71 research outputs found

    Graphical models in Macaulay2

    Full text link
    The Macaulay2 package GraphicalModels contains algorithms for the algebraic study of graphical models associated to undirected, directed and mixed graphs, and associated collections of conditional independence statements. Among the algorithms implemented are procedures for computing the vanishing ideal of graphical models, for generating conditional independence ideals of families of independence statements associated to graphs, and for checking for identifiable parameters in Gaussian mixed graph models. These procedures can be used to study fundamental problems about graphical models.Comment: Several changes to address referee comments and suggestions. We will eventually include this package in the standard distribution of Macaulay2. But until then, the associated Macaulay2 file can be found at http://www.shsu.edu/~ldg005/papers.htm

    Algebraic and combinatorial aspects of sandpile monoids on directed graphs

    Get PDF
    The sandpile group of a graph is a well-studied object that combines ideas from algebraic graph theory, group theory, dynamical systems, and statistical physics. A graph's sandpile group is part of a larger algebraic structure on the graph, known as its sandpile monoid. Most of the work on sandpiles so far has focused on the sandpile group rather than the sandpile monoid of a graph, and has also assumed the underlying graph to be undirected. A notable exception is the recent work of Babai and Toumpakari, which builds up the theory of sandpile monoids on directed graphs from scratch and provides many connections between the combinatorics of a graph and the algebraic aspects of its sandpile monoid. In this paper we primarily consider sandpile monoids on directed graphs, and we extend the existing theory in four main ways. First, we give a combinatorial classification of the maximal subgroups of a sandpile monoid on a directed graph in terms of the sandpile groups of certain easily-identifiable subgraphs. Second, we point out certain sandpile results for undirected graphs that are really results for sandpile monoids on directed graphs that contain exactly two idempotents. Third, we give a new algebraic constraint that sandpile monoids must satisfy and exhibit two infinite families of monoids that cannot be realized as sandpile monoids on any graph. Finally, we give an explicit combinatorial description of the sandpile group identity for every graph in a family of directed graphs which generalizes the family of (undirected) distance-regular graphs. This family includes many other graphs of interest, including iterated wheels, regular trees, and regular tournaments.Comment: v2: Cleaner presentation, new results in final section. Accepted for publication in J. Combin. Theory Ser. A. 21 pages, 5 figure

    Computing Maximum Likelihood Estimates for Gaussian Graphical Models with Macaulay2

    Full text link
    We introduce the package GraphicalModelsMLE for computing the maximum likelihood estimator (MLE) of a Gaussian graphical model in the computer algebra system Macaulay2. The package allows to compute for the class of loopless mixed graphs. Additional functionality allows to explore the underlying algebraic structure of the model, such as its ML degree and the ideal of score equations.Comment: 7 page

    Absolute concentration robustness: Algebra and geometry

    Full text link
    Motivated by the question of how biological systems maintain homeostasis in changing environments, Shinar and Feinberg introduced in 2010 the concept of absolute concentration robustness (ACR). A biochemical system exhibits ACR in some species if the steady-state value of that species does not depend on initial conditions. Thus, a system with ACR can maintain a constant level of one species even as the environment changes. Despite a great deal of interest in ACR in recent years, the following basic question remains open: How can we determine quickly whether a given biochemical system has ACR? Although various approaches to this problem have been proposed, we show that they are incomplete. Accordingly, we present new methods for deciding ACR, which harness computational algebra. We illustrate our results on several biochemical signaling networks.Comment: 44 page

    Counting arithmetical structures on paths and cycles

    Get PDF
    Let G be a finite, connected graph. An arithmetical structure on G is a pair of positive integer vectors d, r such that (diag(d)-A)r = 0, where A is the adjacency matrix of G. We investigate the combinatorics of arithmetical structures on path and cycle graphs, as well as the associated critical groups (the torsion part of the cokernels of the matrices (diag(d)-A)). For paths, we prove that arithmetical structures are enumerated by the Catalan numbers, and we obtain refined enumeration results related to ballot sequences. For cycles, we prove that arithmetical structures are enumerated by the binomial coefficients C(2n-1,n-1), and we obtain refined enumeration results related to multisets. In addition, we determine the critical groups for all arithmetical structures on paths and cycles

    3D Magnetotelluric Modeling Using High-Order Tetrahedral Nédélec Elements on Massively Parallel Computing Platforms

    Get PDF
    We present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral meshes, and high-performance computing (HPC). This implementation extends the PETGEM modeller capabilities, initially developed for active-source electromagnetic methods in frequency-domain. We assess the accuracy, robustness, and performance of the code using a set of reference models developed by the MT community in well-known reported workshops. The scale and geological properties of these 3D MT setups are challenging, making them ideal for addressing a rigorous validation. Our numerical assessment proves that this new algorithm can produce the expected solutions for arbitrarily 3D MT models. Also, our extensive experimental results reveal four main insights: (1) high-order discretizations in conjunction with tailored meshes can offer excellent accuracy; (2) a rigorous mesh design based on the skin-depth principle can be beneficial for the solution of the 3D MT problem in terms of numerical accuracy and run-time; (3) high-order polynomial basis functions achieve better speed-up and parallel efficiency ratios than low-order polynomial basis functions on cutting-edge HPC platforms; (4) a triple helix approach based on HEFEM, tailored meshes, and HPC can be extremely competitive for the solution of realistic and complex 3D MT models and geophysical electromagnetics in general.This project has been 65% cofinanced by the European Regional Development Fund (ERDF) through the Interreg V-A Spain–France– Andorra program (POCTEFA2014-2020). POCTEFA aims to reinforce the economic and social integration of the French–Spanish–Andorran border. Its support is focused on developing economic, social and environmental cross-border activities through joint strategies favoring sustainable territorial development. BSC authors received funding from the European Union’s Horizon 2020 programme, grant agreement N◦828947 and N◦777778, and from the Mexican Department of Energy, CONACYT-SENER Hidrocarburos grant agreement N◦B-S-69926

    3D magnetotelluric modeling using high-order tetrahedral Nédélec elements on massively parallel computing platforms

    Full text link
    We present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral meshes, and high-performance computing (HPC). This implementation extends the PETGEM modeller capabilities, initially developed for active-source electromagnetic methods in frequency-domain. We assess the accuracy, robustness, and performance of the code using a set of reference models developed by the MT community in well-known reported workshops. The scale and geological properties of these 3D MT setups are challenging, making them ideal for addressing a rigorous validation. Our numerical assessment proves that this new algorithm can produce the expected solutions for arbitrarily 3D MT models. Also, our extensive experimental results reveal four main insights: (1) high-order discretizations in conjunction with tailored meshes can offer excellent accuracy; (2) a rigorous mesh design based on the skin-depth principle can be beneficial for the solution of the 3D MT problem in terms of numerical accuracy and run-time; (3) high-order polynomial basis functions achieve better speed-up and parallel efficiency ratios than low-order polynomial basis functions on cutting-edge HPC platforms; (4) a triple helix approach based on HEFEM, tailored meshes, and HPC can be extremely competitive for the solution of realistic and complex 3D MT models and geophysical electromagnetics in general

    Parameter estimation for Boolean models of biological networks

    Get PDF
    Boolean networks have long been used as models of molecular networks and play an increasingly important role in systems biology. This paper describes a software package, Polynome, offered as a web service, that helps users construct Boolean network models based on experimental data and biological input. The key feature is a discrete analog of parameter estimation for continuous models. With only experimental data as input, the software can be used as a tool for reverse-engineering of Boolean network models from experimental time course data.Comment: Web interface of the software is available at http://polymath.vbi.vt.edu/polynome
    • …
    corecore