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In this work we propose a new mathematical framework for the study of the mutual interplay between
anisotropic growth and stresses of an avascular tumor surrounded by an external medium. The mechanical
response of the tumor is dictated by anisotropic growth, and reduces to that of an elastic, isotropic, and
incompressible material when the latter is not taking place. Both proliferation and death of tumor cells are
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in turn assumed to depend on the stresses. We perform a parametric analysis in terms of key parameters
representing growth anisotropy and the influence of stresses on tumor growth in order to determine how
these effects affect tumor progression. We observe that tumor progression is enhanced when anisotropic
growth is considered, and that mechanical stresses play a major role in limiting tumor growth.

Keywords: Avascular tumor; Linear elasticity; Anisotropic growth; Stress-driven growth.

1. Introduction

Cancer has become a leading cause of death by disease in many countries [1] because of its poor

prognosis and high rate of incidence. It is caused by mutations in a normal cell, which induce

an uncontrolled proliferation. Cancer evolution is extremely complex; however some features in

its progression can be associated with the generation and accumulation of mechanical stresses. In

fact, it is widely accepted that mechanical stress is one of the key factors regulating cell growth

and death [19;20;27;45]. It is well-known that healthy cells possess specific mechanisms to maintain

an ideal stress state [3], corresponding to stress conditions maintained in tissue homeostasis. The

genesis of a tumor could be seen either as a failure of such mechanisms (so that the cells are unable

to return to their initial stress state), or as an alteration of the information of stress conditions

during homeostasis, such that the cell self-regulates to an aberrant stress condition. According to

Ambrosi et al. (2012) [3], a possible anti-cancer strategy could reside in forcing the cells to come

back to their mechanically ideal stress state. Thus, the understanding of stress development in the

tumor is of major importance.

Mathematical models are useful in order to understand cancer behavior, and formulate predic-

tions to support the design of anti-cancer therapies. There have been several investigations on

the subject with different approaches including continuum and discrete representations of cancer.

Several models range from cellular automata to compact cellular spheroids; from assuming that tu-

mors maintain their solid shape to model the cell adhesion using, in some of them, elasticity theory

and in the others different physical principles, creating a wide variety of methods [2;9;22]. Drasdo

and Hohme (2005) [13] and Carmenate et al. (2013) [10] deal with the cell level. In these models the

tumor geometry is set aside and generally describes system dynamics of various cell populations.

Others works focus on the macroscopic scale using a mechanical approach. For instance, Araujo

and McElwain (2005b) [8], Jones et al. (2000) [21] and Ngwa and Agyingi (2012) [28] assume a consti-

tutive equation from linear elasticity theory in order to relate growth with deformation. Moreover,

discrete cell based approaches have been also considered [4;46], as well as multiscale models based on

homogenization techniques, such as Penta et al. (2014) [32] and Penta et al. (2017) [33] for avascular

tumor growth and vascular tumor mechanics, respectively. The latter models have the potential

to incorporate details of the tumor microstructure, and they have only recently been investigated

from a practical viewpoint due to their computational complexity (see, e.g. the works of Penta and

Ambrosi (2015) [30] and Mascheroni et al. (2017) [25] based on the theoretical framework developed

for rigid vascular tumors in Shipley et al. (2010) [40] and Penta et al. (2015) [31], respectively).

In the present work, a macroscopic approach is used for studying the avascular stage of a solid

tumor and the proposed model represents an extension of that proposed by Ngwa and Agyingi

(2012) [28], where the authors modeled the evolution of growth-induced stress in a spherical tumor

surrounded by an external medium and exhibiting isotropic properties. Here we generalize the

model in Ngwa and Agyingi (2012) [28] by considering a constitutive relationship which accounts

for anisotropic growth as done in Araujo and McElwain (2005b) [8] and relating cell proliferation
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and death to the stress, thus accounting for stress-dependent growth. The effect of the parameters

representing growth anisotropy and the influence of stress on tumor progression is explored via a

parametric analysis.

2. Tumor Model

In this section, we present the mathematical model in detail, which reads as a generalization of

the study by Ngwa and Agyingi (2012) [28], we embrace the following set of assumptions.

i) The population of healthy and malignant cells form a single population, which is considered a

continuum.

ii) There is adhesion among living tumor cells at the boundary, which holds the tumor in a solid

state and balances the expansive force caused by the internal cell proliferation.

iii) The tumor is represented as a sphere and spherical symmetry is maintained at all times.

iv) There is a constant nutrient concentration in the tumor boundary.

v) The tumor is in a state of diffusive equilibrium. Moreover, nutrient consumption rate is pro-

portional to nutrient concentration and tumor cell density.

vi) cell proliferation rate is proportional to nutrient concentration and tumor cell density, while

cell death is proportional to the cell density. But in the presence of stresses, cell proliferation

is inhibited and cell death is promoted.

vii) The tumor is considered an isotropic and incompressible elastic material.

viii) The tumor is surrounded by an external medium, which is likewise modeled as an incompress-

ible and isotropic elastic material.

The first three assumptions represent a substantial simplification of the tumor growth process. The

first one is embraced to avoid the structural and mechanical difference between different kind of

cells. In general, there exist several types of cells in the tumor interior which are not necessarily

malignant, such as endothelial cells [24], and those belonging to the immunological system [29;17].

Moreover, tumor cells can exhibit differences from both the metabolic (necrotic, hypoxic and pro-

liferating cells [44]) and genetic (different tumoral clones, heterogeneous tumor [5;26]) points of view.

The second assumption guarantees that the tumor maintains a solid shape with a well delim-

ited boundary, which is fairly reasonable when considering the case for avascular solid tumors.

Assumption iii) is a simplification of the geometry, which is commonly adopted to simplify the

mathematical formulation [2;21;28;34], however in Helmlinger et al. (1997) [19], it is shown that tu-

mors growing in free suspension adopt a spherical shape, while those growing within an agarose gel

take an ellipsoidal geometry due to anisotropic stresses. Moreover, in the avascular stage, the tumor

has availability of nutrients and occupies very little space, so that its conditions are similar to the

ones depicted in Helmlinger’s experiments [19] and it is therefore reasonable to assume spherical

symmetry. Because of the wide nutrient disposition, the concentration of nutrients in the tumor is

limited only by its diffusion velocity and not by the concentration at the tumor boundary. Thus,

hypothesis iv) is just a mathematical simplification, but not from the modeling point of view. The

remaining four assumptions have technical implications which are dealt with in the remainder of

this section.

Hereinafter, the following notation is used:

Variable Definition
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t Time

r Radial coordinate

R(t) Radius of the tumor at time t

R0 Radius of the tumor at t = 0

c(r, t) Nutrient concentration inside the tumor

cb Nutrient concentration at the boundary

u(r, t) Tumor cell displacement

v(r, t) Tumor cell displacement velocity

σ Cauchy stress tensor of the tumor

σe Cauchy stress tensor of the external medium

e Strain tensor of the tumor

ee Strain tensor of the external medium

ρ Tumor cell density

Table 1: Model variable definitions

2.1. Kinematics and equilibrium equations

The equation describing the motion of a surface S = 0 is

DS

Dt
= 0, (1)

where

D

Dt
≡ ∂

∂t
+ v · ∇

is the material derivative. Because of the radial symmetry, the material surface of the tumor is

given by S = r −R(t) and the velocity field has the form v = (vr, 0, 0), leading to

dR

dt
= vr(R, t). (3)

The above equation models the growth rate of the tumor. Now, from hypothesis i), the tumor

is considered a continuum and the forces per unit area can be represented by the Cauchy stress

tensor σ. Particularly, inertial factors are neglected due to the cells low velocities, and body forces

are ignored. In fact, according to Hemlinger’s experiments, gravity does not play a major role [3].

Hence, assuming that no other volume forces are being exerted on the tumor mass, only contact

forces are relevant and the equilibrium equation simply reads:

∇ · σ = 0. (4)

Since radial symmetry is considered and σ = diag{σr, σθ, σφ}, the only relevant component of

equation (4) is

∂σr
∂r

+
2

r
(σr − σθ) = 0, (5)

bearing in mind that σθ = σφ.
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2.2. Constitutive equation

In modeling some problems related to solids, one of the most important questions is how to choose

the constitutive law, which relates the stress σij with the material strain eij . According to Araujo

and McElwain (2005b) [8], linear elasticity models which just consider isotropic growth are insuf-

ficient to describe the stress evolution in a growing tissue, because they do not reflect the stress

relaxation effect, which is characteristic of viscoelastic materials. For example in a non-linear

framework, in Ramı́rez-Torres et al. (2015) [34] and Ramı́rez-Torres et al. (2017) [35] is considered

an anisotropic form for the growth tensor. In particular, this assumption leads to different patterns

in tumor growth and solid stresses in agreement with experimental studies. On the other hand,

purely elastic materials do not change their internal structure to adapt to the new stress conditions,

but there are ways to obtain the effect of stress relaxation in a linear elastic model (see e.g., the

work on anisotropic growth by Araujo and McElwain (2005b) [8]). Although deformations remain

small, the linear elasticity theory offers acceptable results, reflecting the qualitative tissue behav-

ior [18;39]. In the present work, is considered a constitutive law where the deformation due to elastic

response of the material takes place in a linear fashion, but the deformation due to the growth

is limited, since elastic materials can not deform indefinitely. Thus, locally the elastic response

is linear with respect to the change in strain but globally is nonlinear because of the convective

effects. That is to say, the nonlinearity is obtained by considering the dependence of r with respect

to t in the time derivative. Hence, the law could be used for large displacements [21]. Following the

ideas proposed in Araujo and McElwain (2005) [8] and Jones et al. (2000) [21], it yields

eij :=
1

2

(
∇u + (∇u)T

)
ij

= gγθei ⊗ ei + g (γr − γθ) er ⊗ er +
1

2E
(3σij − δijσkk) (6)

where i, j, k = r, θ, φ, E is Young’s modulus, g = g(r, t) is the growth factor (represents the tumor

volumetric growth rate), ei is the orthonormal basis in spherical coordinates, γr, γθ ∈ R+ represent

the tumor growth anisotropy terms in the radial and transversal directions respectively with (see

Araujo and McElwain (2005) [8])

γr + 2γθ = 1. (7)

For γr ≡ γθ ≡ 1/3, the constitutive equation from Jones et al. (2000) [21] and Ngwa and Agyingi

(2012) [28], is obtained. Here, we generalize the latter work to anisotropic growth. On the other

hand, if g ≡ 0 in (6) we get Hooke’s law of an incompressible material. Because of hypothesis vii),

the Poisson ratio ν is set to 0.5.

As mentioned in Araujo and McElwain (2004) [6] and Cheng et al. (2009) [12], growth is expected

to be further enhanced along the directions of minimum compressive stresses. Although there are

no experimental data at hand, the function γθ, which is assumed to depend on the stress difference

β = σr − σθ, (8)

should fulfill the properties given in Table 2.

Constraint Description

0 ≤ γθ(β) ≤ 1/2 γθ is relative growth in transversal directions.

γθ(0) = 1/3 Isotropic growth when β ≡ 0.

γθ(β + x) ≤ γθ(β)⇔ x ≤ 0 γθ decreases with respect to β.
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lim
β→+∞

γθ(β) = 0 If β � 1N/cm2, there is almost no growth in the

transversal direction.

lim
β→−∞

γθ(β) = 1/2 If β � −1N/cm2, there is almost no growth in the

radial direction.

Table 2: Necessary properties for the function γθ.

Thus, the following law, which satisfies the constraints given in Table 2, is proposed

γθ =
1

eaβ + 2
, (9)

where a is a positive physical quantity corresponding to the inverse of the stress dimension. Fur-

thermore, γr is defined using the constraint (7), that is γr = 1− 2γθ.

It should be noted that the proposed constitutive relation must be invariant with respect to the ref-

erence system [21]. For this purpose, as in Jones et al. (2000) [21] and Ngwa and Agyingi (2012) [28],

the Jaumann derivative is applied to (6) (the Jaumann derivative is a material derivative in a

frame that rotates with the local angular velocity of the medium). Then, from (6),

1

2

(
∇v + (∇v)T

)
=
Dg

Dt
(γθei ⊗ ei + (γr − γθ) er ⊗ er)

+ g

(
Dγθ
Dt

ei ⊗ ei +
D(γr − γθ)

Dt
er ⊗ er

)
+

1

2E

D

Dt
(3σ − tr(σ)I) ,

where tr(σ) denotes the trace operator of σ and I is the identity tensor.

Using (7), the trace of the constitutive relation (10) leads to

Dg

Dt
= ∇ · v. (10)

Upon substitution of this result into (10), the constitutive law reads

1

2

(
∇v + (∇v)T

)
= (∇ · v)(γθei ⊗ ei + (γr − γθ) er ⊗ er)

+ g

(
Dγθ
Dt

ei ⊗ ei +
D(γr − γθ)

Dt
er ⊗ er

)
+

1

2E

D

Dt
(3σ − tr(σ)I) . (11)

2.3. External medium

Because of assumption viii), the external medium satisfies Hooke’s law of an incompressible mate-

rial,

σeij = −pδij +
2E

3
eeij , (12)

where −p can be identified with isotropic pressure. Without loss of generality it is assumed that

lim
r→∞

p(r, t) = 0, then σeij = 0 when r →∞ [28]. In particular, the radial stress σr and the displace-

ment ui are supposed continuous at the tumor boundary r = R.



February 21, 2018 23:23 WSPC/WS-JMMB ws-jmmb

An anisotropic growth model for an avascular tumor based in linear elasticity 7

2.4. Growth equation

For a living tissue, growth can be interpreted as the difference between cell production and cell

death. Ignoring mechanical effects, using the mass conservation continuity equation and hypothesis

vi), we can write

∂ρ

∂t
+∇ · (vρ)︸ ︷︷ ︸
growth

= αcρ︸︷︷︸
cell proliferation

− kρ︸︷︷︸
cell death

, (13)

where α and k are positive numbers, which represent proliferation and death rates, respectively.

As was mentioned in the introduction, from a mechanical point of view, the stress plays an impor-

tant role in the regulation of cell proliferation and death. However, as result of the external tissue

displacement, the stress is accumulated while the tumor keeps growing and it could possibly delay

or even stop its growth. Then, the following alternative equation to (13) is considered

∂ρ

∂t
+∇ · (vρ)︸ ︷︷ ︸
growth

= αcρ(1− η1
√
σ:σ)︸ ︷︷ ︸

cell proliferation

− kρ(1 + η2
√
σ:σ)︸ ︷︷ ︸

cell death

, (14)

where η1, η2 ∈ R+ are constants representing the dependency of cell proliferation and death on

stress. The minus sign in the first term of the right-hand-side of (14) means that cell division is

inhibited by the presence of stress, whereas the plus sign in the second term of the right-hand-side

of (14) signifies that high stresses promote cell death. Equation (14) represents the relation between

tumor growth and stress and for η1 = η2 = 0 we recover the growth equation of Ngwa and Agyingi

(2012) [28] as a particular case.

Now, as a consequence of tumor incompressibility (assumption vi),

∂ρ

∂t
+ v · ∇ρ = ρ̇ = 0,

and substituting in (14), we obtain

∇ · v = αc(1− η1
√
σ:σ)− k(1 + η2

√
σ:σ). (16)

2.5. Nutrient concentration

The nutrient concentration variation is determined by nutrient diffusion through the tumor bound-

ary and its consumption by the tumor cells in the interior

nutrient variation = diffusion− consumption.

Following the steps in Ward and King (1997) [48], combining hypothesis v) with Fick’s law of

diffusion and the mass balance equation, yields

∂c

∂t
+∇ · (cv) = Dc∇2c︸ ︷︷ ︸

diffusion

− Ac
ρ0
cρ︸ ︷︷ ︸

consumption

, (18)

where c represents the nutrient concentration; Dc and Ac/ρ0 denote the constant diffusion coeffi-

cient and the nutrient consumption rate, respectively, while ρ0 is the density at the initial time.

Moreover, in the non-dimensionalization process it is shown that the left side of equation (18) has
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a magnitude of αcb, and because of the slow process of cell division, it is much smaller than the

magnitude of the right side. Hence, similarly as was done in Ngwa and Agyingi (2012) [28], and in

Ward and King (1997) [48] we have from Eq. (18)

Dc∇2c =
Ac
ρ0
cρ

= Acc because of tumor incompressibility. (19)

Equation (19) represents the nutrient concentration variation.

2.6. Non-dimensional form of the equations

It is convenient to introduce dimensionless variables. For this purpose, the following scaling con-

stants are defined

L ≡

√
Dc

(Ac/ρ0)ρ
, τ ≡ 1

αcb
, cb, ε ≡ k

αcb
,

which represent the length scale, time scale, constant nutrient concentration at the boundary, and

ratio between death and cell proliferation rates, respectively. Using asterisks to identify dimension-

less variables,

r∗ =
r

L
, σ∗ij =

σij
E
, p∗ =

p

E
, v∗r =

vr
αcbL

, t∗ =
t

τ
, c∗ =

c

cb
, ζ1 ≡ η1E, ζ2 ≡ η2E, (21)

where the physical quantities of mass [M ], length [L] and time [T ] in each one of the variables are:

ρ =
[M ]

[L]
3 , Dc =

[L]
2

[T ]
, Ac/ρ0 =

[L]
3

[M ][T ]
, k =

1

[T ]
, α =

1

[T ]
, E = σij = λ = p =

[M ]

[L][T ]
2 .

We non-dimensionalize equations (3), (5), (10), (11), (19) and (16) by means of the newly intro-

duced variables (cf. equation (21)). Therefore, taking into account radial symmetry and removing

asterisks for the sake of clarity, equation (3) remains without changes

dR

dt
= vr(R, t).

Equation (19) becomes

1

r2
∂

∂r

(
r2
∂c

∂r

)
= c, (24)

subject to the boundary conditions c = 1 at the tumor boundary and ∂c
∂r = 0 at r = 0, due to the

radial symmetry.

From (16), since v = (vr, 0, 0), we have

1

r2
∂

∂r
(r2vr) = c

(
1− ζ1

√
σ:σ

)
− ε
(
1 + ζ2

√
σ:σ

)
, (25)

subject to vr = 0 at r = 0.

From (5) the same equation holds. From (10) we obtain,(
∂

∂t
+ vr

∂

∂r

)
g = c

(
1− ζ1

√
σ:σ

)
− ε
(
1 + ζ2

√
σ:σ

)
. (26)



February 21, 2018 23:23 WSPC/WS-JMMB ws-jmmb

An anisotropic growth model for an avascular tumor based in linear elasticity 9

The only relevant component of (11) reads

∂vr
∂r

=
1

r2
∂

∂r
(r2vr)γr + g

Dγr
Dt

+
1

2

(
∂

∂t
+ vr

∂

∂r

)
(2σr − σθ − σφ), (27)

since the second and third equation in (11) are redundant with the first one when radial symmetry

is considered.

2.7. Further simplifications

The substitution c = q/r is made in (24), leading to an ordinary differential equation which is

solved for q. Then, the solution of (24) is

c(r, t) =
R sinh r

r sinhR
. (28)

Then, substituting (28) into (25),

∂vr
∂r

(r, t) =
R sinh(r)

r sinh(R)

(
1− ζ1

√
σ2
r(r, t) + 2σ2

θ(r, t)

)
− ε
(

1 + ζ2

√
σ2
r(r, t) + 2σ2

θ(r, t)

)
− 2

vr(r, t)

r
. (29)

In the same way, the subtitution of (28) in (26) leads to(
∂

∂t
+ vr

∂

∂r

)
g =

R sinh(r)

r sinh(R)

(
1− ζ1

√
σ2
r(r, t) + 2σ2

θ(r, t)

)
− ε
(

1 + ζ2

√
σ2
r(r, t) + 2σ2

θ(r, t)

)
. (30)

Moreover, using representation (8) in equations (5) and (27), they are rewritten as

∂σr
∂r

+
2β

r
= 0, (31)

g
Dγr
Dt

+

(
∂

∂t
+ vr

∂

∂r

)
β = 2

(
γθ
∂vr
∂r
− γr

vr
r

)
. (32)

In particular, substituting (9) in (32), we have(
∂

∂t
+ vr

∂

∂r

)
β = $, (33)

where

$ =
2

1 + 2ag eaβ

(eaβ+2)2

(
γθ
∂vr
∂r
− γr

vr
r

)
=

2

1 + 2ag eaβ

(eaβ+2)2

(
γθ
∂vr
∂r

+ (2γθ − 1)
vr
r

)

=
1

1 + 2ag eaβ

(eaβ+2)2

[
− eaβ

eaβ + 2

(
R sinh(r)

r sinh(R)

[
1− ζ1

√
σ2
r(r, t) + 2(σr(r, t)− β(r, t))2

]
− ε

[
1 + ζ2

√
σ2
r(r, t) + 2(σr(r, t)− β(r, t))2

])
+
∂vr
∂r

]
.

In order to solve equations (31) and (33), conditions for β and σr are needed. As in these equations

the only derivative of σr is the first spatial derivative in (31), we need a condition for σr over

a curve non-constant in time. But, (33) is a hyperbolic equation of first order for β, thus, even

when the condition β(r, 0) ≡ 0 is sufficient theoretically, for the numerical method explained later

conditions for β at the boundaries of its domain are required.
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1. The equations of the characteristic curves of (33) can be written as

dt

1
=
dr

vr
=
dβ

$
,

i.e.,

dβ

dt
= $ and

dr

dt
= vr.

Then, r = 0 is a characteristic of equation (33) and we obtain

dβ

dt
(0, t) = lim

r→0
$(r, t) = 0.

Therefore, the first boundary condition for β is

β(0, t) = 0. (35)

2. Condition for β at r = R:

In the same way as above, r = R correspond to the other characteristic of (33). So, by taking

dβ

dt
= $, for r = R, (36)

a characteristic curve is obtained and hence, the second boundary condition.

3. Condition for σr:

This condition may be determined if the constitutive equation (12) of the external medium is

used assuming stress continuity at the tumor boundary. Because of the spherical tumor sym-

metry, the displacement vector is u = (ur, 0, 0). Also, by the incompressibility of the external

medium (hypothesis viii),

tr(e) =
1

r2
∂

∂r
(r2ur) = 0,

leading to

ur =
A

r2
,

where A only dependes on t. Substituting this result in (12),
σer = −p+ 2

3e
e
r = −p− 4A

3r3

σeθ = σeφ = −p+ 2
3e
e
θ = −p− 2A

3r3

and from the equilibrium condition (4), we have p = constant and as for p∞ = 0, this implies

that p = 0.

Now, as the real initial radius of the tumor is zero, because at the very beginning of can-

cer appearance the tumor does not have any radius, then ur|r=R(t) = R(t), implying that

A = R3(t), and therefore

σr|r=R(t) = −4

3
. (40)
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2.8. Mathematical model

The mathematical model is given by equations (3), (29), (31) and (33), i.e., the final system of

equations to be solved is

dR

dt
(t) = vr(R, t), for t ∈ R+, (41)

∂vr
∂r

(r, t) =
R sinh(r)

r sinh(R)
[1− ζ1

√
σ2
r(r, t) + 2(σr(r, t)− β(r, t))2]− ε[1 + ζ2

√
σ2
r(r, t) + 2(σr(r, t)− β(r, t))2]

− 2
vr(r, t)

r
, for t ∈ R∗+ and r ∈ (0, R], (42)

∂σr
∂r

(r, t) = −2β

r
, for t ∈ R∗+ and r ∈ (0, R], (43)

∂g

∂t
(r, t) = −vr(r, t)

∂g

∂r
(r, t) +

R sinh(r)

r sinh(R)

(
1− ζ1

√
σ2
r(r, t) + 2(σr(r, t)− β(r, t))2

)
− ε

(
1 + ζ2

√
σ2
r(r, t) + 2(σr(r, t)− β(r, t))2

)
, for t ∈ R+ and r ∈ [0, R], (44)

∂β

∂t
(r, t) = −vr(r, t)

∂β

∂r
(r, t) +$(r, t), for t ∈ R∗+ and r ∈ [0, R], (45)

with

$(r, t) =
1

1 + 2ag(r, t) eaβ(r,t)

(eaβ(r,t)+2)2

[
− eaβ(r,t)

eaβ(r,t) + 2

(
R sinh(r)

r sinh(R)

[
1− ζ1

√
σ2
r(r, t) + 2(σr(r, t)− β(r, t))2

]
− ε

[
1 + ζ2

√
σ2
r(r, t) + 2(σr(r, t)− β(r, t))2

])
+
∂vr
∂r

]
, (46)

subject to initial and boundary conditions

R(0) = R0, (47)

vr(0, t) = 0, (48)

σr(R(t), t) = −4

3
, (49)

g(r, 0) = 1, (50)

β(r, 0) = 0. (51)

The initial condition for g is just an arbitrary value because of the lack of references. For the

numerical solution of g similar boundary conditions to those for β can be derived.

3. Results and discussion

The results of the mathematical model are presented in this section for two types of tumor

growth: a) anisotropic growth without growth-stress dependence and b) anisotropic growth with

growth-stress dependence. In particular, the influence of the parameters γθ and ζ1, accounting for

anisotropy and growth-stress dependence, respectively, on tumor growth behavior is studied. The

figures shown in this section contain dimensionless variables, so the results must be interpreted

only qualitatively. In particular, the following parameters are fixed: R0 = 1 and ε = 0.1 (ratio of

proliferation and death rate). In Montel et al. (2012) [27], it is shown that apoptosis induction by

compressive forces is much less than the effects of cell division inhibition. Hence, the parameter ζ2
in equation (14), accounting for the dependence of apoptosis on stress, is considered a few magni-

tude orders less than ζ1 (ζ1 represents the dependence of cell proliferation on stress). In particular,
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we assume that ζ2 = 10−2ζ1. The parameter a of the anisotropic growth term γθ, representing the

sensitivity of growth directions on stresses, is not fixed and will vary according to the simulations.

Parameter Value

R0 1

ε 0.1

a is specified in each simulation

ζ1 is specified in each simulation

ζ2 ζ1/100

Table 3: Parameters used for the numerical simulations.

3.1. Numerical methods

In order to solve the system (41)-(45), we use a combination of numerical methods. The modified

Euler method or Heun’s method [14] is used for (41). For equations (42) and (43) the trapezoids

method [15] is used after rewriting (42) and (43) in integral form. A modified Lax-Wendroff finite

difference scheme [21;28] is employed to calculate β in equation (45). As equation (44) for g has the

same structure of (45), the same method is employed.

In its original form, the Lax-Wendroff method [23] is applied to a fixed region in the space. But, by

including a modification in the second order approximation of the function, this is extended to a

variable integration region. The approximated solution is calculated at the points from the lattice

in the plane r × t defined by

ri = ih, i = 0, 1, 2, ..., imax,

tj = jk, j = 0, 1, 2, ..., jmax,

where h and k are the spatial and time steps size, respectively. The number of spatial points

imax + 1 is fixed. However, the step size h depends on time and it is calculated as h = R(t)/imax.

The Lax-Wendroff method consists in approximating β at the instant tj+1 by its Taylor series

expansion with respect to time evaluated at the instant tj

β(ri, tj+1) = β(ri, tj) +
∂β

∂t
(ri, tj)k +

∂2β

∂t2
(ri, tj)

k2

2
+O(k3), (52)

and then, using equation (45), the temporal derivatives are substituted by their spatial derivatives

∂β

∂t
= −vr

∂β

∂r
+$, (53)

∂2β

∂t2
= −∂vr

∂t

∂β

∂r
+ vr

∂vr
∂r

∂β

∂r
+ v2r

∂2β

∂r2
− vr

∂$

∂r
+
∂$

∂t
. (54)

But, points ri are not the same at each time instant because h depends on time. Then, the

approximation by the Taylor series of β at the point (r
(j+1)
i , tj+1) is given by

β(r
(j+1)
i , tj+1) = β(r

(j)
i + (R(tj+1)−R(tj))i/imax, tj + k)

≈ β(r
(j)
i , tj) +

∂β

∂r
(R(tj+1)−R(tj))

i

imax
+
∂β

∂t
(r

(j)
i , tj)k

+
∂2β

∂r2
(R(tj+1)−R(tj))

2 i2

2i2max
+
∂2β

∂r∂t
(R(tj+1)−R(tj))

i

imax
k
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+
∂2β

∂t2
(r

(j)
i , tj)

k2

2
. (55)

In the same way as in (52), the time derivatives in (55) must be substituted by formulas (53) and

(54), and the spatial derivatives of β are approximated by

∂β

∂r
(r

(j)
i , tj) =

β(r
(j)
i+1, tj)− β(r

(j)
i−1, tj)

2h
,

∂2β

∂r2
(r

(j)
i , tj) =

β(r
(j)
i+1, tj)− 2β(r

(j)
i , tj) + β(r

(j)
i−1, tj)

h2
.

The derivatives of vr and $ with respect to r and t can be approximated using a finite differences

scheme. It should be noted that approximation (55) is only true for the interior points of the region.

To calculate the solution at the boundary, equations (35) and (36) must be used.

Then, for each time instant tj , the order of the calculations is as follows. First,

σ(rji , tj), i = 0, imax,

is computed, and it is used to determine

vr(r
j
i , tj), i = 0, imax,

and after compute vr, R is evaluated at tj+1, and

β(rj+1
i , tj+1) and g(rj+1

i , tj+1) i = 0, imax,

are estimated at the same step.

An important feature of numerical methods is their stability, since it describes the propagation of

the errors of the results. As was specified above, the system (41)-(45) is composed of five coupled

and nonlinear differential equations. Thus, a rigorous study of the stability of the discrete solutions

is not easy. Here, we analyze each equation by separately assuming that we have the real values of

the other four functions. That is to say, if we want to explore the stability of the numerical method

used for equation (41) of R, the exact values of vr, σr, g, β are assumed known, and so on with

the other equations.

Following these considerations, the stability of the numerical method for the ordinary differen-

tial equation (41), given that the non homogeneous term is bounded, corresponds to a simpler

case of the stability test model from Farago (2013) [14]. Now, as equations (42) and (43) are com-

puted as integrals in well delimited intervals at each instant of time, there is no problem with their

stability. On the other hand, since in the equations for β and g appear terms of the form k/hj
with hj = R(tj)/imax, this suggests that an unsuitable selection of k and hj could result in a bad

behavior of the numerical method.

By substituting equations (53) and (54) and those of the partial derivatives of β in (55), we

obtain

β(r
(j+1)
i , tj+1) = β(rji , tj)

[
1− k2

h2j

(
(R(tj+1)−R(tj))

i

imax
− v(rji , tj)

)2
]

+ β(rji−1, tj)

[
k2

2h2j

(
(R(tj+1)−R(tj))

i

imax
− v(rji , tj)

)2
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− k

2hj

(
(R(tj+1)−R(tj))

i

imax
− v(rji , tj)

)
− k2

2hj

(
vr(r

j
i , tj)(R(tj+1)−R(tj))

i

imax
− v(rji , tj)vr(r

j
i , tj)− vt(r

j
i , tj)

2

)]

+ β(rji+1, tj)

[
k2

2h2j

(
(R(tj+1)−R(tj))

i

imax
− v(rji , tj)

)2

+
k

2hj

(
(R(tj+1)−R(tj))

i

imax
− v(rji , tj)

)
+

k2

2hj

(
vr(r

j
i , tj)(R(tj+1)−R(tj))

i

imax
− v(rji , tj)vr(r

j
i , tj)− vt(r

j
i , tj)

2

)]
,

+ k

[
$(rji , tj) + k

(
∂$

∂r
(rji , tj)(R(tj+1)−R(tj))

i

imax

+
∂$
∂t (rji , tj)− v(rji , tj)

∂$
∂r (rji , tj)

2

)]
, (56)

for 1 ≤ i ≤ imax − 1. Since the last term multiplied by k correponds to the non-homogeneous

part of the equation and it is bounded, it can be removed from the stability analisys [47]. Using the

change of variables

ξ =
k

2hj

(
(R(tj+1)−R(tj))

i

imax
− v(rji , tj)

)
,

equation (56) leads to

β(r
(j+1)
i , tj+1) = β(rji , tj)

(
1− 4ξ2

)
+β(rji−1, tj)

(
2ξ2 − ξ − kO(ξ)

)
+β(rji+1, tj)

(
2ξ2 + ξ + kO(ξ)

)
,(57)

for i = 1, imax − 1. Hence, k can be picked small enough that the signs of the multipliers of

β(rji−1, tj) and β(rji+1, tj) depend only on 2ξ2 − ξ and 2ξ2 + ξ, respectively. This is possible since

the functions in O(ξ) are bounded. Bearing this in mind, if ξ ∈ (−1/2, 0) then

1− 4ξ2 > 0, 2ξ2 − ξ < 0, 2ξ2 + ξ > 0,

and from equation (57)

max
1≤i≤imax−1

|β(rj+1
i , tj+1)| ≤ max

1≤i≤imax−1
|β(rji , tj)|(1− 4ξ2 + 2ξ + 2kO(ξ)) +O(k)

≤ max
1≤i≤imax−1

|β(rji , tj)|, since ξ ∈ (−1/2, 0).

On the other hand, if ξ ∈ (0, 1/2) then

1− 4ξ2 > 0, 2ξ2 − ξ > 0, 2ξ2 + ξ < 0,

and from equation (57) we obtain

max
1≤i≤imax−1

|β(rj+1
i , tj+1)| ≤ max

1≤i≤imax−1
|β(rji , tj)|(1− 4ξ2 − 2ξ − 2kO(ξ))

≤ max
1≤i≤imax−1

|β(rji , tj)|, since ξ ∈ (0, 1/2).

The case where ξ = 0 is trivial. So, following the criteria from Thomas (1995) [47], the conditions

ξ ∈ (−1/2, 1/2) and k small enough such that kO(ξ) does not have almost influence compared with

ξ are sufficient to guarantee the stability of the modified Lax-Wendroff scheme. For the boundary
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conditions of β, one of them is trivial and the other corresponds to the same above observation for

equation (41) of R.

Actually, for the simulations performed in the following section, a time step k = 0.03 with a

spatial partition of imax = 350 suffices. Moreover, in order to find vr a smaller spatial step size at

a vicinity of r = 0 is considered in order to increase the accuracy of the term vr/r in this region.

3.2. Isotropic and anisotropic growth without stress-dependence

Figure 1 shows the evolution of the tumor radius, with parameter values a = 0 and ζ1 = 0, describ-

ing isotropic growth without growth-stress dependence. In Fig. 1 it is observed that the velocity of

Fig. 1: Tumor radius evolution in the time interval [0, 81] considering isotropic growth without

growth-stress dependence.

the tumor radius is increasing at the begining and it presents an inflection point at t ≈ 10, where

the velocity diminishes, adopting a sigmoidal growth shape. This phenomenon could be explained

by the struggle of the tumor displacing the elastic and isotropic external medium in order to grow,

limiting the cell’s division capability and promoting apoptosis while it continues its expansion until

growth equilibrium is reached. In particular, Fig. 1 reproduces the growth described in Ngwa and

Agyingi (2012) [28] for the same set of parameter values. Since we are not considering dependence

of growth on stress, the radius distribution for different values of the parameter a, which is in

turn related to γθ, is unchanged. Therefore, anisotropy does not influences growth but it does

affect the stress distribution. In Fig. 2 the radial and transversal stresses at five fixed time instants

(t = 16, 32, 48, 65, 81) are shown, for the values of the parameter a = 0 and a = 1. The former

corresponds to isotropic growth, and the later accounts for anisotropic growth. The fact that al-

most all stresses are positive (tensile) near the origin could be the result of the cells dying in the

interior of the tumor. Due to this empty space left by the dying cells a force is generated dragging

the nearest cells to the center and therefore, stretching them. The negative stress (compressive) at

the boundary could be explained as a result of the elastic nature of the external medium pushing

the tumor surface in opposite direction to the expansive forces of the proliferating cells, and also,

product of the proliferating cells pushing itselves against each other.
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(a) Radial stress for a = 0 (solid) and a = 1 (dashed).

(b) Transversal stress for a = 0 (solid) and a = 1 (dashed).

Fig. 2: Radial and transversal stress at five fixed time instants (t = 16, 32, 48, 65, 80).

Moreover, Fig. 2 shows that radial and transversal stressess are much less tensile in the inte-

rior of the tumor for the parameter value a = 1 of the anisotropy term (dashed curves), and are

less compressive at the boundary than those from isotropic growth (solid curves). This behavior

implies that the parameter a, and so the anisotropic term, has a direct influence on the stress

distribution. In particular, the results in Fig. 2 for the isotropic formulation coincide with those

reported in Ngwa and Agyingi (2012) [28] (Fig. 1) and Jones et al. (2000) [21] (Fig. 6).

An interesting detail in Fig. 2 is that, at the center of the tumor, radial and transversal stresses

have exactly the same values. From a mathematical point of view, this is because by equation (43)

in order to ensure the existence of ∂σr/∂r in the solution domain, the function β = σr − σθ must

be zero at r = 0. From the experimental measurements in Stylianopoulos et al. 2012 [42] radial and

transversal stresses at the tumor center are observed to be extremely close between them. In the

present model, the difference between radial and transversal stresses increases with the distance

from the center of the tumor and also with time, for example, in Fig. 2 (a) and (b) solid yellow

curves start to differentiate prior to the solid blue curves. But in general they have a similar behav-
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ior, which is probably associated to the local linearity of the constitutive law. In the works dealing

with a locally linear constitutive law analogous profiles of the stresses are reported [6;21;28]. On the

other hand in those where nonlinear constitutive laws are considered, the radial and transversal

stresses are significantly different [3;35;43].

3.3. Isotropic and anisotropic stress-dependent growth

Until now, results were limited to the condition ζ1 = ζ2 = 0, i.e., growth without dependence on

stress. Figure 3 shows the tumor radius in the time interval [0, 81] as a function of (a) the parameter

a with ζ1 = 0.002 fixed, and (b) the growth stress-dependence parameter ζ1 for a = 1.

(a) Influence of anisotropy parameter on radius.

(b) Influence of growth-stress dependence parameter on radius.

Fig. 3: Tumor radius evolution for four different values of the parameters a and ζ1 within the time

interval [0, 81].

In Fig. 3 (a) the tumor radius increases with the increase in the anisotropy parameter a, and

the radius profile which corresponds to γθ = 0 is rapidly approached according to relatioship (9).

Then, the present study shows the importance of the anisotropy parameter γθ (when growth is
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stress dependent) in the tumor evolution. On the other hand, according to Fig. 3 (b), the parameter

ζ1 seems to play a major role in determining the magnitude of the tumor radius. Also, it seems

that there exists a value such that when ζ1 is greater than this number, there is no growth at all

(blue curve). This is due to the fact that an increase in ζ1 causes an increase in the role played

by the stress in limiting the cell proliferation (14). In fact, Fig. 3 (b) shows a regression of the

tumor. This kind of behavior has been reported in Challis and Stam (1990) [11], Ricci and Cerchiari

(2010) [37], and Roose et al. (2003) [38].

Now, in order to determine the influence of the parameters a and ζ1 in the tumor growth, simula-

tions were made in 320 equally spaced points in the rectangle [0, 10]× [0, 0. 5] (see Fig. 4).

(a) Distribution of the tumor radius reached at the instant t = 100.

(b) Distribution of the time instants at which the tumor radius
does not change onwards.

Fig. 4: Distributions based on the parameters a and ζ1 of anisotropy and growth-stress dependence,

respectively, in the region γθ, ζ1 ∈ [0, 10] × [0, 0. 5], for the time interval t ∈ [0, 100]. Warm colors

means higher values in the z axis and cold colors means lower values.
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In particular, in Fig. 4 (a), the tumor radius dependence on the parameter a is noted as was

expected according to Fig. 3. The influence of a is more visible for values of ζ1 near to zero, that

is the radius reaches higher values for small values of ζ1. On the other hand, although Fig. 4 (b)

seems chaotic, it can be distinguished that for values of ζ1 greater than 0. 35, the time instant at

which the tumor radius stabilizes is smaller compared with when ζ1 approaches to zero, where the

surface color turns yellow, because the time instant at which the tumor radius stabilizes increases.

In Fig. 3 (a) for a fixed value of ζ1 it is displayed that the tumor grows more when anisotropic

growth is considered. Fig. 5 shows the tumor growth for the same set of parameter values as in

Fig. 3 (b), except for a, which is set to 1, corresponding to the anisotropic case. It is observed

that the consideration of anisotropic growth, leads to larger tumor radius for different values of ζ1.

An explanation of this phenomenon could be that this type of anisotropic growth generates less

stress, allowing a higher rate of cell proliferation and a lower rate of cell death. In fact, Fig. 6 (a)

and (b) presents the radial and transversal stresses for the radius evolution (solid and dotted blue

lines) exhibited in Fig. 5 for five different times. In Fig. 6 (b) the dashed lines, which describe

Fig. 5: Radius evolution for four different values of the parameter ζ1 of growth-stress dependence at

the time interval [0, 81]. The solid lines describe the radius evolution when equation (9) is adopted.

The dot lines are the same from Fig. 3 (b).

transversal stress, are much less tensile in the tumor interior and less compressive near the tumor

boundary respect to the solid lines. A similar tendency and behavior is noticed in Fig. 6 (a), where

the radial stress generated with a = 1 is smaller than the one generated assuming isotropic growth,

i.e. for a = 0. These results make clear the stress relaxation consequences studied by Araujo and

McElwain (2005b) [8]. Moreover, the outcomes in Fig. 3 are in accordance with the explanation

that low stress levels imply higher tumor radius.

In all the simulations, the radial and tranversal stresses are positive in the tumor interior and

decrease as the distance from the center of the tumor increases until they reach negative values
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(a) Radial stress for a = 0 (solid) and a = 1 (dashed).

(b) Transversal stress for a = 0 (solid) and a = 1 (dashed).

Fig. 6: Radial and transversal stress at five time instants (t = 16, 32, 48, 65, 80).

(see Fig. 2 and Fig. 6). In principle, it may seem contradictory with the previous works from

Stylianopoulos et al. 2012 [42] and Stylianopoulos et al. 2013 [43] where experimental measurements

in ex-vivo conditions were done, and their results point out the existence of negative stresses in the

tumor interior and positive stresses at the tumor outer layer. But there are two main differences

between those studies and this one. The first one consists that the tumor modeled by Stylianopou-

los et al. 2012 [42], Stylianopoulos et al. 2013 [43] and the experimental measurements are made

in vascularized tumors whereas the present model deals with avascular tumor. The importance

of this feature can be observed in the work of Araujo and McElwain 2004 [6], where they model

an avascular tumor and obtain similar behavior of the stresses to the ones of this study. In other

work, Araujo and McElwain 2005 [7], considered the tumor vascularization only, and negative stress

distribution at the tumor interior were obtained. These evidences suggest that the experimental

observations of a vascularized tumor cannot be extrapolated to an avascular tumor. The second
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difference resides that in the mathematical model of Stylianopoulos et al. 2013 [43] the constitutive

equation is nonlinear whereas in the current study, as it was explained in Subsection 2.2, locally

the elastic response is linear with respect to the change in strain but globally is nonlinear because

of the convective effects. In Ramı́rez-Torres et al. [35], an avascular tumor is modeled with a locally

nonlinear constitutive law. In particular, negative radial stresses are obtained at the tumor cen-

ter if an anisotropic growth law is taken into account. Therefore, the locally nonlinearity of the

constitutive equation seems to be important too.

4. Conclusions

The presented model may be considered as a generalization of the work of Ngwa and Agyingi

(2012) [28], which is extended to anisotropic growth and the dependence of growth on stress. More-

over, Ngwa and Agyingi (2012) [28] model can be recovered as a particular case of the proposed

mathematical model in this work for specific values of the parameters a and ζ, assuming isotropic

growth and without stress dependence. One of the results of this study is the description of the

influence of the parameters on the final tumor radius via a parametric analysis, which highlights

the region characterized by the highest sensitivity to changes in the parameters. On the other

hand, when no growth-stress dependence was considered, significant stress distribution changes for

different values of the anisotropy parameter a were reached. In particular, the numerical results

agreed with those in Araujo and McElwain (2005b) [8]. Moreover, with growth-stress dependence,

several magnitude and types of radius evolution behavior were achieved for parameter variations

of growth stress-dependence ζ1 and the anisotropy parameter a, respectively. Once having estab-

lished the importance of anisotropic growth, the anisotropy parameter was considered as a stress

function, allowing a stress relaxation effect described in Araujo and McElwain (2005b) [8], where it

was shown that the effect of stress relaxation in growth leads to higher cell proliferation and lower

cells death rates. Hence, it can be established that under this model considerations, the cell pro-

liferation dependence on stress and the anisotropic growth nature are decisive mechanisms in the

tumor evolution. Further developments include the consideration of (a) heterogeneities (Ramı́rez-

Torres et al. (2017) [36]), (b) nonlinear rheology for the tumor (Ramı́rez-Torres et al. (2017) [35]),

(c) vascularization (Penta et al. (2015) [31], (2017) [33]).
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