19 research outputs found

    A short in-frame deletion in NTRK1 tyrosine kinase domain caused by a novel splice site mutation in a patient with congenital insensitivity to pain with anhidrosis

    Get PDF
    Background: Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive genetic disease characterized by the lack of reaction to noxious stimuli and anhidrosis. It is caused by mutations in the NTRK1 gene, which encodes the high affinity tyrosine kinase receptor I for Neurotrophic Growth Factor (NGF). -- Case Presentation: We present the case of a female patient diagnosed with CIPA at the age of 8 months. The patient is currently 6 years old and her psychomotor development conforms to her age (RMN, SPECT and psychological study are in the range of normality). PCR amplification of DNA, followed by direct sequencing, was used to investigate the presence of NTRK1 gene mutations. Reverse transcriptase (RT)-PCR amplification of RNA, followed by cloning and sequencing of isolated RT-PCR products was used to characterize the effect of the mutations on NTRK1 mRNA splicing. The clinical diagnosis of CIPA was confirmed by the detection of two splice-site mutations in NTRK1, revealing that the patient was a compound heterozygote at this gene. One of these alterations, c.574+1G > A, is located at the splice donor site of intron 5. We also found a second mutation, c.2206-2 A > G, not previously reported in the literature, which is located at the splice acceptor site of intron 16. Each parent was confirmed to be a carrier for one of the mutations by DNA sequencing analysis. It has been proposed that the c.574+1G > A mutation would cause exon 5 skipping during NTRK1 mRNA splicing. We could confirm this prediction and, more importantly, we provide evidence that the novel c.2206-2A > G mutation also disrupts normal NTRK1 splicing, leading to the use of an alternative splice acceptor site within exon 17. As a consequence, this mutation would result in the production of a mutant NTRK1 protein with a seven aminoacid in-frame deletion in its tyrosine kinase domain. --Conclusions: We present the first description of a CIPA-associated NTRK1 mutation causing a short interstitial deletion in the tyrosine kinase domain of the receptor. The possible phenotypical implications of this mutation are discussed.This investigation was supported by the Instituto de Salud Carlos III and the Fundacion Vasca de Innovacion e Investigacion Sanitarias (funds to ES)

    Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications

    Full text link
    Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations.This work was supported by the Instituto de Salud Carlos III (ISCIII) of the Spanish Ministry of Health (FIS; PI16/00425 and PI19/00321), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER, 06/07/0036), IIS-FJD BioBank (PT13/0010/0012), Comunidad de Madrid (CAM, RAREGenomics Project, B2017/BMD-3721), European Regional Development Fund (FEDER), the Organización Nacional de Ciegos Españoles (ONCE), Fundación Ramón Areces, Fundación Conchita Rábago and the University Chair UAM-IIS-FJD of Genomic Medicine. Irene Perea-Romero is supported by a PhD fellowship from the predoctoral Program from ISCIII (FI17/00192). Ionut F. Iancu is supported by a grant from the Comunidad de Madrid (CAM, PEJ-2017-AI/BMD7256). Marta del Pozo-Valero is supported by a PhD grant from the Fundación Conchita Rábago. Berta Almoguera is supported by a Juan Rodes program from ISCIII (JR17/00020). Pablo Minguez is supported by a Miguel Servet program from ISCIII (CP16/00116). Marta Corton is supported by a Miguel Servet program from ISCIII (CPII17/00006). The funders played no role in study design, data collection, data analysis, manuscript preparation and/or publication decisions

    Mutational spectrum of the SPG4 (SPAST) and SPG3A (ATL1) genes in Spanish patients with hereditary spastic paraplegia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary Spastic Paraplegias (HSP) are characterized by progressive spasticity and weakness of the lower limbs. At least 45 loci have been identified in families with autosomal dominant (AD), autosomal recessive (AR), or X-linked hereditary patterns. Mutations in the <it>SPAST </it>(<it>SPG4</it>) and <it>ATL1 </it>(<it>SPG3A</it>) genes would account for about 50% of the ADHSP cases.</p> <p>Methods</p> <p>We defined the <it>SPAST </it>and <it>ATL1 </it>mutational spectrum in a total of 370 unrelated HSP index cases from Spain (83% with a pure phenotype).</p> <p>Results</p> <p>We found 50 <it>SPAST </it>mutations (including two large deletions) in 54 patients and 7 <it>ATL1 </it>mutations in 11 patients. A total of 33 of the <it>SPAST </it>and 3 of the <it>ATL1 </it>were new mutations. A total of 141 (31%) were familial cases, and we found a higher frequency of mutation carriers among these compared to apparently sporadic cases (38% vs. 5%). Five of the <it>SPAST </it>mutations were predicted to affect the pre-mRNA splicing, and in 4 of them we demonstrated this effect at the cDNA level. In addition to large deletions, splicing, frameshifting, and missense mutations, we also found a nucleotide change in the stop codon that would result in a larger ORF.</p> <p>Conclusions</p> <p>In a large cohort of Spanish patients with spastic paraplegia, <it>SPAST </it>and <it>ATL1 </it>mutations were found in 15% of the cases. These mutations were more frequent in familial cases (compared to sporadic), and were associated with heterogeneous clinical manifestations.</p

    A short in-frame deletion in NTRK1 tyrosine kinase domain caused by a novel splice site mutation in a patient with congenital insensitivity to pain with anhidrosis

    No full text
    Abstract Background Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive genetic disease characterized by the lack of reaction to noxious stimuli and anhidrosis. It is caused by mutations in the NTRK1 gene, which encodes the high affinity tyrosine kinase receptor I for Neurotrophic Growth Factor (NGF). Case Presentation We present the case of a female patient diagnosed with CIPA at the age of 8 months. The patient is currently 6 years old and her psychomotor development conforms to her age (RMN, SPECT and psychological study are in the range of normality). PCR amplification of DNA, followed by direct sequencing, was used to investigate the presence of NTRK1 gene mutations. Reverse transcriptase (RT)-PCR amplification of RNA, followed by cloning and sequencing of isolated RT-PCR products was used to characterize the effect of the mutations on NTRK1 mRNA splicing. The clinical diagnosis of CIPA was confirmed by the detection of two splice-site mutations in NTRK1, revealing that the patient was a compound heterozygote at this gene. One of these alterations, c.574+1G>A, is located at the splice donor site of intron 5. We also found a second mutation, c.2206-2 A>G, not previously reported in the literature, which is located at the splice acceptor site of intron 16. Each parent was confirmed to be a carrier for one of the mutations by DNA sequencing analysis. It has been proposed that the c.574+1G>A mutation would cause exon 5 skipping during NTRK1 mRNA splicing. We could confirm this prediction and, more importantly, we provide evidence that the novel c.2206-2A>G mutation also disrupts normal NTRK1 splicing, leading to the use of an alternative splice acceptor site within exon 17. As a consequence, this mutation would result in the production of a mutant NTRK1 protein with a seven aminoacid in-frame deletion in its tyrosine kinase domain. Conclusions We present the first description of a CIPA-associated NTRK1 mutation causing a short interstitial deletion in the tyrosine kinase domain of the receptor. The possible phenotypical implications of this mutation are discussed.</p

    Fine mapping and functional analysis of the multiple sclerosis risk gene CD6.

    Get PDF
    Journal Article;CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2(nd) SRCR domain with susceptibility to MS (P max(T) permutation = 1×10(-4)). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. - CD4(+) naïve cells, P = 0.0001; CD8(+) naïve cells, P<0.0001; CD4(+) and CD8(+) central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4(+) and CD8(+) T cells.This work was supported from the European Community’s Seventh Framework Programme [FP7/2007–2013] under grant agreement no. 212877 (UEPHA*MS; www.reem.es/uepha-ms/) and from the Gobierno Vasco (Grupos de Investigación del Sistema Universitario Vasco; ref. IT512-10). UEPHA*MS (No 2121877). Ministerio de Ciencia e Innovación - FEDER (SAF2009-11491) and FIS_FEDER (CP10/00526), Junta de Andalucía-FEDER (P07-CVI-02551).Ye

    Considerations on diagnosis and surveillance measures of PTEN hamartoma tumor syndrome : clinical and genetic study in a series of Spanish patients

    Get PDF
    Altres ajuts: European Regional Development Fund; Federación Española de Enfermedades Raras (FEDER); European Social Fund (ESF).Background: The limited knowledge about the PTEN hamartoma tumor syndrome (PHTS) makes its diagnosis a challenging task. We aimed to define the clinical and genetic characteristics of this syndrome in the Spanish population and to identify new genes potentially associated with the disease. Results: We reviewed the clinical data collected through a specific questionnaire in a series of 145 Spanish patients with a phenotypic features compatible with PHTS and performed molecular characterization through several approaches including next generation sequencing and whole exome sequencing (WES). Macrocephaly, mucocutaneous lesions, gastrointestinal polyposis and obesity are prevalent phenotypic features in PHTS and help predict the presence of a PTEN germline variant in our population. We also find that PHTS patients are at risk to develop cancer in childhood or adolescence. Furthermore, we observe a high frequency of variants in exon 1 of PTEN, which are associated with renal cancer and overexpression of KLLN and PTEN. Moreover, WES revealed variants in genes like NEDD4 that merit further research. Conclusions: This study expands previously reported findings in other PHTS population studies and makes new contributions regarding clinical and molecular aspects of PHTS, which are useful for translation to the clinic and for new research lines

    Challenges and new prospects in hepatosplenic γδ T-cell lymphoma.

    No full text
    Peripheral T-cell lymphomas (PTCLs) are a heterogeneous group of lymphoid neoplasms characterized by aggressive clinical behavior and dismal prognosis. Hepatosplenic γδ T-cell lymphoma (γδ-HSTL) is a particular form of PTCL that arises from a small subset of γ/δ T-cell receptor-expressing lymphocytes. γδ-HSTL has a rapidly progressive course and poor outcome due also to its refractoriness to conventional chemotherapy regimens. The very low incidence of γδ-HSTL, along with its propensity to mimic different pathological entities, makes this lymphoma a true diagnostic challenge. In this review, we highlight the biological and clinical features of γδ-HSTL that contribute to making this lymphoma a mostly incurable disease. Moreover, we provide a new insight into the crosstalk between HSTL clones and the bone marrow, liver and spleen vascular microenvironment, in which neoplastic cells reside and proliferate. We further discuss γδ-HSTL associated molecules that might be proposed as potential targets for novel therapeutic approaches

    X chromosome inactivation does not necessarily determine the severity of the phenotype in Rett syndrome patients

    Get PDF
    Rett syndrome (RTT) is a severe neurological disorder usually caused by mutations in the MECP2 gene. Since the MECP2 gene is located on the X chromosome, X chromosome inactivation (XCI) could play a role in the wide range of phenotypic variation of RTT patients; however, classical methylation-based protocols to evaluate XCI could not determine whether the preferentially inactivated X chromosome carried the mutant or the wild-type allele. Therefore, we developed an allele-specific methylation-based assay to evaluate methylation at the loci of several recurrent MECP2 mutations. We analyzed the XCI patterns in the blood of 174 RTT patients, but we did not find a clear correlation between XCI and the clinical presentation. We also compared XCI in blood and brain cortex samples of two patients and found differences between XCI patterns in these tissues. However, RTT mainly being a neurological disease complicates the establishment of a correlation between the XCI in blood and the clinical presentation of the patients. Furthermore, we analyzed MECP2 transcript levels and found differences from the expected levels according to XCI. Many factors other than XCI could affect the RTT phenotype, which in combination could influence the clinical presentation of RTT patients to a greater extent than slight variations in the XCI pattern
    corecore