20,433 research outputs found

    Video Prioritization for Unequal Error Protection

    Get PDF
    We analyze the effect of packet losses in video sequences and propose a lightweight Unequal Error Protection strategy which, by choosing which packet is discarded, reduces strongly the Mean Square Error of the received sequenc

    A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks

    Get PDF
    Analyzing land use and land cover (LULC) using remote sensing (RS) imagery is essential for many environmental and social applications. The increase in availability of RS data has led to the development of new techniques for digital pattern classification. Very recently, deep learning (DL) models have emerged as a powerful solution to approach many machine learning (ML) problems. In particular, convolutional neural networks (CNNs) are currently the state of the art for many image classification tasks. While there exist several promising proposals on the application of CNNs to LULC classification, the validation framework proposed for the comparison of different methods could be improved with the use of a standard validation procedure for ML based on cross-validation and its subsequent statistical analysis. In this paper, we propose a general CNN, with a fixed architecture and parametrization, to achieve high accuracy on LULC classification over RS data from different sources such as radar and hyperspectral. We also present a methodology to perform a rigorous experimental comparison between our proposed DL method and other ML algorithms such as support vector machines, random forests, and k-nearest-neighbors. The analysis carried out demonstrates that the CNN outperforms the rest of techniques, achieving a high level of performance for all the datasets studied, regardless of their different characteristics.Ministerio de EconomĂ­a y Competitividad TIN2014-55894-C2-1-RMinisterio de EconomĂ­a y Competitividad TIN2017-88209-C2-2-

    Tracking-Based Non-Parametric Background-Foreground Classification in a Chromaticity-Gradient Space

    Full text link
    This work presents a novel background-foreground classification technique based on adaptive non-parametric kernel estimation in a color-gradient space of components. By combining normalized color components with their gradients, shadows are efficiently suppressed from the results, while the luminance information in the moving objects is preserved. Moreover, a fast multi-region iterative tracking strategy applied over previously detected foreground regions allows to construct a robust foreground modeling, which combined with the background model increases noticeably the quality in the detections. The proposed strategy has been applied to different kind of sequences, obtaining satisfactory results in complex situations such as those given by dynamic backgrounds, illumination changes, shadows and multiple moving objects

    Real-time shot detection based on motion analysis and multiple low-level techniques

    Full text link
    To index, search, browse and retrieve relevant material, indexes describing the video content are required. Here, a new and fast strategy which allows detecting abrupt and gradual transitions is proposed. A pixel-based analysis is applied to detect abrupt transitions and, in parallel, an edge-based analysis is used to detect gradual transitions. Both analysis are reinforced with a motion analysis in a second step, which significantly simplifies the threshold selection problem while preserving the computational requirements. The main advantage of the proposed system is its ability to work in real time and the experimental results show high recall and precision values

    Towards Noncommutative Linking Numbers Via the Seiberg-Witten Map

    Get PDF
    In the present work some geometric and topological implications of noncommutative Wilson loops are explored via the Seiberg-Witten map. In the abelian Chern-Simons theory on a three dimensional manifold, it is shown that the effect of noncommutativity is the appearance of 6n6^n new knots at the nn-th order of the Seiberg-Witten expansion. These knots are trivial homology cycles which are Poincar\'e dual to the high-order Seiberg-Witten potentials. Moreover the linking number of a standard 1-cycle with the Poincar\'e dual of the gauge field is shown to be written as an expansion of the linking number of this 1-cycle with the Poincar\'e dual of the Seiberg-Witten gauge fields. In the process we explicitly compute the noncommutative 'Jones-Witten' invariants up to first order in the noncommutative parameter. Finally in order to exhibit a physical example, we apply these ideas explicitly to the Aharonov-Bohm effect. It is explicitly displayed at first order in the noncommutative parameter, we also show the relation to the noncommutative Landau levels.Comment: 19 pages, 1 figur

    Conditional t-SNE: Complementary t-SNE embeddings through factoring out prior information

    Get PDF
    Dimensionality reduction and manifold learning methods such as t-Distributed Stochastic Neighbor Embedding (t-SNE) are routinely used to map high-dimensional data into a 2-dimensional space to visualize and explore the data. However, two dimensions are typically insufficient to capture all structure in the data, the salient structure is often already known, and it is not obvious how to extract the remaining information in a similarly effective manner. To fill this gap, we introduce \emph{conditional t-SNE} (ct-SNE), a generalization of t-SNE that discounts prior information from the embedding in the form of labels. To achieve this, we propose a conditioned version of the t-SNE objective, obtaining a single, integrated, and elegant method. ct-SNE has one extra parameter over t-SNE; we investigate its effects and show how to efficiently optimize the objective. Factoring out prior knowledge allows complementary structure to be captured in the embedding, providing new insights. Qualitative and quantitative empirical results on synthetic and (large) real data show ct-SNE is effective and achieves its goal

    Phonemic errors with words but semantic errors with numbers: is number production special?

    Get PDF
    Paradoxically, brain-damaged people with impairments in the phonological output buffer produce phonemic paraphasias with content words (e.g., bitar-butter) but semantic paraphasias with number words (e.g., twenty five-thirty eight). This is known as the Stimulus Type Effect on Phonological and Semantic errors (STEPS). Explanations for this phenomenon consider that preassembled phonological representations exist for numbers but not for content words in the phonological output buffer. Here we explore two alternative hypotheses based on the existence of two methodological confounds: numbers are always presented in homogeneous blocks and words in heterogeneous blocks; number words are usually word sequences that are compared to single content-words. Two conduction aphasics took part in the study. Experiment 1 did not confirm the role of lists in causing the STEPS. Experiment 2 found more semantic paraphasias (compared to phonemic paraphasias) both in the repetition of multidigits (e.g., 673) and, more importantly, in the repetition of color word sequences (e.g., red-blue-green). The STEPS arises as consequence of differences in resource demands. Number words have not a special status in the phonological output buffer.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Kernel bandwidth estimation for moving object detection in non-stabilized cameras

    Get PDF
    The evolution of the television market is led by 3DTV technology, and this tendency can accelerate during the next years according to expert forecasts. However, 3DTV delivery by broadcast networks is not currently developed enough, and acts as a bottleneck for the complete deployment of the technology. Thus, increasing interest is dedicated to ste-reo 3DTV formats compatible with current HDTV video equipment and infrastructure, as they may greatly encourage 3D acceptance. In this paper, different subsampling schemes for HDTV compatible transmission of both progressive and interlaced stereo 3DTV are studied and compared. The frequency characteristics and preserved frequency content of each scheme are analyzed, and a simple interpolation filter is specially designed. Finally, the advantages and disadvantages of the different schemes and filters are evaluated through quality testing on several progressive and interlaced video sequences

    Extraordinary absorption of decorated undoped graphene

    Full text link
    We theoretically study absorption by an undoped graphene layer decorated with arrays of small particles. We discuss periodic and random arrays within a common formalism, which predicts a maximum absorption of 50%50\% for suspended graphene in both cases. The limits of weak and strong scatterers are investigated and an unusual dependence on particle-graphene separation is found and explained in terms of the effective number of contributing evanescent diffraction orders of the array. Our results can be important to boost absorption by single layer graphene due to its simple setup with potential applications to light harvesting and photodetection based on energy (F\"orster) rather than charge transfer.Comment: 5 pages, 3 figure
    • 

    corecore