx2
+ 4gf − 2σf = 0,

d2g

dx2
+

2

ν
f2 − 2q

ν
g = 0. (21)

10



These two ODEs are identical if we set g = f/
√
2ν and σ = q/ν, resulting in the isolated

nematicon solution

u =
3q

2
√
2ν

sech2
(
√

q

2ν
x

)

eiqz/ν , θ =
3q

4ν
sech2

(
√

q

2ν
x

)

. (22)

The amplitude of this nematicon is fixed by the parameter values. Nevertheless, this isolated
solitary wave solution has the sech2 profile of the KdV soliton, rather than the sech profile of
the NLS soliton, which is unexpected as the electric field equation is NLS-type. This exact,
isolated solution is not valid in a bias-free sample with q = 0 without external pre-tilting.
Besides this isolated nematicon, there is a corresponding periodic, cnoidal wave solution
expressed in terms of the Jacobi elliptic cosine function cn2 [125], noting that in the limit of
the modulus m→ 1, cn x→ sech x.

A similar isolated nematicon can be found in (2 + 1) dimensions with

u = f(r)eiσz and θ =
1

2
√
2ν
f(r) +

σ

2
, (23)

where r2 = x2+y2 is the polar distance, on setting q = 0, i.e., in a bias-free cell. This solution
approaches σ/2 as r → ∞, so it does not satisfy the linearisation assumption used to derive
the system (10) and (11) from the full equations (4) and (6). Again, the director and electric
field equations reduce to the single equation

d2f

dr2
+

1

r

df

dr
+

2√
2ν
f2 = 0. (24)

This differential equation is well known in astrophysics as the Lane-Emden equation of the
second kind for a cylindrically symmetric self-gravitating fluid of index two governed by
Newtonian gravitation [126]. By the transformation

f(r) =
τ ln r

r2
(25)

where τ ′ = ρ(τ), it can be converted into Abel’s equation [127] for the variable ρ

ρ
dρ

dτ
− 4ρ+ 4τ +

2√
2ν
τ2 = 0. (26)

The exact solution of Abel’s equation has recently been found [128, 129], but it is very involved
and probably of little use for modelling nematicons [88].

There has been some work on the issues of existence, uniqueness and stability of solit-
ary wave solutions of the nematic equations in various forms. These studies do not actually
provide any nematicon solutions as such. Hamiltonian methods were used to show the exist-
ence and stability of nematicon solutions of the system (10) and (11) in (2 + 1) dimensions,
which are symmetric and decay to zero as r → ∞ [130, 131]. As the proofs were based on
energy minimisation, nematicon stability was also proved as a result. In addition, this work
gave rigorous mathematical justification of the regularising role of the nonlocal response, but
the question of uniqueness was not answered. This theoretical work [131] has important im-
plications for numerical solutions of the nematic equations. It was found that there exists
a minimum nematicon power, with the beam decaying into diffractive radiation below this.
This result is valid for a continuous system, but numerical solutions of the nematic equations
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are based on discrete approximations to the continuous equations. For discrete Hamiltonian
systems, there is no power threshold on the existence of a (discrete) nematicon; hence, nu-
merical solutions with low power can be spurious and just a result of discretisation. Mountain
pass arguments have also shown existence of ground state and excited nematicon solutions of
the system (10) and (11) [132], but without providing these solutions.

To date, there have been no equivalent proofs of existence and stability of nematicon
solutions of the full nematic set (4) and (6). However, there exist such results for an extension
of the linearised equations (10) and (11) [133]. This work used the equations

i
∂u

∂z
+

1

2
∇2u+ u sin(2φ) = 0 (27)

for the electric field of the beam and

ν∇2φ− q sin(2φ) = −2|u|2 cos(2φ) (28)

for the director distribution. This is a saturating extension of the linearised system (10) and
(11), obtained from the full set (4) and (6) on non-dimensionalisation, without replacing sinφ
and cosφ by the first terms in their Taylor series. Again, it was found that there exists a
stable nematicon above a minimum power threshold, but the question of uniqueness was not
addressed. The proof highlighted the role of saturation in stability, giving a mathematical
basis for this intuitive concept. The saturating equations (27) and (28) also possess a type
of bistable nematicon solution, in that two different director distributions φ can support the
same nematicon in terms of the electric field u, a “wide” one— much wider than the beam–
and a “narrow” one— of width comparable with the beam width— [88]. This is valid even
for large values of ν. So the concept of nonlocality— in the sense of a director response much
wider than the beam width—, linking this with the magnitude of the elastic parameter ν and
the stability of (2+1) dimensional solitary waves, needs to be treated with caution. A proper
interpretation is that the director equation, whether linearised as in (11) or saturating as in
(28), is elliptic and so its solution at a given point depends on the whole sample domain, as
known from basic PDE theory.

4 Approximate Nematicon Solutions

There are no known general solitary wave, or other solutions, of the nematic equations (10)
and (11), as discussed in Section 3. Therefore, the use of techniques for approximate solutions
has proved popular, the main ones being various forms of variational approaches, essentially
the classical Rayleigh-Ritz method. The use of variational methods for approximate solitary
wave solutions was pioneered by Anderson [134] and their applications are reviewed in [135].
However, care must be taken with variational approximations and their implications need to
be independently verified, say from numerical solutions [88, 136].

Standard applied mathematics techniques for analysing solitary and other waves, including
Whitham modulation theory [3], are based on exact solutions of the governing equations
whose parameters, such as amplitude and width (wavelength for a periodic wave) are assumed
to (slowly) vary. Whitham modulation theory derives so-called modulation equations from
a Lagrangian formulation of the governing equation by “averaging” the Lagrangian, that
is integrating it over a period (all space for a solitary wave) to eliminate the fast phase
dependence in order to retain only the slow space and time variations. The modulation
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equations for the wave parameters are then found as variational equations of this averaged
Lagrangian. However, as discussed in Section 3, there are no general solitary wave or other
solutions of the nematic system (10) and (11). In the absence of exact solutions, “reasonable”
approximations or trial functions are used to evaluate averaged Lagrangians [134, 135]. These
trial functions can be based on either known solutions of closely related equations or numerical
solutions.

Variational methods can then yield accurate approximations to unknown steady solitary
and other solutions of nonlinear, dispersive wave equations. They have also been extended to
obtain the evolution from initial to steady conditions by adding terms to the trial functions
which represent the dispersive or diffractive radiation shed as the beam evolves [137], obtaining
excellent agreement with numerical results [136].

The director equation (16) is a linear elliptic equation with a forcing −2|U |2, so that it
can, in principle, be solved using a Green function G,

φ = −2

∫ ∞

−∞

∫ ∞

−∞
G(x− ξ, y − η)|U(ξ, η)|2 dξdη. (29)

The electric field equation (15) then becomes the nonlocal NLS equation

i
∂U

∂z
+

1

2
∇2U − 4U

∫ ∞

−∞

∫ ∞

−∞
G(x− ξ, y − η)|U(ξ, η)|2 dξdη = 0. (30)

While this formulation is attractive, it hides difficulties. The Green’s function of the director

equation (16) is exp(−
√

2q/ν|x|) in (1 + 1) dimensions and K0(
√

2q
ν r) in (2 + 1) dimensions,

where K0 is the modified Bessel function of the second kind of order 0. Especially in (2 + 1)
dimensions, it is not realistic to do variational calculations with these Green’s functions.
Hence, they have been often replaced by a simpler function, usually a Gaussian, with the
hope that the resulting predictions based on a simplified kernel are accurate enough. Extreme
caution should be exercised though, as predictions with Gaussian functions in the director
kernel can be inaccurate when compared with solutions with the actual Green’s function
[138, 139, 140], so that any solutions obtained using simplified kernels need to be compared
with numerical solutions of the actual model. Care must also be taken in the choice of trial
function, which should have the correct asymptotic behaviour as r → ∞. This is not so much
an issue for bright nematicons as they decay to zero at infinity, but it is for (1+1) dimensional
dark nematicons as these approach a constant at infinity, |u| → u0 as |x| → ∞, with φ→ u20/q
as |x| → ∞ in the director equation (16). Studies of dark nematicons with trial functions
without this asymptotic behaviour [141, 142] are questionable. If the trial function is carefully
chosen and is close to the actual nematicon (as determined, e.g., from numerical solutions),
then its functional form does not greatly affect the variational solution [88, 136, 143, 144],
although its accuracy should always be verified against full (numerical) solutions. When these
caviats are taken into account, variational methods give solutions in excellent agreement with
full numerical solutions of the nematic equations [136, 145, 146, 147].

The literature on variational methods in optics, and nonlinear light beam propagation
in nematic liquid crystals in particular [146], is vast and cannot be fully done justice here.
The approach— based on choosing a trial function with free parameters, e.g., amplitude and
width, substituting it into the Lagrangian before averaging and then obtaining the variational
equations for the parameters— will be illustrated below through an application to nematicons.

13



Besides being useful in overcoming the lack of exact solutions and providing approxima-
tions in good agreement with full numerical solutions, variational forms of the nematic equa-
tions provide valuable insight into nematicon interactions by making use of mechanical analo-
gies. In the variational approach the equations for the positions and velocities of N interacting
nematicons are the same as those for N interacting masses under a Newtonian gravitational
potential, with the beam power being the equivalent mass [93, 124, 136, 148, 149, 150, 151].
This is valid independent of the assumed solitary profiles [124]. However, the resulting in-
teraction potential is not the simple inverse separation potential of Newtonian gravitation,
but depends nonlinearly on the powers of the individual beams. This analogy has proved be-
neficial in that standard solutions from Newtonian gravitation were transferred over to NLC
optics, for instance the two-body Kepler problem [124, 136, 151] and the three-body Lagrange
solution [150], and could be further explored with known gravitation solutions [152].

Let us detail the variational approximation through the gravitational interpretation for
two interacting nematicons, the Kepler problem. For simplicity, the diffraction and coupling
coefficients in the electric field equations (17) are taken equal and normalised to 1. For N = 2,
the N beam equations (17) and (18) have the Lagrangian

L = i (u∗1u1z − u1u
∗
1z)− |∇u1|2 + 4φ|u1|2 + i (u∗2u2z − u2u

∗
2z)− |∇u2|2 + 4φ|u2|2

− ν|∇φ|2 − 2qφ2. (31)

Let us keep the trial functions for the beams and the director response general and set

u1 = au1
fu1

(

ζu1

wu1

)

eiσu1
+iUu1

(x−ξu1 )+iVu1
(y−ηu1 ),

u2 = au2
fu2

(

ζu2

wu2

)

eiσu2
+iUu2

(x−ξu2 )+iVu2
(y−ηu2 ),

φ = αu1
gu1

(

ζu1

βu1

)

+ αu2
gu2

(

ζu2

βu2

)

, (32)

where the profiles fu1
and fu2

and the responses gu1
and gu2

are not specified. Here,

ζu1
=

√

(x− ξu1
)2 + (y − ηu1

)2, ζu2
=

√

(x− ξu2
)2 + (y − ηu2

)2. (33)

The positions and velocities of the beams are (ξu1
, ηu1

), (Uu1
, Vu1

) and (ξu2
, ηu2

), (Uu2
, Vu2

),
respectively. At this point, the functions (32) are substituted into the Lagrangian (31), which
is averaged by integrating in x and y from −∞ to ∞ [3] to yield the averaged Lagrangian L.
Taking variations of L with respect to the beam and director parameters gives the modulation
equations governing the interaction. Unfortunately, the cross integrals involving u1 and u2
cannot be evaluated without assuming their functional forms. Hence, we assume the beams
to be Gaussian

fu(r) = fv(r) = e−r2 , (34)

and the cross integrals become

∫ ∞

−∞

∫ ∞

−∞
φ|u1|2 dxdy = αu1

a2u1
w2
u1
I12u1

+
αu2

a2u1
β2u2

w2
u1

2(w2
u1

+ 2β2u2
)
e−ρ2/(w2

u1
+2β2

u2
)

∫ ∞

−∞

∫ ∞

−∞
φ|u2|2 dxdy = αu2

a2u2
w2
u2
I12u2

+
αu1

a2u2
β2u1

w2
u2

2(w2
u2

+ 2β2u1
)
e−ρ2/(w2

u2
+2β2

u1
)
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∫ ∞

−∞

∫ ∞

−∞
|∇φ|2 dxdy = Idpu1

α2
u1

+ Idpu2
α2
u2

+
2αu1

αu2
β3u1

β3u2

(

β2u1
+ β2u2

)2

[

1− ρ2

β2u1
+ β2u2

]

e−ρ2/(β2
u1

+β2
u2

)

∫ ∞

−∞

∫ ∞

−∞
φ2 dxdy = Idu12α

2
u1
β2u1

+ Id2u2
α2
u2
β2u2

+
αu1

αu2
β2u1

β2u2

β2u1
+ β2u2

e−ρ2/(β2
u1

+β2
u2

). (35)

Here, the beam separation ρ is

ρ2 = (ξu1
− ξu2

)2 + (ηu1
− ηu2

)2 . (36)

The integrals arising in the averaged Lagrangian and involving self-interactions are

I2u1
=

∫ ∞

0
rf2u1

(r) dr, I2u2
=

∫ ∞

0
rf2u2

(r) dr,

I2pu1
=

∫ ∞

0
r

(

dfu1
(r)

dr

)2

dr, I2pu2
=

∫ ∞

0
r

(

dfu2
(r)

dr

)2

dr,

I12u1
=

∫ ∞

0
rgu1

(

wu1

βu1

r

)

f2u1
(r) dr, I12u2

=

∫ ∞

0
rgu2

(

wu2

βu2

r

)

f2u2
(r) dr,

Idpu1
=

∫ ∞

0
r

(

dgu1
(r)

dr

)2

dr, Idpu2
=

∫ ∞

0
r

(

dgu2
(r)

dr

)2

dr,

Idu12 =

∫ ∞

0
rg2u1

(r) dr, Idu22 =

∫ ∞

0
rg2u2

(r) dr. (37)

The actual values of these integrals cancel out when the variational equations for the positions
and velocities are calculated, and so their values are not needed. The averaged Lagrangian is

L = T − P, (38)

with the kinetic energy T and potential energy P expressed as

T = − 2I2u1
a2u1

w2
u1

(

σ′u1
− Uu1

ξ′u1
− Vu1

η′u1

)

− I2pu1
a2u1

− I2u1
a2u1

w2
u1

(

U2
u1

+ V 2
u1

)

+ 4I12u1
αu1

a2u1
w2
u1

− 2I2u2
a2u2

w2
u2

(

σ′u2
− Uu2

ξ′u1
− Vu2

η′u2

)

− I2pu2
a2u2

− I2u2
a2u2

w2
u2

(

U2
u2

+ V 2
u2

)

+ 4I12u2
αu2

a2u2
w2
u2

− νIdpu1
α2
u1

− νIdpu2
α2
u2

− 2qIdu12α
2
u1
β2u1

− 2qIdu22α
2
u2
β2u2

(39)

and

P =
2ναu1

αu2
β2u1

β2u2

(

β2u1
+ β2u2

)2

[

1− ρ2

β2u1
+ β2u2

]

e−ρ2/(β2
u1

+β2
u2

) +
2qαu1

αu2
β2u1

β2u2

β2u1
+ β2u2

e−ρ2/(β2
u1

+β2
u2

)

− 2αu2
a2u1

w2
u1
β2u2

w2
u1

+ 2β2u2

e−ρ2/(w2
u1

+2β2
u2

) − 2αu1
a2u2

w2
u2
β2u1

w2
u2

+ 2β2u1

e−ρ2/(w2
u2

+2β2
u1

). (40)

It is apparent that the potential of the nematicon interaction is much more complicated than
the inverse separation potential of Newtonian gravitation, as it depends in a detailed fashion
on the beam and director response parameters.

The modulation equations for the interacting beams can be made to resemble the Kepler
two-body problem equations after defining the vector positions ~ξu1

= (ξu1
, ηu1

), ~ξu2
= (ξu2

, ηu2
),
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and the vector velocities ~Vu1
= (Uu1

, Vu1
), ~Vu2

= (Uu2
, Vu2

). We also define the relative beam
separation ~ρ by

~ρ = ~ξu1
− ~ξu2

, (41)

and the “masses” Mu1
and Mu2

(beam powers) by

Mu1
= 2I2u1

a2u1
w2
u1
, Mu2

= 2I2u2
a2u2

w2
u2
. (42)

Before taking variations of the averaged Lagrangian (38) with respect to the beam positions
and velocities and so obtain equations for their trajectories, the role of the large nonlocality ν
needs to be factored in. In the presence of a highly nonlocal response, the beams shed a small
amount of diffractive radiation on a long z scale of O(

√
ν) [145]. Their rate of power decay

is then limited, so that as a first approximation the powers Mu1
and Mu2

of the individual
beams are conserved [144]. With this assumption the modulation equations (after taking
variations of the averaged Lagrangian (31) with respect to ξu1

, ξu2
, ηu1

, ηu2
, Uu1

, Uu2
, Vu1

and Vu2
) are

d

dz
Mu1

~Vu1
= −

(

∂P
∂ξu1

,
∂P
∂ηu1

)

,
d

dz
Mu2

~Vu2
= −

(

∂P
∂ξu2

,
∂P
∂ηu2

)

, (43)

and
d~ξu1

dz
= ~Vu1

,
d~ξu2

dz
= ~Vu2

. (44)

The position equations (43) are Newton’s Second Law for the momenta Mu1

~Vu1
and Mu2

~Vu2
.

The two nematicons’ “centre of mass” can be defined as

~R =
Mu1

~ξu1
+Mu2

~ξu2

Mu1
+Mu2

. (45)

In this centre-of-mass system, the distance from the origin ρ is given in (36) and the polar
angle is ψ. The system of the two nematicons conserves the angular momentum Lm, with

Lm = ρ2
dψ

dz
. (46)

In the centre-of-mass coordinates the mechanical equations (43) and (44) become

d2 ~R

dz2
= ~0 and

d2ρ

dz2
− L2

mρ
−3 = −Mu1

+Mu2

Mu1
Mu2

∂P
∂ρ

. (47)

This final system for the beam trajectories is the same as for the Kepler two-body prob-
lem [153]. These modulation equations give solutions in excellent agreement with the vector
nematicon system (15) and (18) [124, 136, 150]; as expected by the conserved power approx-
imation, the disagreement with numerical solutions as z grows due to the effect of the shed
diffractive radiation. In addition, beam u1 generates a so-called shadow beam in u2 at its
position, and vice-versa [124], which is not accounted for in the trial functions (32). These
shadow beams can be seen in Figure 2.

As discussed, diffractive radiation can impact on nematicon evolution. Its calculation and
inclusion for evolving solitary waves is, in general, non-trivial. A general method, using the
perturbed inverse scattering solution of the integrable NLS equation [137], yielded that the
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Figure 2: Numerical solutions of system (17)–(18). (a) |u1| at z = 0; (b) |u2| at z = 0; (c)
|u1| at z = 300; (d) |u2| at z = 300. The initial beam parameters are au1

= au2
= 3.0, wu1

=
wu2

= 4.5, ξu1
= 10.0, ξu2

= −10.0, ηu1
= ηu2

= 0, Uu1
= Vu1

= 0.05, Uu2
= Vu2

= −0.05.
The NLC parameters are ν = 500 and q = 2. Figure reproduced from [124].

form of the shed radiation can be deduced without full reliance on inverse scattering and
applies to general nonlinear, dispersive wave equations of NLS-type. It was later used to
incorporate the effect of this radiation on nematicons [145]. The nematic equations (17) and
(18) have the Lagrangian

L = i (U∗Uz − UU∗
z )− |∇U |2 + 4φ|U |2 − ν|∇φ|2 − 2qφ2. (48)

Coming to the choice of suitable trial functions, for a nematicon either a Gaussian or the sech
NLS soliton yields good agreement with numerical solutions [88, 136]. We shall use the sech
profile

U =

(

a sech
r

w
+ ig

)

eiσ , φ = α sech2
r

β
, (49)

where r2 = x2 + y2 and the parameters a, w, g, σ, α and β depend on z. The trial function
for the electric field includes the shelf term ig, which comes from the cited NLS study [137].
Inverse scattering shows that the radiation component of a perturbed solitary wave, the
continuous spectrum, is of low wavenumber in the vicinity of the evolving soliton [137]. From
wave kinematics, in fact, since the dispersion relation for linear, dispersive waves of the
nematic equations is ω = −|k|2/2, their group velocity is cg = −k. Hence, low wavenumber
waves have low group velocity and accumulate in the proximity of the propagating nematicon,
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consistent with perturbed inverse scattering for the NLS equation. It is worth pin-pointing,
from the trial function for the electric field, that the shelf and the nematicon are π/2 out
of phase, as inverse scattering shows that the in-phase component corresponds to changes in
the beam width, encompassed in w in the trial function. This radiation can be observed in
Figure 3, displaying a numerical solution of the nematic equations (17) and (18): the shelf
is the extended region of amplitude around 1 encircling the nematicon. This radiation takes
conserved quantities away from the propagating solitary wave so that it can evolve to a steady
state. Because of its limited extent, g can be taken non-zero in 0 ≤ r ≤ ℓ and the shed light
can then be calculated from a linearised equation as it has low amplitude [137]. We shall
illustrate these concepts using the nematic equations (17) and (18).

Substituting the trial (49) into the Lagrangian (48) and averaging by integrating in x and
y from −∞ to ∞ gives the averaged Lagrangian [145]

L = −2
(

a2w2I2 + Λg2
)

σ′ − 2I1aw
2g′ + 2I1gw

2a′ + 4I1awgw
′ − a2I22 − 4νI42α

2

− 2qI4α
2β2 +

2A2B2αa2β2w2

A2β2 +B2w2
. (50)

Here, Λ is the area of the radiation shelf, modulo 2π,

Λ =
1

2
ℓ2. (51)

The integrals I1, I2, I4, I42 and I22 in L are

I1 =

∫ ∞

0
x sech x dx = 2C, I2 =

∫ ∞

0
x sech2 x dx = ln 2,

I22 =

∫ ∞

0
x sech2 x tanh2 x dx =

1

3
ln 2 +

1

6
, I4 =

∫ ∞

0
x sech4 x dx =

2

3
ln 2− 1

6
, (52)

I42 =

∫ ∞

0
x sech4 x tanh2 x dx =

2

15
ln 2 +

1

60
, Ix32 =

∫ ∞

0
x3 sech2 x dx = 1.352301002 . . . .

where C is the Catalan constant C = 0.915965594 . . . [154] and

A =
2I2√
Ix32

, B =
√

2I2. (53)

Taking variations of L with respect to the beam and director parameters yields the modulation
equations

d

dz

(

I2a
2w2 + Λg2

)

= 0, (54)

d

dz

(

I1aw
2
)

= Λg
dσ

dz
, (55)

I1
dg

dz
=

I22a

2w2
− A2B4αaw2β2

(A2β2 +B2w2)2
, (56)

I2
dσ

dz
= −I22

w2
+
A2B2αβ2

(

A2β2 + 2B2w2
)

(A2β2 +B2w2)2
, (57)
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Figure 3: Numerical solution of nematic equations (17) and (18) for |u| at z = 10 for the
initial condition (49) with a = 2, w = 3.5 and g = 0. The NLC parameters are ν = 200 and
q = 2.

plus the algebraic equations

α =
A2B2β2w2a2

2 (A2β2 +B2w2) (2νI42 + qI4β2)
and α =

A2B4w4a2

qI4 (A2β2 +B2w2)2
. (58)

The parameters α and β are determined by algebraic equations as the director equation (18)
does not have z derivatives. These modulation equations do not yet include the role of the
diffractive radiation shed as the beam evolves.

The inclusion of radiation loss is more difficult than for the ((1 + 1) dimensional) NLS
equations as the nematic equations are (2 + 1) dimensional. As the shed radiation has small
amplitude relative to the nematicon, it can be determined from the linearised electric field
equation (17)

i
∂U

∂z
+

1

2

∂2U

∂r2
+

1

2r

∂U

∂r
= 0, (59)

which can be solved using Laplace transforms [155]. The key quantity needed is the “mass”
(optical power) transferred into radiation. The linearised electric field equation (59) has the
mass (power) conservation equation

i
∂

∂z

(

r|U |2
)

+
1

2

∂

∂r
(rU∗Ur − rUU∗

r ) = 0. (60)
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If we assume that the diffractive radiation starts at the edge of the shelf at r = ℓ, then
integrating over it gives the flux to/from the evolving nematicon as

d

dz

∫ ∞

ℓ
r|U |2 dr = Im (rU∗Ur) |r=ℓ +O(ℓ̇(z)). (61)

It is then apparent that we need a relation between Ur and U at the shelf edge. Solving the
radiation equation (59) by means of Laplace transforms gives

Ur |r=ℓ = − 1

2πi

∫

C

√
2s e−iπ/4

K1

(√
2s e−iπ/4ℓ

)

K0

(√
2s e−iπ/4ℓ

) Ū(ℓ, s)esz ds, (62)

where s is the transform variable and C is the standard Laplace-transform inversion contour,
withK0 andK1 the modified Bessel functions of the second kind of order 0 and 1, respectively.
While this contour integral formally determines the mass flux from the nematicon into shed
radiation, it is too involved to be of much use. To obtain a manageable result, the integral
(62) can be evaluated in the limit z → ∞ using the method of steepest descent [155], providing
the asymptotic result

Ur = −
√
2π

4eℓ

∫ z

0

R(z′)

z − z′
1

[(1/2) log((z − z′)/Λ)− iπ/4]2 + π2/4
dz′ (63)

as z → ∞. Here,

R2 =
1

Λ̃

[

I2a
2w2 − I2â

2ŵ2 + Λ̃g2
]

, Λ̃ =
1

2

[

7β sech−1(1/
√
2)
]2
. (64)

is the difference between the mass of the nematicon plus shelf and the mass of the steady
nematicon 2â2ŵ, whereˆdenotes steady state. As the energy

I22a
2 + 4νI42α

2 + 2qI4α
2β2 − 2A2B2αa2w2β2

A2β2 +B2w2
= constant (65)

is conserved for the nematic equations, these steady state values can be determined from
the initial condition and this conservation law [145]. This excess mass in the beam drives
its evolution as it needs to be shed to reach a steady state. After some manipulation, this
radiation can be incorporated into the modulation equations (54)–(58) by adding loss to the
modulation equation (56) [137, 145], so that it becomes

I1
dg

dz
=
I22a

2w2
− A2B4αaw2β2

(A2β2 +B2w2)2
− 2ςg, (66)

where the coefficient ς derived from the loss (63) with the radiation flux equation (61) is

ς = −
√
2πI1

32eRΛ̃

∫ z

0

πR(z′) ln((z − z′)/Λ̃)
{

[14 log((z − z′)/Λ̃)]2 + 3π2/16
}2

+ π2
[

log((z − z′)/Λ̃)
]2
/16

dz′

(z − z′)
(67)

It is convenient to drop the mass modulation equation (42) and replace it by the energy
equation (65), as the latter is required for the determination of radiation loss. The result-
ing modulation equations with loss provide solutions in excellent agreement with numerical
solutions of the nematic equations [145].
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A special case of the modulation equations is the steady state g = 0 and a′ = w′ = 0.
This gives the variational approximation to the nematicon solution with the amplitude/width
relation

I22 =
2A2B4αw4β2

(A2β2 +B2w2)2
(68)

and phase

σ =
A4B2αβ4

(A2β2 +B2w2)2
z. (69)

This approximate nematicon solution agrees well with full numerical solutions of the nematic
equations [88].

Standard perturbed solitary wave theory and variational approximations treat the sol-
itary waves as particles as they are averaged out in determining the modulation equations
[156]. This approximation can be improved to treat the solitary wave as an extended entity,
using methods similar to those for calculating Newtonian gravitational fields due to non-point
masses [157]. The extended character of nonlocal solitary waves is important and this exten-
sion yields marked improvements when studying nematicons and their trajectories, as they can
interact through their tails [143, 144], which is not fully included in particle approximations.

The ability of variational methods to be accurate when compared with numerical solutions
and experimental results has prompted widespread analyses of the propagation and interaction
of both solitary waves and optical vortices (which will be detailed further in Section 5),
as well as their control, in nematic liquid crystals [136]. The modelling of experiments in
NLC will be dealt with in Section 6. Some examples include describing the refraction and
total internal reflection of nematicons and vortices at interfaces [158, 159, 160, 161, 162], the
former in notable agreement with experiments carried out across graded interfaces defined
by using planar electrodes and external electric fields to differently orient two adjacent NLC
regions [163]. Refraction and reflection of nematicons were also achieved/measured using
discrete or interdigitated electrodes [76, 164], or acting with external light beams on the
anchoring at the cell boundaries [165]. In many respects, the refraction and total internal
reflection of nematicons across a dielectric interface resemble those of linear plane waves.
However, the medium birefringence and the extended profile of nematicons do play a role. For
instance, nematicons can undergo a lateral shift upon total internal reflection when travelling
from a denser to a rarer NLC region [166], with their centre passing through the dielectric
boundary twice and the whole beam refracting back into the incident side. As the nematicon
equivalent mass relates to power, the shift upon reflection is mass dependent and refraction—
called anomalous when wavevector and walk-off angles compete in such a way that the beam
appears to emerge from the same half-plane of origin— can change from positive to anomalous
versus input power, owing to reorientation [82, 83, 84, 167]. The refraction of nematicons
through dielectric interfaces can be extended to trajectory control via localised changes in
NLC refractive index, which act as lenses for the beam [168, 169]. If the nematicon is much
narrower than the refractive index perturbation, then the nematicon remains stable upon
refraction. However, if the nematicon width and the perturbation have comparable sizes,
then the former can be de-stabilised [169]. The refraction and total internal reflection of
optical vortices across dielectric interfaces show similar properties as nematicons, with one
major exception [161, 162] occurring when the refractive index change is above a threshold
contrast, such that the NLC perturbation triggers the standard mode-2 azimuthal vortex
instability [170], causing the vortex to break up into nematicons.
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For simplicity, when using variational approximations it is often assumed that the light
beam is far enough from the cell boundaries so that their influence can be ignored. This
is valid, e.g., if there is a pre-tilting field so that q 6= 0, a voltage-biased cell, so that both
the director and electromagnetic (optical) field distributions decay exponentially away from
the beam axis [131]. However, nematicon interplays with boundaries were analysed [171,
172, 173, 174, 175] to reveal that boundaries repel the beams. Since this interaction is mass
(power) dependent [176], nonlinear repulsion in finite cells was exploited for the experimental
demonstration of nematicon trajectory control [177].

Another intriguing possibility offered by NLC is all-optical control via the interaction
of one or multiple nematicons and/or external magnetic and electric fields, including the
capacitive effects of light valves in voltage-biased cells with a photoconductive interface [70].
In these planar geometries, orthogonally propagating control beams can alter the refractive
index and act on the mutual interaction of nematicons, allowing for all-optical switching
layouts [71, 178, 179]. Light-by-light control can also be exploited to nonlinearly modify the
local refractive index and the beam path [180, 181].

As previously discussed in the context of mechanical analogies for interacting nematicons
and Newtonian gravitation, beam-on-beam interactions can control individual trajectories
[55, 91, 92, 93, 143, 144, 182, 183]. They have also been studied using variational and Gaus-
sian approximations to the actual response G in the nonlocal NLC equation (30) [184, 185].
A further use of the interaction of nematicons is the generation of higher order (excited
state) solitary waves with nodes [186]. These higher order solitary waves were experimentally
generated as vector modes consisting of the fundamental nematicon and the excited state.

5 Optical Vortices

Besides bright nematicons, nematic liquid crystals can also support optical vortices, doughnut
shaped beams resembling vortices in fluids. In optical vortices the wavefront is twisted in the
direction of propagation to have a corkscrew form, resulting in a circulating azimuthal phase
and a phase singularity with an amplitude/intensity node at their centres. Optical vortices
have wide ranging applications, including the trapping and manipulation of small particles
in biology, physics and other areas [187], microscopy [188], astronomy [189, 190, 191, 192]
and communications [193, 194]. A number of different components can be used to exper-
imentally generate their phase structure, including spiral phase plates, diffractive elements
and computer-generated holograms, segmented deformable mirrors and nanostructured glass
plates. In nematic liquid crystals, optical vortices have been generated and manipulated in
light-valve geometries, as well as droplets [195, 196, 197, 198, 199].

In media with a local response, optical vortices are unstable to a mode-2 azimuthal in-
stability, so that the vortex breaks up into two beams [17, 200]. This can be seen on solving
the nematic equations (15) and (16) in the local limit with the vortex-type initial condition

u = are−
r
2

w2
+iϕ, (70)

where (r, ϕ) are plane polar coordinates. Figures 4(a) and (b) show the evolution of this
vortex beam for ν = 0.5, which corresponds to the NLC local response. This mode-2 beam
break-up can be clearly seen. However, optical vortices are stable in media whose response
is nonlocal enough, which can be seen from Figures 4(c) and (d) which present the evolution
of the vortex initial condition (70) for the large nonlocality ν = 200. The initial vortex has
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Figure 4: Numerical solutions of nematic equations (15) and (16) for |u| for the vortex initial
condition (70). (a) Initial local vortex, z = 0, for a = 2, w = 2.5, ν = 0.5, (b) local vortex at
z = 6, (c) initial nonlocal vortex at z = 0, for a = 2.5, w = 3.5, ν = 200, (d) nonlocal vortex
at z = 100. Here q = 2.

evolved and expanded slightly to evolve to a steady state, but does not show the mode-2
azimuthal instability.

Optical vortex solitary waves are much more difficult to generate in NLC experiments
than nematicons, mainly because for nematicons the cell is much larger in one transverse
direction than the other. The drawback of this configuration is that the bounded NLC is not
symmetric in the transverse directions, which prevents the formation of stable optical vortex
solitary waves [201, 202]. As stated in Section 2, a typical nematic cell has a transverse width
of 100µm, but this width can be as low as 30µm. This issue of transverse non-symmetry is
then not important for nematicons as a typical nematicon has a 3µm waist [16], while it is
important for a vortex as a vortex has a typical width of 20µm. To overcome these obstacles
and successfully generate stable optical vortices in nematic liquid crystals, bulk NLC samples
without lateral boundaries and the molecular director preset by an external magnetic field
[77] were successfully used [203]. In this manner, dimensional restrictions and the influence
of non-symmetric boundary conditions were avoided, enabling the successful generation of
stable vortex solitary waves.

The precise mechanism by which nonlocality stabilises optical vortices in nonlinear me-
dia, including nematic liquid crystals, has been studied using a number of methods, besides
verification via numerical solutions, as in Figure 4. A standard linear stability analysis, based
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on numerically evaluating the steady vortex solitary wave of the nematic equations (15) and
(16), showed that a vortex is stable above a nonlocality threshold [170]. This stabilisation
due to the nonlocal medium response was also shown using a Gaussian approximation to the
real nematic response [204]. The modulation theory methods outlined in Section 4 give more
insight into the actual stabilisation [205]. For a local medium, the response mirrors the light
distribution, so that it is zero at the node of the vortex. In the limit ν → 0, the director
equation (16) gives θ = |u|2/q, so that θ = 0 when u = 0. The modulation theory analysis
shows that when ν 6= 0, the medium response does not vanish at the singularity. Indeed,
if ν is large enough, the director response over the core is large and wide enough to stably
support the optical vortex [205]. In addition to this physical explanation of the stabilising
effect of the nonlocal response of the nematic medium on optical vortices, this modulation
theory analysis also gives a stability threshold in the nonlocality parameter ν [205] which is
in excellent agreement, within 10%, of the value from a linearised stability analysis [170].

The same stabilising mechanism can be exploited by co-propagating a nematicon coaxial
with an optical vortex [206, 207], as recently demonstrated in standard NLC cells with inco-
herent input beams of distinct wavelengths [94, 208]. The co-propagating nematicon raises
the nonlinear director response under the core of the vortex, stabilising it. This modula-
tion theory analysis was extended to study the influence of boundaries on vortex stability
[209], finding that the nonlocal response can suffice to stabilise the vortex, unless the vortex
width is comparable with the size of the cell. In a similar manner, the medium nonlocality
can also stabilise the interaction of optical vortices [210]. Finally, the stabilising influence of
co-propagating coaxial nematicons caused by raising the director profile under the singular-
ity (vortex core) can also stabilise optical vortices undergoing refraction through dielectric
interfaces or in non-uniform environments [211, 212, 213].

6 Modelling Experiments

The control of nematicons and optical vortices through refractive index changes was described
in general terms in the previous Section. An interesting example of nematicon trajectory
design/control is its bending in non-uniform, bias-free NLC cells [62, 63, 107, 124]. We
provide here the basic details and show how simple models can give both accurate predictions
of the results and insight into the underlying mechanism.

Let us consider a planar cell as outlined in Section 3, without external bias, so that q = 0,
and a non-uniform director distribution θ. Let us assume that the background orientation θ
has a mean θ̄ and a variation θb about it which is a function of y in non-dimensional variables
(or Y in dimensional variables). The varying background results in a non-uniform refractive
index and walk-off, so that a nematicon propagating in the sample moves along a non-straight
path. The non-dimensional equations governing nematicon propagation in non-uniform NLC
are as in Section 3, (10) and (11), but with θ replaced by θ̄ in (9) and in the dimensionless
parameters (12) and (13). They are

i
∂u

∂z
+ iγ∆(θ̄ + θb(y))

∂u

∂y
+

1

2
∇2u+ 2 (θb(y) + φ) u = 0, (71)

ν∇2φ = −2|u|2, (72)

The extra term θb arises from the expansion of the trigonometric function sin(θ + φ) =
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sin(θ̄ + θb + φ) in the dimensional equation (6). The Lagrangian for these equations is

L = i (u∗uz − uu∗z) + iγ∆(θ̄ + θb)
(

u∗uy − uu∗y

)

− |∇u|2 + 4 (θb + φ) |u|2 − ν|∇φ|2, (73)

As there are no known general nematicon solutions upon which to base standard solitary
wave perturbation theory, the generalised modulation theory, variational approximations, as
outlined in Section 4 need to be used. To this end, since the NLC medium is slowly varying,
specific profiles for the nematicon and the director distribution need not be assumed to obtain
modulation equations for the pertinent parameters [62, 63, 107]. Let us then set the nematicon
and director distribution to have the forms

u = afe(ρ)e
iσ+iV (y−ξ) and φ = αfd(µ), (74)

where

ρ =

√

x2 + (y − ξ)2

w
, µ =

√

x2 + (y − ξ)2

β
. (75)

Here fe and fd are the unknown profiles of the electric field of the beam and the director
orientation, respectively. Substituting these general profiles into the Lagrangian (73) and
averaging by integrating in x and y from −∞ to ∞ gives the averaged Lagrangian

L = −2S2
(

σ′ − V ξ′
)

a2w2 − S22a
2 − S2

(

V 2 + 2V F1 − 4F
)

a2w2 + αa2w2Sm

− 4νS42α
2, (76)

where prime denotes differentiation with respect to z. Here F and F1, determining the beam
trajectory, are expressed by

F (ξ) =

∫∞
−∞

∫∞
−∞ θbf

2
e dxdy

∫∞
−∞

∫∞
−∞ f2e dxdy

, (77)

F1(ξ) =

∫∞
−∞

∫∞
−∞ γ∆

(

θ̄ + θb
)

f2e dxdy
∫∞
−∞

∫∞
−∞ f2e dxdy

. (78)

The integrals S2, Sm, S22 and S42 appearing in L are

S2 =

∫ ∞

0
ζf2e (ζ) dζ, S22 =

∫ ∞

0
ζf ′2e (ζ) dζ,

Sm =

∫ ∞

0
fd(wζ/β)f

2
e (ζ) dζ, S42 =

1

4

∫ ∞

0
ζ

[

d

dζ
fd(ζ)

]2

dζ. (79)

Their exact values are unnecessary in order to determine the curved trajectories.
Taking variations of (76) with respect to velocity V and position ξ gives the modulation

equations

d

dz
a2w2V =

[

2
dF

dξ
− V

dF1

dξ

]

a2w2, (80)

dξ

dz
= V + F1, (81)

which yield the nematicon trajectory in the non-uniformmedium. We note that the variational
equation (80) is the same as Newton’s Second Law for a particle of mass a2w2 travelling at
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velocity V acted on by a force [2Fξ − V F1ξ] a
2w2, so it is a “momentum” equation. In the

present optical context, a2w2 is the power. In principle, these momentum equations need to
be complemented by modulation equations for the beam amplitude and width obtained by
variations of the averaged Lagrangian (76) with respect to the other parameters. However,
these are not needed as the nonlocality ν is large, therefore the beam sheds diffractive radiation
of very low amplitude on a very long z scale as it evolves [145]. Hence, the beam power a2w2

can be taken constant and the momentum equation (80) becomes

dV

dz
= 2

dF

dξ
− V

dF1

dξ
. (82)

The integrals F (77) and F1 (78) involve the beam profile fe but, again, its details are not
required. We note that θ̄ is a constant, whereas— of critical importance— θb is slowly varying
relative to the beam width, typically θ′b ∼ 0.002 rad/µm [62, 107]. A typical length scale for
the varying background orientation is 500 µm, while a typical beam size is a few µm. The
key momentum integrals (77) and (78) can thus be approximated by

F (ξ) ∼ θb(ξ),

F1(ξ) ∼ γ∆(θ̄ + θb(ξ)) = γ∆(θ̄) + γ∆′(θ̄)θb(ξ) + . . . , (83)

so that the momentum equations (81) and (82) become

dV

dz
=

(

2− V γ∆′(θ̄)
)

θ′b(ξ), (84)

dξ

dz
= V + γ∆(θ̄) + γ∆′(θ̄)θb(ξ). (85)

These can be integrated to obtain the nematicon trajectory ξ given the background orientation
variation θ̄ + θb.

Experiments [62] on nematicon bending were carried out in planar cells with a pre-imposed
linear director variation (through anchoring at the interfaces) in the transverse direction Y .
Hence, we take

θ̄ =
1

2
(θi + θL), θb(y) =

θL − θi
L

y +
1

2
(θi − θL) . (86)

For such a linear variation, the momentum equations (84) and (85) have the exact solution

ξ =

[

ξ0 +
1 + γ2∆′(θ̄)∆(θ̄)

γ2∆′2(θ̄)θ′b

]

eγ∆
′(θ̄)θ′

b
z − 2 + γ2∆′(θ̄)∆(θ̄)

γ2∆′2(θ̄)θ′b
+

1

γ2∆′2(θ̄)θ′b
e−γ∆′(θ̄)θ′

b
z (87)

as θ′b is a constant. Comparisons between this exact prediction and the experimentally ac-
quired paths [62] are shown in Figure 5 for various input positions corresponding to different
director orientation angles at the beam input. The agreement is very good, especially in light
of the simplifications leading to the momentum equations (84) and (85). We thus see that
simple momentum conservation allows for excellent agreement with measured results. Con-
versely, the approximation discloses the simple mechanism of momentum conservation behind
the actual physics. A similar analysis of nematicon curvature in an NLC cell with a longit-
udinal Z variation of the background orientation θ can be conducted, that is singling out the
role of walk-off variations without refraction: again, the agreement between the modelling
and the experimental results is excellent [63], see Fig. 6 for a typical comparison between
experimental and modulation theory results.
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Figure 5: Nematicon trajectories— measured experimentally and calculated using modulation
theory (87)— in an NLC sample non-uniform in the transverse Y coordinate. The background
varies linearly from θ = 90o at Y = 0µm to θ = 0o at Y = 600µm. Measured data: symbols;
dynamical equations: lines. The input is a 3mW Gaussian beam of waist 3µm and wavelength
1.064µm. Results reproduced from [62].

The modelling of experimental measurements can be illustrated in another non-uniform
NLC environment [214]. In this example, a wide waveguide is induced by an external electric
field (voltage) applied through straight electrodes and invariant along Z, with a non-uniform
transverse distribution, as illustrated in Figure 7. At low beam powers the electric poten-
tial traps a nematicon in the gap region (waveguide) between the electrodes. However, a
nematicon is a nonlinear wavepacket and so can change its environment, in particular the
director distribution, so that the local refractive index gets altered. At high enough beam
powers this refractive index increase can be large enough to overcome the externally im-
posed potential well and let the nematicon escape, that is tunnel out of the waveguide, as
illustrated in Figure 8. While the NLC sample and the detailed experimental configuration
were complicated by a resulting tilt of the optic axis out of the principal plane (Y,Z), this
nematicon tunnelling can be simply modelled based on the momentum equation for the beam
[108]. The effect of the external, non-uniform electric field on the equations (10) and (11) is
a background refractive index well m(y) for the envelope equation and a pre-tilt parameter
q becoming a function of y. This gives a local change θ1 in the background director orienta-
tion from the uniform value θ0 away from the electric bias. The non-dimensional equations
governing nematicon tunnelling are then [108]

i
∂u

∂z
+

1

2
∇2u+ 2φu+m(y)u = 0, (88)

ν∇2φ− 2q(y)φ = −2|E|2. (89)
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Figure 6: Comparisons between modulation theory and experimental results for nematicon
trajectories in a non-uniform cell with background angle θ varying linearly in Z from 45o at
z = 0mm to −45o at Z = 1500mm for various powers P . Figure from [63].

28



Figure 7: Y component of the static electric field Es at different altitudes X across the NLC
thickness, from X = −50µm to X = 50µm. The vertical dashed lines indicate the edges of
the two top electrodes for the applied voltage bias. Figure reproduced from [214].

Here, the key y-dependent parameters q and m stemming from the bias are

q(y) =
4∆ǫRF | cos 2θ0|
ǫ0∆ǫE2 sin 2θ0

E2
s (y), m(y) =

2n2e(y)

n2e(θ0)∆ǫ sin 2θ0
. (90)

To determine the refractive index well m(y) we use the extra-ordinary refractive index ne
from (1) and write

ne = n1(1 + n2θ1), (91)

where

n1 =
n⊥n‖

√

n2‖ cos
2 θ0 + n2⊥ sin2 θ0

and n2 =

(

n2‖ − n2⊥

)

sin 2θ0

2
(

n2‖ cos
2 θ0 + n2⊥ sin2 θ0

) . (92)

To complete the description we need the angle change θ1 due to the external trapping
electric field. The actual electric field forming the potential well, shown in Figure 7, is
complicated, particularly towards its edges. For simplicity, a parabolic profile

E2
s (y)/E2 = γ2

(

L2 − y2
)

, (93)

for −L ≤ y ≤ L was assumed, so that at y = ±L the electric field essentially vanishes.
Hence, the background orientation resulting from this bias can, in principle, be calculated
from the director equation (89) with u = 0. However, the resulting equation is a form of
the parabolic cylinder equation [154], not useful to evaluate the integrals in the momentum
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Figure 8: Sample data from experiments on nematicons (λ = 1064nm) escaping a wide
waveguide induced by the external electric field as shown in Fig. 7. (a) Mean nematicon path
for various input beam excitations: at low power the nematicons are trapped in the potential,
whereas for P > 15mW their initial momentum permits them to escape the potential. (b)–(c)
Acquired photographs showing the evolution of a nematicon in the voltage-defined guiding
profile for an input beam power of (b) 4.0 and (c) 19.9mW , respectively. The latter case is
that of a nematicon tunneling out. Figure reproduced from [214].
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equation (95). To overcome this, the director angle change due to the potential well was taken
to be parabolic, corresponding to Taylor expanding the parabolic cylinder function solution
[108, 146]. Then

θ1 =
θc
L2

(

L2 − y2
)

, (94)

where θc is the value of θ1 on the waveguide axis y = 0.
It can be directly derived from the electric field equation (88) that the integrated equation

for the beam momentum i(u∗uz − uu∗z) is

i
d

dz

∫ ∞

−∞

∫ ∞

−∞

(

u∗uy − uu∗y

)

dxdy =

∫ ∞

−∞

∫ ∞

−∞

(

−2|u|2my + 2φ2qy
)

dxdy. (95)

Unfortunately, at this point general profiles for the nematicon cannot be used to determine
trajectory equations from the momentum equation (95), as for the previous comparison with
experimental results. At variance with the previous example of nematicon propagation in a
non-uniform bias-free nematic cell, specific Gaussian profiles

u = ae−[x
2+(y−ξ)2]/w2

eiσz+iV (y−ξ) and φ = αe−[x
2+(y−ξ)2]/β2

(96)

were chosen. Substituting these into the integral momentum conservation (95) results in the
momentum equation

dV

dz
=
d2ξ

dz2
=

[

2qcγ2
α2β2

a2w2
− 8n2θc

∆ǫL2 sin 2θ0

]

ξ, qc =
4∆ǫRF

ǫ0n2aE2 tan 2θ̂0
, (97)

which determines the nematicon trajectory in the potential well. This differential equation
can be integrated once to give

(

dξ

dz

)2

= V 2
0 +

[

2qcγ2
α2β2

a2w2
− 8n2θc

∆ǫL2 sin 2θ0

]

(

ξ2 − ξ20

)

, (98)

where ξ0 and V0 are the input beam position and angle, respectively. This trajectory equation
allows the determination of the required nematicon power to escape the potential. The
nematicon will just escape when the turning point of its trajectory ξ′ = 0 occurs at the edge
ξ = L of the waveguide. The equation (98) gives the trajectory turning point ξt as

ξ2t =
V 2
0 +

(

8n2θc
∆ǫL2 sin 2θ0

− 2qcγ2
α2β2

a2w2

)

ξ20
8n2θc

∆ǫL2 sin 2θ0
− 2qcγ2

α2β2

a2w2

. (99)

The nematicon tunnels out if ξt > L. The experimental parameters of [214], detailed in [108],
yield an escape (critical) power Pc = 18.7mW for a waveguide of effective width 200µm,
matching well with the measured range 16–18mW [214].

Driven by the lack of exact solutions of the basic nematic equations (10) and (11), the
two examples above demonstrate how simple modelling based on the underlying physics can
produce excellent agreement with experimental results. As for the particle approximations
of Section 4, it is apparent that basic concepts from classical mechanics, such as mass, mo-
mentum and energy conservation, are extremely useful in developing these models. The
essential ingredient for these simple approximations to be successful in NLC is the material
nonlocality. This nonlocal response acts as a trapping potential, permitting only weak leak-
age of the diffractive radiation shed as nonlinear beams, nematicons or vortices, evolve during
propagation [124, 145].
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7 Thermal Effects

The propagation of light beams in NLC can also be affected by thermal heating, not yet
addressed in this paper with reference to extra-ordinary wave nematicons. In standard, un-
doped nematic liquid crystals, such as 5CB or E7, the single-photon absorption coefficient
α is small, less than 0.2cm−1 [22, 23]. Nevertheless, thermal heating can be important for
two reasons, (i) the refractive index eigenvalues n⊥ and n‖ and the walk-off δ are temper-
ature dependent [22, 23, 24, 215, 216] and (ii) the nematic metaphase exists in a restricted
temperature interval [14]. NLC thermal absorption can be enhanced or tailored at specific
wavelengths or spectral ranges by the addition of absorbing dyes [25] or nano-particles [26]
to increase energy withdrawal from the light beam. Since the intensity of the beam is |A|2,
the temperature is governed by the steady, forced heat equation

κ∇2T = −αΓ|A|2. (100)

Here, as stated, α is the thermal absorption coefficient and κ the thermal conductivity. If we
set T0 to be a reasonable temperature increase and non-dimensionalise the temperature by
T = T0Q, the non-dimensional temperature equation in the variables (8) is

µ∇2Q = −|u|2, (101)

where the non-dimensional thermal conductivity is

µ =
κT0

αΓW 2E2
. (102)

It should be noted that, as the NLC parameters become temperature-dependent, a “typical”
temperature Ttyp has to be chosen and the parameters (9) have to be referred to Ttyp. The
non-dimensional nematic system then becomes

i
∂u

∂z
+ iγ∆

∂u

∂x
+

1

2
∇2u+ 2

∆ǫ

(∆ǫ)typ
φu = 0, (103)

ν∇2φ− 2qφ = −2
∆ǫ

(∆ǫ)typ
|u|2, (104)

with ∆ǫ, the walk-off ∆, the parameters ν and q being temperature-dependent.
In common NLC the thermo-optic refractive response is self-defocusing for extra-ordinary

waves, opposite to the reorientation. These two contributions therefore counteract one an-
other, i.e., they compete [24, 215, 216]. The thermal dependence of the refractive indices n⊥
and n‖ are non-trivial, but can be well approximated by cubics, except near the transition
temperature where the material changes phase and becomes isotropic [14, 216].

A major effect of these competing reorientational and thermal nonlinearities is on the
form of the nematicon [104, 217]. The former tends to hold the nematicon together through
focusing, while the latter tends to pull the solitary wave apart. In some cases, when the two
nonlinearities are carefully tailored by the introduction of dopants and specific wavelengths
are employed, the (1 + 1)-dimensional nematicon solution becomes two-humped, resembling
a “volcano” [104]. This “volcano” nematicon also arises from variational approximations
whereby the true response kernel in the nonlocal form (30) of the nematic equations is replaced
by a Gaussian [217]. The effect of a thermo-optic refractive response on optical vortex stability
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has also been investigated for the nematic liquid crystal 6CHBT [218]. The defocusing thermal
response was found to enhance the stability of an optical vortex, although, due to the small
thermal absorption of 6CHBT, this effect is small, but can be enhanced by the addition of
dyes to the nematic [218]. The physical reason for the thermal enhancement of stability is
broadly similar to the nonlocal stability enhancement discussed in Section 5. The thermo-
optical response is defocusing, which broadens the beam and the resultant nematic response,
so that the director response over the vortex core is enhanced, thus helping to stabilise the
vortex.

The opposite signs of the competing responses also affect nematicon interactions. At low
powers and low heating, reorientation dominates and the interaction is attractive (as usual
for nematicons [51] and for in-phase NLS solitons [7]); at high powers and high heating,
the interaction is repulsive [105] (as for out of phase NLS solitons [7]). Variational methods
based on a Gaussian for G in (30), as well as the Snyder-Mitchell approximation [42], can
be used to predict this temperature dependent interaction of nematicons [219]. For a high
power nematicon of sufficient “mass”, in analogy with Kerr-like solitary waves [3, 7], it will
split into multiple nematicons as the thermal defocusing causes the wavepackets to repel each
other and propagate with opposite transverse velocities from the “volcano’s crater” (intensity
minimum) [113].

The thermo-optic response via absorbed beam power changes the NLC indices and birefrin-
gence, so it can also have significant effects on nematicon trajectories through the walkoff,
and on solitary wave confinement through the index contrast. It also perturbs the elastic con-
stant(s) and the effective nonlocality/nonlinearity [25, 101, 216, 220]. Such beam self-induced
changes are weak in standard NLC, with trajectories being altered by angles of the order of
degrees [216].

The study of temperature-dependent NLC properties on the formation and propagation
of reorientational optical solitary waves is recent and many issues are still open, particularly
analytical studies, especially in the experimental domain of (2 + 1) dimensions. Conversely,
it deserves mentioning— in closing this Section— that early work on beam self-focusing and
“quasi-solitons” in nematic liquid crystals was indeed based on light absorption in dye-doped
samples in capillaries or planar cells, although the experimental observations, because of
their pioneering character, did not exhaustively address the various optical aspects of the
nonlinear phenomena: polarization, nonlocality and dissipation [30, 32, 33, 221]. The lack of
well-defined pre-treated input interfaces to the samples introduced the possibility of air/NLC
menisci, with the risk of beam depolarization and subsequent polarization evolution from lin-
ear to elliptic, circular, etc. The large amount of dopants, aimed at increasing the nonlinear
response through the Janossy effect [221, 222], also increased the propagation losses and the
heating, with detrimental effects on the order parameter, as well as causing fluid convection,
particularly when employing continuous wave lasers at visible wavelengths. The inclusion of
fluid motion with the nonlinear optics of the nematic introduces a whole new level of com-
plexity, particularly as nematics are non-Newtonian fluids. Beam filamentation, undulation
and self-collimation have been observed and reported in cells with different anchoring at the
boundaries [33, 223], including solitary waves generated by ordinary-wave input beams and
isotropic channels beyond the nematic-isotropic transition [31, 99, 221, 224, 225]. In NLC
the ordinary-wave refractive index eigenvalue, in fact, is a growing function of temperature
in the nematic phase [13] and can therefore support self-focusing via a thermo-optic response
in absorbing mixtures, counteracting diffraction and undergoing no Poynting-vector walkoff.
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8 Conclusions

Nematic liquid crystals are an ideal medium/platform for the study of propagating nonlinear
dispersive optical wavepackets, including the standard example of optical solitary waves,
termed nematicons. Light beam propagation in nematic liquid crystals constitutes an ideal
environment for many of the ideas and techniques developed since the 1960s for the study of
nonlinear dispersive waves. However, as the nematic equations are a coupled system of an
NLS-type equation for the beam and an elliptic equation for the medium response, this added
complexity means that no exact, general solutions have been derived to date. Several standard
techniques for analysing nonlinear waves, such as inverse scattering, perturbed solitary wave
theory and Whitham modulation theory, are then unavailable. Despite such a difficulty,
the study of light beams in NLC has prompted the development of modified and sometimes
sophisticated new approaches. Numerical techniques, whether to solve the reduced equations
(10) and (11) [21, 20] or the full vectorial Maxwell and director equations [46] are available
and can confirm/verify the accuracy of solutions obtained using approximations. However,
while solving the full vectorial equations is computationally expensive and time consuming,
numerical solutions of the reduced equations do not provide the physical and mathematical
insight available from analytical solutions, particularly when experimental data can benefit
from analytical results to gain insight into the underlying mechanisms, as seen, e.g., in Section
6.

Compiling the state of the art and illustrating the main aspects related to the modelling
of self-confined optical solitary waves in nematic liquid crystals, this overview has hopefully
shown that this NLC niche in the optics, physics and mathematics of nonlinear waves has
been and continues to be a rather active contemporary theme of research, with numerous
aspects of applied relevance into the diverse areas where nonlinear dispersive waves were first
discovered and later investigated, from fluid/atmosphere/ocean waves to plasmas and biology
and more [3, 8, 9].
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