41 research outputs found

    Galaxy and mass assembly (GAMA): The environmental impact on SFR and metallicity in galaxy groups

    Get PDF
    We present a study of the relationships and environmental dependencies between stellar mass, star formation rate, and gas metallicity for more than 700 galaxies in groups up to redshift 0.35 from the Galaxy And Mass Assembly (GAMA) survey. To identify the main drivers, our sample was analysed as a function of group-centric distance, projected galaxy number density, and stellar mass. By using control samples of more than 16 000 star-forming field galaxies and volume-limited samples, we find that the highest enhancement in SFR (0.3 dex) occurs in galaxies with the lowest local density. In contrast to previous work, our data show small enhancements of ∼0.1 dex in SFR for galaxies at the highest local densities or group-centric distances. Our data indicates quenching in SFR only for massive galaxies, suggesting that stellar mass might be the main driver of quenching processes for star forming galaxies. We can discard a morphological driven quenching, since the Sérsic index distribution for group and control galaxies are similar. The gas metallicity does not vary drastically. It increases ∼0.08 dex for galaxies at the highest local densities, and decreases for galaxies at the highest group-centric distances, in agreement with previous work. Altogether, the local density, rather than group-centric distance, shows the stronger impact in enhancing both, the SFR and gas metallicity. We applied the same methodology to galaxies from the IllustrisTNG simulations, and although we were able to reproduce the general observational trends, the differences between group and control samples only partially agree with the observations

    Galaxy and mass assembly (GAMA): The environmental impact on SFR and metallicity in galaxy groups

    Get PDF
    We present a study of the relationships and environmental dependencies between stellar mass, star formation rate, and gas metallicity for more than 700 galaxies in groups up to redshift 0.35 from the Galaxy And Mass Assembly (GAMA) survey. To identify the main drivers, our sample was analysed as a function of group-centric distance, projected galaxy number density, and stellar mass. By using control samples of more than 16 000 star-forming field galaxies and volume-limited samples, we find that the highest enhancement in SFR (0.3 dex) occurs in galaxies with the lowest local density. In contrast to previous work, our data show small enhancements of ∼0.1 dex in SFR for galaxies at the highest local densities or group-centric distances. Our data indicates quenching in SFR only for massive galaxies, suggesting that stellar mass might be the main driver of quenching processes for star forming galaxies. We can discard a morphological driven quenching, since the Sérsic index distribution for group and control galaxies are similar. The gas metallicity does not vary drastically. It increases ∼0.08 dex for galaxies at the highest local densities, and decreases for galaxies at the highest group-centric distances, in agreement with previous work. Altogether, the local density, rather than group-centric distance, shows the stronger impact in enhancing both, the SFR and gas metallicity. We applied the same methodology to galaxies from the IllustrisTNG simulations, and although we were able to reproduce the general observational trends, the differences between group and control samples only partially agree with the observations

    The state of art of the drought studies in Spain

    Get PDF
    Póster elaborado para el WCRP Workshop on Drought Predictability and Prediction in a Changing Climate celebrado en Barcelona del 2 al 4 de marzo de 201

    Epidemiology of traumatic spinal cord injury in Galicia, Spain: trends over a 20-year period

    Get PDF
    [Abstract] Study design: Observational study with prospective and retrospective monitoring. Objective: To describe the epidemiological and demographic characteristics of traumatic spinal cord injury (TSCI), and to analyze its epidemiological changes. Setting: Unidad de Lesionados Medulares, Complejo Hospitalario Universitario A Coruña, in Galicia (Spain). Methods: The study included patients with TSCI who had been hospitalized between January 1995 and December 2014. Relevant data were extracted from the admissions registry and electronic health record. Results: A total of 1195 patients with TSCI were admitted over the specified period of time; 76.4% male and 23.6% female. Mean patient age at injury was 50.20 years. Causes of injury were falls (54.2%), traffic accidents (37%), sports/leisure-related accidents (3.5%) and other traumatic causes (5.3%). Mean patient age increased significantly over time (from 46.40 to 56.54 years), and the number of cases of TSCI related to traffic accidents decreased (from 44.5% to 23.7%), whereas those linked to falls increased (from 46.9% to 65.6%). The most commonly affected neurological level was the cervical level (54.9%), increasing in the case of levels C1–C4 over time, and the most frequent ASIA (American Spinal Injury Association) grade was A (44.3%). The crude annual incidence rate was 2.17/100 000 inhabitants, decreasing significantly over time at an annual percentage rate change of −1.4%. Conclusions: The incidence rate of TSCI tends to decline progressively. Mean patient age has increased over time and cervical levels C1–C4 are currently the most commonly affected ones. These epidemiological changes will eventually result in adjustments in the standard model of care for TSCI

    Wind speed variability over the Canary Islands, 1948-2014: focusing on trend differences at the land-ocean interface and below-above the trade-wind inversion layer

    Get PDF
    This study simultaneously examines wind speed trends at the land?ocean interface, and below?above the trade-wind inversion layer in the Canary Islands and the surrounding Eastern North Atlantic Ocean: a key region for quantifying the variability of trade-winds and its response to large-scale atmospheric circulation changes. Two homogenized data sources are used: (1) observed wind speed from nine land-based stations (1981?2014), including one mountain weather station (Izaña) located above the trade-wind inversion layer; and (2) simulated wind speed from two atmospheric hindcasts over ocean (i.e., SeaWind I at 30 km for 1948?2014; and SeaWind II at 15 km for 1989?2014). The results revealed a widespread significant negative trend of trade-winds over ocean for 1948?2014, whereas no significant trends were detected for 1989?2014. For this recent period wind speed over land and ocean displayed the same multi-decadal variability and a distinct seasonal trend pattern with a strengthening (late spring and summer; significant in May and August) and weakening (winter?spring?autumn; significant in April and September) of trade-winds. Above the inversion layer at Izaña, we found a predominance of significant positive trends, indicating a decoupled variability and opposite wind speed trends when compared to those reported in boundary layer. The analysis of the Trade Wind Index (TWI), the North Atlantic Oscillation Index (NAOI) and the Eastern Atlantic Index (EAI) demonstrated significant correlations with the wind speed variability, revealing that the correlation patterns of the three indices showed a spatio-temporal complementarity in shaping wind speed trends across the Eastern North Atlantic.C. A. -M. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 703733 (STILLING project). This research was also supported by the Research Projects: Swedish BECC, MERGE, VR (2014–5320), PCIN-2015-220, CGL2014-52135-C03-01 and Red de variabilidad y cambio climático RECLIM (CGL2014-517221-REDT). M.M is indebted to the Spanish Government for funding through the “Ramón y Cajal” program and supported by Grant PORTIO (BIA2015-70644-R

    COSMO: Corrientes Marinas y Seguridad en el Medio Marino

    Get PDF
    Ejercicio internacional de salvamento y lucha contra la contaminación marina "Polex 24-17" organizado por la Dirección General de Marina Mercante y Salvamento Marítimo del 14 al 16 de junio de 2017 en SantanderDisponer en tiempo real de información sobre las corrientes oceánicas es clave para algunos de los servicios encomendados a la Sociedad de Salvamento y Seguridad Marítima y al Cuerpo Nacional de Policía (CNP). Un alto porcentaje de las emergencias de búsqueda de personas y náufragos, y de los incidentes de contaminación gestionados por Salvamento Marítimo, tienen lugar en zonas cercanas a la costa. Asimismo, el 71% de los casos de restos humanos no identificados (CSI) acontecidos en España durante el período 1968-2015 se da en zonas costeras. El proyecto COSMO busca mejorar la eficacia de las operaciones de búsqueda y de predicción de derivas, y mejorar la proporción de identificaciones positivas acelerando la resolución de casos de recuperación de restos humanosProyecto cofinanciado por el Ministerio de Economía Industria y Competitividad y Fondos FEDER de la UE (COSMO-CTM2016-79474-R, UE)Peer Reviewe
    corecore