
Research Article
Towards Noncommutative Linking Numbers via
the Seiberg-Witten Map

H. García-Compeán,1 O. Obregón,2 and R. Santos-Silva2

1Departamento de Fı́sica, Centro de Investigación y de Estudios Avanzados del IPN, P.O. Box 14-740, 07000 Mexico City, DF, Mexico
2Departamento de Fı́sica, DCI, Universidad de Guanajuato, 37150 León, GTO, Mexico

Correspondence should be addressed to R. Santos-Silva; rsantos@fisica.ugto.mx

Received 3 July 2015; Revised 13 September 2015; Accepted 15 September 2015

Academic Editor: Giovanni Amelino-Camelia
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Some geometric and topological implications of noncommutative Wilson loops are explored via the Seiberg-Witten map. In the
abelian Chern-Simons theory on a three-dimensional manifold, it is shown that the effect of noncommutativity is the appearance
of 6𝑛 new knots at the 𝑛th order of the Seiberg-Witten expansion.These knots are trivial homology cycles which are Poincaré dual to
the higher-order Seiberg-Witten potentials. Moreover the linking number of a standard 1-cycle with the Poincaré dual of the gauge
field is shown to be written as an expansion of the linking number of this 1-cycle with the Poincaré dual of the Seiberg-Witten gauge
fields. In the process we explicitly compute the noncommutative “Jones-Witten” invariants up to first order in the noncommutative
parameter. Finally in order to exhibit a physical example, we apply these ideas explicitly to the Aharonov-Bohm effect. It is explicitly
displayed at first order in the noncommutative parameter; we also show the relation to the noncommutative Landau levels.

1. Introduction

Noncommutativity of spacetime has strongly attracted the
attention in the last two decades (see, e.g., [1, 2]). In a
remarkable paper by Seiberg andWitten [3], they showed that
open string theory in the specific limit of small volume, non-
vanishing 𝐵-field and 𝛼

󸀠

→ 0, the amplitudes with constant
open string metric 𝐺 and noncommutativity parameter Θ,
gives precisely a (Connes-style [4]) noncommutative gauge
theory. In this context, this theory can be rewritten in terms
of the commutative one through a field redefinition known as
the Seiberg-Witten map [3].

Under such a map gauge fields are written as an infinite
series on the noncommutative parameter Θ

𝜇] ([𝑥
𝜇
, 𝑥]] =

Θ
𝜇] where 𝑥

𝜇
are the noncommutative coordinates of the

spacetime). To every order (in Θ) the gauge field can be
determined in terms of the usual (commutative) gauge field.
The addition of higher-derivative terms does not spoil gauge
invariance since the noncommutative gauge group action on
the space of noncommutative connections is such that the
quotient is isomorphic to the corresponding quotient in the
commutative case. This construction was realized explicitly

for pure gauge fields. Later this construction was extended
to the nonabelian case and coupled to matter fields [5–7].
This proposal has been studied widely in the literature and
used for noncommutative gauge invariance extensions of the
standard model and gravity (see, e.g., [8–11]). In the case
of the gravity such extension gave rise in a natural way to
topological invariants such as the Euler characteristic and the
signature with explicit computations in [12, 13].

It is well known that the Wilson lines and loops are very
useful in the description and computation of some nonper-
turbative aspects of gauge theory just as confinement [14]. In
the context of string theory noncommutative Wilson loops
have been studied within the correspondence gauge/gravity
duality in [15–19]. In [20], in noncommutative gauge theories,
Wilson lines were studied through the Schwinger-Dyson
equations of correlation functions of Wilson lines. In field
theory on a noncommutative two-dimensional torus the cor-
relators of Wilson line operators were determined [21]. Also
in the two-dimensional plane within a perturbative expan-
sion (in Θ and in 1/Θ-expansion), the nonplanar correlation
functions of Wilson loops were obtained and the mixing
UV/IR was consistently regularized [22, 23]. Wilson loops
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also were studied in the twisted covariant noncommutative
field theory. In particular their correlation functions, Morita
duality, and the area-preserving diffeomorphisms actionwere
examined in this context in [24, 25]. In [26], it was observed
that, in a gauge theory on the noncommutative plane, the
area-preserving diffeomorphisms symmetry is nonperturba-
tively broken.

Noncommutative gauge theories have very striking topo-
logical and geometrical features. For instance, in string
theory, in the absence of 𝐵-field, the instanton equation 𝐹

+

=

0 is exact in 𝛼
󸀠 as the instanton shrinks, and this small

instanton becomes a singularity of its moduli space. For
nonvanishing 𝐵-field and nonsmall volume, the singularity is
resolved and absent from themoduli space.This space defines
precisely the moduli space of noncommutative instantons
[27]. It is worth mentioning that recently in [28] some geo-
metrical implications of the Seiberg-Witten map in Chern-
Simons and gravity were discussed. Some useful comments of
noncommutative Chern-Simons theory can be found in [29].
Some connections with the Seiberg-Witten equations are
described in [30–32]. The consideration of some topological
aspects of the noncommutative Wilson lines in the Seiberg-
Witten limit is discussed in [33]. Other aspects of topological
nature in noncommutative gauge theory were discussed in
[34].

TheWilson loops possess by themselves some interesting
geometrical and topological properties; for example, in the
abelian case, they can be regarded in terms of the linking
number [35]. On the other hand Wilson loops are also
useful for the description of knots and link invariants. In
[36] Jones polynomials were reproduced and generalized by
computing correlation functions of products of Wilson loops
using Chern-Simons action in the path integral formalism.
Essentially the computations throw topological invariants
since the action, observables, and measure do not depend
on the metric for Chern-Simons theories and their higher-
dimensional generalization known as BF theories [37–39].
Linking numbers in BF theories were examined in [37–41].

In the present work we explore some geometrical and
topological aspects based on the previous ideas but immersed
in a noncommutative space using the Wilson lines con-
structed by means of the gauge field provided by the Seiberg-
Wittenmap.As ourmain result, wewill see that in this context
it is possible to establish a correspondence between the terms
of a power series (in the noncommutative parameter Θ)
contained within the phase of a noncommutative Wilson
loop. Each term of the series in Θ has associated various
linking numbers, such that, at the 𝑛th term of the expansion,
there will arise 6

𝑛 extra linking numbers. All these extra
terms correspond to new homology cycles generated by the
nonvanishing parameter Θ.

The linking number is ordinarily a topological invariant;
now the noncommutative linking numbers considered here
will represent a topological invariant of the corresponding
more general noncommutative topology. Thus, the arising
extra terms and their involved mathematical structures
deserve a detailed mathematical and physical interpretation
and further analysis. In the present paper we will restrict our-
selves to compute the first order noncommutative corrections

to the linking numbers.This should be considered a first step
of a description of the subject.

To explore how the modifications to topology of knots
are immersed on the noncommutative space, we consider
the abelian Jones-Witten polynomials in the path integral
formalism which are given in terms of Wilson loops. We
will show explicitly that the polynomials are changed due
to noncommutativity already at the first order; there will be
a nonvanishing and nontrivial modification of the linking
numbers due the noncommutative generalization of the
notion of topology.

In order to explore our proposal in a more detailed way
we consider the application of the noncommutative Wilson
loops to the Aharonov-Bohm effect. Some literature on the
noncommutative Aharonov-Bohm effect and its relation to
the Landau levels can be found in [42–47].

It is worth mentioning that the Wilson loops have been
used in the description of some quantum theories of gravity.
Some of these results can be found in [48–51]. The results
found in the present paper would be applied also for this kind
of theories.

This paper is structured as follows. In Section 2 we
overview the Seiberg-Witten map and set the notation and
conventions that we will follow along the paper. Section 3 is
devoted to constructing the noncommutative Wilson loops
based on the gauge field of the Seiberg-Witten map. In
Section 4 we introduce the linking numbers; first in order
to explore the geometrical properties of noncommutative
Wilson loops we use basic ideas of Poincaré duality and inter-
pret higher-order powers in the Seiberg-Witten expansion in
terms of the arising new linking numbers. In Section 5 we
compute the abelian Jones-like polynomials using the path
integral formalism through the Chern-Simons functional
up to first order in the noncommutative parameter. As a
physical application, in Section 6 we explore the abelian
noncommutative Aharonov-Bohm effect by means of the
gauge field of the Seiberg-Witten map. The noncommutative
Aharonov-Bohm effect is a very interesting physical example
in which the noncommutativity could be relevant. It has
known effects already described in the literature [42–47].
Moreover it has a relation with the noncommutative Landau
levels. We will find that our results are consistent with these
mentioned results. Section 7 is devoted to final remarks.

2. The Seiberg-Witten Map

Our aim is not to provide an extensive review on the Seiberg-
Witten map [3] but to only recall the relevant structure which
will be needed in the following sections. Throughout this
paper wewill follow the notation and conventions introduced
in [7].

We are interested in noncommutativity utilizing the
Seiberg-Witten map [3]. This proposal was extended in [5–
7] for any gauge field coupled to matter. In the following we
present a brief description of this construction.

The central idea is to deform the algebraic structure of
continuous spaces in particular the polynomials in 𝑁 vari-
ables generated by powers of 𝑥𝐼 where 𝐼 = 0, . . . , 𝑁, which
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is a freely generated algebra C[𝑥
1

, . . . , 𝑥
𝑁

]. Now consider the
usual commutations relations between the coordinates

[𝑥
𝜇

, 𝑥
]
] = 0. (1)

This algebraic structure will be deformed assuming

[𝑥
𝜇

, 𝑥
]
] = 𝑖Θ

𝜇]
, (2)

where Θ
𝜇]

= −Θ
]𝜇

∈ R; that is, Θ𝜇] is the noncommutative
parameter and 𝑥 are the noncommutative coordinates (as we
can see this algebra is similar to the Heisenberg algebra in the
phase space); for a formal description see [7].

Explicitly this modifies the way we multiply polynomials
and in general functions over the noncommutative variables
in terms of the commutative variables through the Moyal ⋆-
product defined by

𝑓 ⋆ 𝑔 (𝑥) = 𝜇 (𝑒
(𝑖/2)Θ

𝜌𝜎
𝜕𝜌⊗𝜕𝜎𝑓 ⊗ 𝑔) , (3)

where 𝜇 is the productmap defined by 𝜇(𝑓(𝑥)⊗𝑔(𝑥)) = 𝑓(𝑥)⋅

𝑔(𝑥).

In this context the gauge transformations of a matter field
Ψ(𝑥) are defined as

𝛿
Λ
Ψ (𝑥) = 𝑖Λ ⋆ Ψ (𝑥) , (4)

where Λ(𝑥) is the noncommutative gauge parameter which
is Lie algebra-valued; that is, Λ(𝑥) = Λ

𝑎

(𝑥)𝑇
𝑎. Now let us

compute explicitly the following variation of the field Ψ:

(𝛿
Λ 1

𝛿
Λ 2

− 𝛿
Λ 1

𝛿
Λ 2

)Ψ = (Λ
1
⋆ Λ

2
− Λ

2
⋆ Λ

1
) ⋆ Ψ

=
1

2
([Λ

𝑎

1

⋆
, Λ

𝑏

2
] {𝑇

𝑎

, 𝑇
𝑏

} + {Λ
𝑎

1

⋆
, Λ

𝑏

2
} [𝑇

𝑎

, 𝑇
𝑏

])

⋆ Ψ.

(5)

It is worth mentioning that the fields are not Lie algebra-
valued because not only do we have commutators but also
we have anticommutators. So the algebra that posses both
operations (commutators and anticommutators) is precisely
the Universal Enveloping Algebra.

The covariant derivative is defined by

𝐷
⋆

𝜇
Ψ (𝑥) = 𝜕

𝜇
Ψ (𝑥) − 𝑖𝐴

𝜇
⋆ Ψ (𝑥) , (6)

where 𝐴
𝜇
is the noncommutative gauge field and transforms

as

𝛿
Λ
𝐴

𝜇
= 𝜕

𝜇
Λ + 𝑖 [Λ

⋆
, 𝐴

𝜇
] . (7)

We can see that these terms have infinity many degrees
of freedom, but in [3] it was shown that all the higher-
order terms depend only on the zeroth order terms (the
commutative term), that is, of the gauge parameter Λ

(0)𝑎

𝑇
𝑎

and the gauge field 𝐴
(0)𝑎

𝜇
𝑇
𝑎. Let us assume that the gauge

parameter Λ
𝛼
depends only on 𝛼 and 𝐴

𝜇
, that is, the

gauge parameter and the gauge field, respectively. With these

assumptions borne inmind, let us substitute in expression (5);
then we have

Λ
𝛼
⋆ Λ

𝛽
− Λ

𝛽
⋆ Λ

𝛼
+ 𝑖 (𝛿

𝛼
Λ

𝛽
− 𝛿

𝛽
Λ

𝛼
) = 𝑖Λ

−𝑖[𝛼,𝛽]
. (8)

This expression could be solved perturbatively assuming an
expansion in the parameterΘ asΛ

𝛼
= Λ

(0)

𝛼
+Λ

(1)

𝛼
+⋅ ⋅ ⋅ , where

Λ
(0)

𝛼
= 𝛼 = 𝛼

𝑎

𝑇
𝑎.

For example, up to first order in Θ, we find the following
expression:

𝛿
𝛼
Λ
(1)

𝛽
− 𝛿

𝛽
Λ
(1)

𝛼
− 𝑖 [𝛼, Λ

(1)

𝛽
] − 𝑖 [Λ

(1)

𝛼
, 𝛽] − Λ

(1)

−𝑖[𝛼,𝛽]

= −
1

2
Θ

𝜇]
{𝜕

𝜇
𝛼, 𝜕]𝛽} ,

(9)

whose solution is Λ
(1)

𝛼
= 𝛼 − (1/4)Θ

𝜇]
{𝐴

𝜇
, 𝜕]𝛼}. With this

expression we can compute in a similar way the expression
for matter fields assuming the transformation at 0-th order
𝛿
𝛼
Ψ

(0)

= 𝑖𝛼Ψ
(0).

For the gauge field we expand again in orders ofΘ as𝐴 =

𝐴
(0)

+ 𝐴
(1)

+ 𝐴
(2)

+ ⋅ ⋅ ⋅ and substituting it into (7), up to first
order in Θ, we obtain

𝐴
(1)

𝜇
=

1

4
Θ

𝜌𝜎

({𝐹
𝜌𝜇

, 𝐴
𝜎
} − {𝐴

𝜌
, 𝜕

𝜎
𝐴

𝜇
}) . (10)

Finally the field strength tensor is given by 𝐹
⋆

𝜇] = 𝑖[𝐷
⋆

𝜇

⋆
, 𝑑

⋆

] ],
whose solution up to first order is

𝐹
𝜇] = 𝐹

𝜇] +
1

4

⋅ Θ
𝜌𝜎

(2 {𝐹
𝜌𝜇

, 𝐹
𝜎]} + {𝐷

𝜌
𝐹
𝜇], 𝐴𝜎

} − {𝐴
𝜌
, 𝜕

𝜎
𝐹
𝜇]}) .

(11)

Here we can identify 𝐹
(0)

𝜇] = 𝐹
𝜇] and 𝐹

(1)

𝜇] =

(1/4)Θ
𝜌𝜎

(2{𝐹
𝜌𝜇

, 𝐹
𝜎]} + {𝐷

𝜌
𝐹
𝜇], 𝐴𝜎

} − {𝐴
𝜌
, 𝜕

𝜎
𝐹
𝜇]}).

3. Noncommutative Wilson Loops

The usual Wilson loop is given by the following expression:

𝑊(𝐶) = Tr𝑃 exp(
𝑖

ℏ
∫
𝐶

𝐴) , (12)

where𝐴 = 𝐴
𝑎

𝜇
𝑡
𝑎

𝑑𝑥
𝜇, with 𝑡

𝑎 being the Lie algebra generators;
then the Wilson loop is an element of the Lie group and
an element of the holonomy. An extension to the noncom-
mutative case was proposed in a straightforward manner
using the Moyal product in [30, 32]. In this work we make
use of the gauge field present in the Seiberg-Witten map
in order to construct the corresponding noncommutative
Wilson loop. This leads to change in the connection 𝐴 by
𝐴 which possesses an expansion in powers in Θ given by
𝐴 = 𝐴

(0)

+𝐴
(1)

+𝐴
(2)

+⋅ ⋅ ⋅ and every𝐴
(𝑖) is expanded in terms

of the usual 1-form basis; that is, 𝐴(𝑖)

= 𝐴
(𝑖)

𝜇
𝑑𝑥

𝜇; the Wilson
loop corresponding to the Seiberg-Witten map is given by

𝑊̂ (𝐶) = Tr𝑃 exp
⋆
(
𝑖

ℏ
∫
𝐶

𝐴) . (13)
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For Chern-Simons (our case of interest) it was shown in [28]
that the same formulae apply for the Seiberg-Witten map.
Further developments for higher-order computations of the
Seiberg-Witten map can be found in [52].

The ⋆-exponential is defined as

Tr exp
⋆
(
𝑖

ℏ
∫
𝐶

𝐴)

= 1 +
𝑖

ℏ
∫
𝐶

Tr𝐴 (𝑥)

+
𝑖
2

ℏ22!
∫
𝐶

∫
𝐶

Tr (𝐴 (𝑥) ⋆ 𝐴 (𝑦))

+
𝑖
3

ℏ33!
∫
𝐶

∫
𝐶

∫
𝐶

Tr (𝐴 (𝑥) ⋆ 𝐴 (𝑦) ⋆ 𝐴 (𝑧))

+ ⋅ ⋅ ⋅ ,

(14)

where we are assuming the integration order 𝑥 < 𝑦 < 𝑧 < ⋅ ⋅ ⋅ ,
with 𝑥, 𝑦, 𝑧, . . . ∈ C.

3.1. Abelian Case. For the abelian case theWilson loop can be
written as follows:

𝑊̂ (𝐶) = exp
⋆
(
𝑖

ℏ
∫
𝐶

𝐴) = exp
⋆
(
𝑖

ℏ
∫
𝐶

𝐴
(0)

)

⋅ exp
⋆
(
𝑖

ℏ
∫
𝐶

𝐴
(1)

) exp
⋆
(
𝑖

ℏ
∫
𝐶

𝐴
(2)

) ⋅ ⋅ ⋅ .

(15)

Thenwe can compute explicitly theWilson loop up to second
Θ order. We can see that it is necessary to expand the first
three exponentials:

𝑊̂ (𝐶) ≈ exp
⋆
(
𝑖

ℏ
∫
𝐶

𝐴
(0)

)

⋅ exp
⋆
(
𝑖

ℏ
∫
𝐶

𝐴
(1)

) exp
⋆
(
𝑖

ℏ
∫
𝐶

𝐴
(2)

) .

(16)

It is easy to check that the exponential exp
⋆
((𝑖/ℏ) ∫

𝐶

𝐴
(𝑗)

) up
to order 2𝑗 + 1 is given by

exp
⋆
(
𝑖

ℏ
∫
𝐶

𝐴
(𝑗)

) = 1 +
𝑖

ℏ
∫
𝐶

𝐴
(𝑗)

+
𝑖
2

2!ℏ2

⋅ ∫
𝐶×𝐶

𝐴
(𝑗)

⋆ 𝐴
(𝑗)

+
𝑖
3

3!ℏ3
∫
𝐶×𝐶×𝐶

𝐴
(𝑗)

⋆ 𝐴
(𝑗)

⋆ 𝐴
(𝑗)

+ ⋅ ⋅ ⋅ ≈ exp(
𝑖

ℏ
∫
𝐶

𝐴
(𝑗)

)

⋅ [1 +
𝑖
2

2!ℏ2

𝑖

2
Θ

𝜇]
𝜕
𝜇
∫
𝐶

𝐴
(𝑗)

⋅ 𝜕] ∫
𝐶

𝐴
(𝑗)

] .

(17)

The second term vanishes in virtue of the abelianity and the
skew symmetry of Θ𝜇]; thus the second order Wilson loop is
given by

𝑊̂ (𝐶) ≈ exp (
𝑖

ℏ
∫
𝐶

𝐴
(0)

) [1 +
𝑖

ℏ
∫
𝐶

𝐴
(1)

+
𝑖

ℏ
∫
𝐶

𝐴
(2)

+
1

2!
(
𝑖

ℏ
)

2

∫
𝐶

𝐴
(1)

∫
𝐶

𝐴
(1)

] = exp (
𝑖

ℏ
𝛼
0
) [1

+
𝑖

ℏ
Θ𝛼

1
+

𝑖

ℏ
Θ

2

𝛼
2
+

1

2!
(
𝑖

ℏ
)

2

Θ
2

𝛼
1
𝛼
1
] .

(18)

As an example let us compute 𝑊̂(𝐶) assuming a pure
constant magnetic field along the 𝑧-axis 𝐵⃗ = 𝐵

0
𝑘̂ and 𝐶 = 𝑆

1

in the 𝑥 − 𝑦 plane; hence 𝐴
0

1
= −(𝐵

0
/2)𝑦 and 𝐴

0

2
= (𝐵

0
/2)𝑥;

thus

𝛼
0
= ∫

𝐶

𝐴
(0)

𝜇
𝑑𝑥

𝜇

=
𝐵
0

2
(2𝜋) = 𝜙,

Θ𝛼
1
= ∫

𝐶

𝐴
(1)

𝜇
𝑑𝑥

𝜇

=
3

4
𝐵
2

0
(2𝜋)Θ

12

=
3

2𝜋
𝜙
2

Θ
12

,

Θ
2

𝛼
2
= ∫

𝐶

𝐴
(2)

𝜇
𝑑𝑥

𝜇

=
1

2
𝐵
3

0
(2𝜋) (Θ

12

)
2

=
4

(2𝜋)
2
𝜙
3

(Θ
12

)
2

,

(19)

where 𝜙 is the flux due to the commutative field through the
closed curve𝐶. Now up to second order the noncommutative
Wilson line is given by

𝑊̂ (𝐶) ≈ exp(
𝑖

ℏ
𝛼
0
)(1 + Θ

𝑖

ℏ
𝛼
1

+ Θ
2

[
𝑖

ℏ
𝛼
2
+

1

2
(
𝑖

ℏ
)

2

𝛼
2

1
]) = exp(

𝑖

ℏ

𝐵
0

2
(2𝜋)) (1

+
𝑖

ℏ
Θ

12

[
3

4
𝐵
0
(2𝜋)]

+
1

2

𝑖

ℏ
(Θ

12

)
2

[(2𝜋) 𝐵
3

0
+

𝑖

ℏ
(
3

4
𝐵
2

0
)

2

(2𝜋)
2

]) .

(20)

Therefore, as we might expect, to observe noncommutativity
effects assumingΘ ≪ 1we need the intensity of themagnetic
field 𝐵

0
to be large enough.

4. Linking Numbers and the Wilson Loops

It is well known that on a three-manifold 𝑀 = 𝑆
3 or R3 the

magnetic field induced by a loop wire carrying a current is
proportional to the linking number between the loop and the
magnetic lines, due to the Biot-Savart law (which is essentially
the Gauss linking number). This is written usually as

Φ = ∫
Σ

𝐹
(0)

= ∫
Σ

𝑑𝐴
(0)

= ∫
𝐶

𝐴
(0)

, (21)

where we are assuming that 𝐶 is a trivial homology 1-cycle
(i.e., a trivial element in the first homology group).Thus there
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exists a 2-chain Σ (it could be regarded as a two-dimensional
submanifold of R3) such that 𝐶 = 𝜕Σ is immersed on the
three-dimensional Euclidean space. The connection 𝐴

(0)

=

𝐴
(0)

𝜇
𝑑𝑥

𝜇 is the commutative (usual) magnetic potential 1-
form. As we can see the last integral is the phase that appears
in the commutative Wilson loop.

Since 𝐶 is a trivial cycle by Poincaré duality there exists
𝑑𝜂 where 𝜂 is a 1-form. The mathematical interpretation
assuming that 𝐶 is a trivial 1-cycle and the flux is nonzero
implies that 𝐴(0) is not a closed form; that is,

Φ = ∫
𝑀

𝐴
(0)

∧ 𝑑𝜂 = ∫
𝑀

𝜂 ∧ 𝑑𝐴
(0)

. (22)

In the previous integral we integrate out by parts and in
this way we can regard 𝑑𝐴

(0) as the Poincaré dual of some
trivial cycle𝐶(0) which is boundary of the 2-chain Σ

(0). Hence
this integral represents the linking number among the trivial
cycles 𝐶 and 𝐶

(0) where the respective boundaries of the 2-
cycles are Σ and Σ

(0).
Now we will consider the noncommutative case; then

the phase in the noncommutative Wilson loop assuming the
expansion on Θ is given by

∫
𝐶

𝐴 = ∫
𝐶

𝐴
(0)

+ ∫
𝐶

𝐴
(1)

+ ∫
𝐶

𝐴
(2)

+ ⋅ ⋅ ⋅ . (23)

Interpreting this in terms of linking numbers, the first term
is the link number between 𝐶 and 𝐶

(0) and the second
term is interpreted in the following way. Let us consider
from the Seiberg-Witten map the first order potential 𝐴(1)

𝜇
=

−Θ
𝜅𝜆

(1/2)𝐴
(0)

𝜅
(𝜕

𝜆
𝐴
(0)

𝜇
+ 𝐹

(0)

𝜆𝜇
) that can be arranged as

𝐴
(1)

= Θ
𝜅𝜆

𝐴
(1)

𝜅𝜆
= Θ

𝜅𝜆

𝐴
(1)

𝜅𝜆𝜇
𝑑𝑥

𝜇

. (24)

In this way 𝐴
(1) can be regarded as the sum of six 1-forms

𝐴
(1)

𝜅𝜆
= 𝐴

(1)

𝜅𝜆𝜇
𝑑𝑥

𝜇 (since we are working in R3)

∫
𝐶

𝐴
(1)

= ∫
𝑀

𝐴
(1)

∧ 𝑑𝜂 = ∫
𝑀

𝜂 ∧ 𝑑𝐴
(1)

= ∫
𝐶
(1)

𝜂, (25)

where 𝐶
(1) is a trivial 1-cycle. But explicitly the first integral

Θ
𝜅𝜆

∫
𝐶

𝐴
(1)

𝜅𝜆
must be equal to ∫

𝐶
(1)

𝜂; therefore, it also will be
expanded in Θ; then (25) reads

Θ
𝜅𝜆

∫
𝐶

𝐴
(1)

𝜅𝜆
= Θ

𝜅𝜆

∫
𝐶
(1)

𝜅𝜆

𝜂. (26)

This equation implies that 𝐶(1)

𝜅𝜆
= 𝜕Σ

(1)

𝜅𝜆
is a trivial cycle; thus

it can be regarded as the linking number between 𝐶 and each
𝐶
(1)

𝜅𝜆
; for example, in the three-dimensional Euclidean space

Θ
𝜅𝜆

∫
𝐶
(1)

𝜅𝜆

𝜂 = Θ
12

(∫
𝐶
(1)

12

𝜂 − ∫
𝐶
(1)

21

𝜂)

+ Θ
13

(∫
𝐶
(1)

13

𝜂 − ∫
𝐶
(1)

31

𝜂)

+ Θ
23

(∫
𝐶
(1)

23

𝜂 − ∫
𝐶
(1)

32

𝜂) ,

(27)

C
(1)

12

C
(1)

21

C
(1)

13

C
(1)

32

C
(1)

23

C
(1)

31

C

Figure 1: The figure accounts the computation at the first order in
Θ of the linking number. For the case of knots in R3 it is observed
at this order that the noncommutativity induces the existence of 6
different knots, represented in the simplest case by circles of different
colors 𝐶(1)

𝜅𝜆
, that intersect the original trivial homology 1-cycle 𝐶. At

the 𝑛th order therewill be 6𝑛 knots intersecting𝐶. In the general case
the knots 𝐶(1)

𝜅𝜆
would be real knots linked, for instance, the trefoil or

even more complicated knots.

or

Θ
𝜅𝜆

∫
𝐶

𝐴
(1)

𝜅𝜆
= Θ

12

∫
𝐶

(𝐴
(1)

12
− 𝐴

(1)

21
)

+ Θ
13

∫
𝐶

(𝐴
(1)

13
− 𝐴

(1)

31
)

+ Θ
23

∫
𝐶

(𝐴
(1)

23
− 𝐴

(1)

32
) ,

(28)

in general since 𝐴
(1)

𝜅𝜆
̸= 𝐴

(1)

𝜆𝜅
, then the linking number

between 𝐶 and 𝐶
(1)

𝜅𝜆
is different from the one of 𝐶 and 𝐶

(1)

𝜆𝜅
. In

Figure 1 the intersection between the𝐶(1)

𝜆𝜅
1-cycles is explicitly

displayed, represented in different colors by the simplest case
when they are circles and the original 1-cycle 𝐶.

Let us introduce the following notation: Lk(𝐶
1
, 𝐶

2
)

denotes the linking number between the homologically
trivial 1-cycles 𝐶

1
and 𝐶

2
.

Now consider the second order term and reordering the
expression𝐴

(2) in the Seiberg-Wittenmap, it could be written
in a similar way as in (24):

𝐴
(2)

= Θ
𝜅1𝜆1Θ

𝜅2𝜆2𝐴
(2)

𝜅1𝜆1𝜅2𝜆2𝜇
𝑑𝑥

𝜇

. (29)

Let 𝐴(2)

𝜅1𝜆1𝜅2𝜆2

= 𝐴
(2)

𝜅1𝜆1𝜅2𝜆2𝜇
𝑑𝑥

𝜇, in analogy to the first order
term

Θ
𝜅1𝜆1Θ

𝜅2𝜆2 ∫
𝐶

𝐴
(2)

𝜅1𝜆1𝜅2𝜆2

= Θ
𝜅1𝜆1Θ

𝜅2𝜆2 ∫
𝐶
(2)

𝜅1𝜆1𝜅2𝜆2

𝜂; (30)

again here 𝑑𝜂 stands for the Poincaré dual of 𝛾. As we can see
in general the total flux induced by the second order term is
the sum of the 36 linking numbers Lk(𝐶, 𝐶

(2)

𝜅1𝜆1𝜅2𝜆2

).
Finally in general for the 𝑚th order we rearrange the

expression 𝐴
(𝑚) from the Seiberg-Witten map; we rewrite it

as

𝐴
(𝑚)

= Θ
𝜅1𝜆1 ⋅ ⋅ ⋅ Θ

𝜅𝑚𝜆𝑚𝐴
(𝑚)

𝜅1𝜆1 ⋅⋅⋅𝜅𝑚𝜆𝑚𝜇
𝑑𝑥

𝜇

. (31)
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We define 𝐴
(𝑚)

𝜅1𝜆1 ⋅⋅⋅𝜅𝑚𝜆𝑚

= 𝐴
(𝑚)

𝜅1𝜆1 ⋅⋅⋅𝜅𝑚𝜆𝑚𝜇
𝑑𝑥

𝜇. Thus we have

Θ
𝜅1𝜆1 ⋅ ⋅ ⋅ Θ

𝜅𝑚𝜆𝑚 ∫
𝐶

𝐴
(𝑚)

𝜅1𝜆1 ⋅⋅⋅𝜅𝑚𝜆𝑚

= Θ
𝜅1𝜆1 ⋅ ⋅ ⋅ Θ

𝜅𝑚𝜆𝑚 ∫
𝐶
(𝑚)

𝜅1𝜆1⋅⋅⋅𝜅𝑚𝜆𝑚

𝜂

= Θ
𝜅1𝜆1 ⋅ ⋅ ⋅ Θ

𝜅𝑚𝜆𝑚Lk (𝐶, 𝐶
(𝑚)

𝜅1𝜆1 ⋅⋅⋅𝜅𝑚𝜆𝑚

) ,

(32)

where 𝐶
(𝑚)

𝜅1𝜆1 ⋅⋅⋅𝜅𝑚𝜆𝑚

are homologically trivial 1-cycles; that
is, a 2-chain Σ

(𝑚)

𝜅1𝜆1 ⋅⋅⋅𝜅𝑚𝜆𝑚

exists, such that 𝐶
(𝑚)

𝜅1𝜆1 ⋅⋅⋅𝜅𝑚𝜆𝑚

=

𝜕Σ
(𝑚)

𝜅1𝜆1 ⋅⋅⋅𝜅𝑚𝜆𝑚

.Therefore, in general the𝑚-flux through𝐶 could
be regarded as the sum of 6𝑚 linking numbers between𝐶 and
𝐶
(𝑚)

𝜅1𝜆1 ⋅⋅⋅𝜅𝑚𝜆𝑚

in R3.

5. The Jones-Witten-Like Invariants

The Jones polynomials in Witten’s path integral formulation
are given by the correlation functions of Wilson loops

𝐽
𝐶
= ⟨𝑊 (𝐶)⟩ =

1

𝑁
∫D𝐴

⋅ exp [
𝑖

ℏ
𝑘∫

𝑀

Tr (𝐴 ∧ 𝑑𝐴 + 𝐴 ∧ 𝐴 ∧ 𝐴)]

⋅ Tr
𝑅
𝑊(𝐶) ,

(33)

where 𝑊(𝐶) = 𝑃 exp[(𝑖/ℏ) ∫
𝐶

𝐴] is the Wilson line, 𝑅 is a
representation of the gauge group, 𝐴 is the gauge field, 𝐶
is a knot (homologically trivial 1-cycle), 𝑀 is the Euclidean
3-dimensional space or the unitary 3-sphere, and 𝑁 is the
normalization factor.

We will consider the simplest case when the gauge
group is𝑈(1) but consider the noncommutativeWilson loop
(abelian case) and compute the first nontrivial correction
which will arise at first order in Θ.

First of all we change in the path integral 𝐴 by 𝐴; then,
the noncommutative Jones-Witten-like invariants which will
depend explicitly on the noncommutative parameter (for the
abelian case) read

𝐽
𝐶
(Θ) = ⟨𝑊̂ (𝐶)⟩ =

1

𝑁
∫D𝐴

⋅ exp [
𝑖

ℏ
𝑘∫

𝑀

Tr(𝐴
⋆

∧ 𝑑𝐴 + 𝐴
⋆

∧ 𝐴
⋆

∧ 𝐴)]

⋅ Tr
𝑅
𝑊̂ (𝐶) .

(34)

Since we will consider the Θ-expansion just up to first order,
the term 𝐴

⋆

∧ 𝐴
⋆

∧ 𝐴 does not contribute (it contributes up

to third order); then we get the following expression for the
action:

exp [
𝑖

ℏ
𝑘∫

𝑀

(𝐴
(0)

∧ 𝑑𝐴
(0)

+ 2𝐴
(0)

∧ 𝑑𝐴
(1)

)]

≈ exp [
𝑖

ℏ
𝑘∫

𝑀

𝐴
(0)

∧ 𝑑𝐴
(0)

]

⋅ [1 +
𝑖

ℏ
2𝑘Θ

𝜅𝜆

∫
𝑀

𝐴
(0)

∧ 𝑑𝐴
(1)

𝜅𝜆
] ,

(35)

and the noncommutative Wilson line (13) up to first order in
Θ is

𝑊̂ (𝐶) = exp
⋆
(
1

ℏ
∫
𝐶

𝐴)

≈ exp (
𝑖

ℏ
∫
𝐶

𝐴
(0)

) [1 +
𝑖

ℏ
Θ

𝜅𝜆

∫
𝐶

𝐴
(1)

𝜅𝜆
] .

(36)

Then the functional integral up to first order (the firstΘ order
Jones polynomials) is given by

∫D𝐴
(0) exp (

𝑖

ℏ
𝑘∫

𝑀

𝐴
(0)

∧ 𝑑𝐴
(0)

) exp(
𝑖

ℏ
∫
𝐶

𝐴
(0)

)

⋅ [1 +
𝑖

ℏ
Θ

𝜅𝜆

∫
𝐶

𝐴
(1)

𝜅𝜆
+

𝑖

ℏ
2𝑘Θ

𝜅𝜆

∫
𝑀

𝐴
(0)

∧ 𝑑𝐴
(1)

𝜅𝜆
] .

(37)

The integral is performed just on the commutative term 𝐴
(0)

since every order can be written in term 𝐴
(0) in virtue of

Seiberg-Witten map. Rewriting the previous expression we
get

∫D𝐴
(0) exp(

𝑖

ℏ
𝑘∫

𝑀

(𝐴
(0)

∧ 𝑑𝐴
(0)

+
1

𝑘
𝐴
(0)

∧ 𝑑𝜂))

⋅ [1 +
𝑖

ℏ
Θ

𝜅𝜆

∫
𝑀

𝐴
(1)

𝜅𝜆
∧ 𝑑𝜂 +

𝑖

ℏ
2𝑘Θ

𝜅𝜆

∫
𝑀

𝐴
(0)

∧ 𝑑𝐴
(1)

𝜅𝜆
] ,

(38)

where 𝑑𝜂 is the Poincaré dual of the knot 𝐶. Next we need to
compute these three integrals; the first one is the usual abelian
Jones polynomial-like for the knot 𝐶, whose evaluation is
proportional to

exp(−
𝑖

4ℏ𝑘
∫
𝑀

𝜂 ∧ 𝑑𝜂) , (39)

where ∫
𝑀

𝜂∧𝑑𝜂 is the Hopf invariant or self-linking number.
Now we consider the second integral which is rewritten

as

𝑖

ℏ
Θ

𝜅𝜆

∫D𝐴
(0)

⋅ exp [
𝑖

ℏ
𝑘∫

𝑀

(𝐴
(0)

∧ 𝑑𝐴
(0)

+
1

𝑘
𝐴
(0)

∧ 𝑑𝜂)]

⋅ [∫
𝑀

𝐴
(1)

𝜅𝜆
∧ 𝑑𝜂] .

(40)
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First of all, notice that any 1-form 𝐴
(0), using the Hodge

decomposition theorem, can be uniquely decomposed as
𝐴

harm
+ 𝑑𝐵 + 𝛿𝐶, where 𝐴harm is a harmonic 1-form (i.e., it is

a solution to the laplacian Δ
𝑝
= 𝑑𝛿 + 𝛿𝑑), 𝐵 is a 0-form, and

𝐶 is a 2-form. Here 𝑑 is the usual exterior derivative (which
maps a 𝑝-form into (𝑝+1)-form) and 𝛿 = (−1)

𝑛(𝑝+1)+1

∗𝑑∗ is
its adjoint operator (which maps 𝑝-form into (𝑝 − 1)-form).
The ∗ stands for the Hodge star operator which maps 𝑝-
form into (𝑛 − 𝑝)-form. Also it is necessary to consider that
∗
2

= (−1)
𝑝(𝑛−𝑝).

In order to integrate out the path integral measure is
decomposed into D𝐴

(0)

= D𝐴
harmD𝐴

𝑡D𝐴
𝑙 in virtue of the

Hodge decomposition theorem, where 𝐴
𝑙

= 𝑑𝐵 and 𝐴
𝑡

= 𝛿𝐶

are the longitudinal and transversal parts of𝐴(0), respectively.
It is well known that just the transversal parts contribute to
the integration.

Moreover, it is necessary to introduce some extra con-
ventions. Let Λ

𝑝
be the space of eigenforms of Δ

𝑝
with

nonvanishing eigenvalue 𝜆
2. This space can be decomposed

into Λ
𝑙

𝑝
and Λ

𝑡

𝑝
, that is, into the longitudinal and transversal

parts. We also need to consider the following maps: 𝑑 :

Λ
𝑡

𝑝
→ Λ

𝑙

𝑝+1
, 𝛿 : Λ

𝑙

𝑝+1
→ Λ

𝑡

𝑝
, and an isomorphism

given by ∗ : Λ
𝑝

→ Λ
𝑛−𝑝

among forms with the same
eigenvalue 𝜆

2. Given these maps finally we construct the
following isomorphism:

𝜆
−1

∗ 𝑑 : Λ
𝑡

𝑝
󳨀→ Λ

𝑡

𝑛−𝑝−1
. (41)

Since we will consider 𝑀 = 𝑆
3 or R3 and 1-forms (this is

𝑛 = 3 and 𝑝 = 1), the last isomorphism is reduced to 𝜆
−1

∗𝑑 :

Λ
𝑡

1
→ Λ

𝑡

1
.

Now consider a basis of transverse 1-eigenforms {𝐴
𝑡

𝑖
}

such that it satisfies the normalization condition ⟨𝐴
𝑡

𝑖
| 𝐴

𝑡

𝑗
⟩ =

∫
𝑀

𝐴
𝑡

𝑖
∧ ∗𝐴

𝑡

𝑗
= 𝛿

𝑖𝑗
(inner product among 1-forms). We

expand the transversal part of 𝐴
(0) and 𝜂 in terms of this

basis; hence 𝐴
𝑡

= ∑
𝑖
𝑎
(0)

𝑖
𝐴
𝑡

𝑖
and 𝜂

𝑡

= ∑
𝑖
𝜂
𝑖
𝐴
𝑡

𝑖
. With

the aid of the inner product, ∗2

= +1, for 2-forms in a
Riemannian manifold and the isomorphism (41), the term in
the exponential on the left-hand side of (40) can be rewritten
as follows:

𝑘 ⟨𝐴
(0)

| ∗𝑑𝐴
(0)

⟩ + ⟨𝐴
(0)

| ∗𝑑𝜂⟩

= 𝑘∑

𝑖

𝜆
𝑖
((𝑎

(0)

𝑖
)
2

+
1

𝑘
𝑎
(0)

𝑖
𝜂
𝑖
) ,

(42)

where ∗𝑑𝐴
(0)

= ∗𝑑∑
𝑖
𝑎
(0)

𝑖
𝐴
𝑡

𝑖
= ∑

𝑖
𝑎
(0)

𝑖
∗ 𝑑𝐴

𝑡

𝑖
= ∑

𝑖
𝑎
(0)

𝑖
𝜆
𝑖
𝐴
𝑡

𝑖

and similarly for ∗𝑑𝜂.
In a similar spirit we compute the first orderΘ expansion

of the Wilson line

Θ
𝜅𝜆

∫
𝑀

𝐴
(1)

𝜅𝜆
∧ 𝑑𝜂 = ∫

𝑀

𝐴
(1)

∧ 𝑑𝜂 = ∑

𝑖

𝜆
𝑖
𝑎
(1)

𝑖
𝜂
𝑖
, (43)

where 𝐴
(1)

= ∑𝑎
(1)

ℓ
𝐴
𝑡

ℓ
. Explicitly 𝑎

(1)

ℓ
can be written in terms

of 𝑎(0) since 𝐴
(1)

𝜇
= −(1/2)Θ

𝜅𝜆

𝐴
(0)

𝜅
(𝜕

𝜆
𝐴
(0)

𝜇
+ 𝐹

(0)

𝜆𝜇
). Using the

eigenbasis expansion 𝐴
(0)

= ∑
𝑖
𝑎
(0)

𝑖
𝐴
𝑡

𝑖
and the relation

𝑑𝐴
𝑡

𝑖
= ∗

2

𝑑𝐴
𝑡

𝑖
= ∗𝜆

𝑖
𝐴
𝑡

𝑖
=

1

2
𝜆
𝑖
𝐴
𝑡

𝑖𝜇
𝜀
𝜇

𝜌𝜎
𝑑𝑥

𝜌

∧ 𝑑𝑥
𝜎

, (44)

where we use the fact that ∗
2

= 1. In virtue of the last
expression we get the following useful expression for the
partial derivatives of the gauge field components 𝜕

𝜌
𝐴

𝑖𝜎
=

(1/2)𝜆
𝑖
𝐴
𝑡

𝑖𝜇
𝜀
𝜇

𝜌𝜎
; hence we can rewrite 𝐴

(1) as

𝐴
(1)

=
3

4
Θ

𝜅𝜆

∑

𝑖,𝑗

𝜆
𝑗
𝑎
(0)

𝑖
𝑎
(0)

𝑗
𝐴
𝑡

𝑖𝜅
𝐴
𝑡

𝑗𝜇
𝜀
𝜇

𝜌𝜆
𝑑𝑥

𝜌

. (45)

Finally projecting out𝐴(1) into the transverse basis we get the
following explicit expression:

𝑎
(1)

ℓ
= ∫

𝑀

𝐴
(1)

∧ ∗𝐴
ℓ
=

3

8
Θ

𝜅𝜆

∑

𝑖,𝑗

𝜆
𝑗
𝑎
(0)

𝑖
𝑎
(0)

𝑗
[𝐶

𝑖𝑗ℓ
]
𝜅𝜆

, (46)

where the 𝐶’s are defined by the following expression:

[𝐶
𝑖𝑗ℓ

]
𝜅𝜆

= ∫
𝑀

𝜀
𝜇

𝛾𝜆
𝜀
𝜁

𝜒𝜌
𝐴
𝑡

𝑖𝜅
𝐴
𝑡

𝑗𝜇
𝐴
𝑡

ℓ𝜁
⋅ 𝑑𝑥

𝛾

∧ 𝑑𝑥
𝜒

∧ 𝑑𝑥
𝜌

. (47)

With these algebraic manipulations we can write (43) as

∫
𝑀

𝐴
(1)

∧ 𝑑𝜂 =
3

8
Θ

𝜅𝜆

∑

𝑖,𝑗,ℓ

𝜂
ℓ
𝜆
𝑗
𝜆
ℓ
𝑎
(0)

𝑖
𝑎
(0)

𝑗
[𝐶

𝑖𝑗ℓ
]
𝜅𝜆

. (48)

Following a similar procedure we find

∫
𝑀

𝐴
(0)

∧ 𝑑𝐴
(1)

=
3

8
Θ

𝜅𝜆

∑

𝑖,𝑗,ℓ

𝜆
𝑗
𝜆
ℓ
𝑎
(0)

𝑖
𝑎
(0)

𝑗
𝑎
(0)

ℓ
[𝐶

𝑖𝑗ℓ
]
𝜅𝜆

. (49)

Therefore, (40) can be reexpressed in terms of the previ-
ous expansion; then

1

𝑁
∫D𝐴

(0) exp [
𝑖

ℏ

⋅ 𝑘 ∫
𝑀

(𝐴
(0)

∧ 𝑑𝐴
(0)

+
1

𝑘
𝐴
(0)

∧ 𝑑𝜂)] ⋅ [
𝑖

ℏ
∫
𝑀

𝐴
(1)

∧ 𝑑𝜂] =
1

𝑁
∫∏

𝑚

𝑑𝑎
(0)

𝑚

⋅ exp[
𝑖

ℏ
𝑘(∑

𝑚

𝜆
𝑚
[(𝑎

(0)

𝑚
)
2

+
1

𝑘
𝑎
(0)

𝑚
𝜂
𝑚
])]

⋅ [

[

3

8

𝑖

ℏ
Θ

𝜅𝜆

∑

𝑖,𝑗,ℓ

𝜂
ℓ
𝜆
𝑗
𝜆
ℓ
𝑎
(0)

𝑖
𝑎
(0)

𝑗
[𝐶

𝑖𝑗ℓ
]
𝜅𝜆

]

]

,

(50)
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where𝑁 = ∫D𝐴
(0)exp[𝑖𝑘 ∫

𝑀

𝐴
(0)

∧𝑑𝐴
(0)

] is a normalization
factor which is given by

𝑁 = lim
𝑛→∞

(
𝑖ℏ𝜋

𝑘
)

𝑛/2

1

√detΔ
, (51)

where detΔ = ∏
𝑛

𝑚=1
𝜆
𝑚
.

In order to integrate out expression (50), it is convenient
to rewrite it as follows:

𝑖

ℏ
Θ

𝜅𝜆
3

8
∑

ℓ,𝑚,𝑖

𝜆
ℓ
𝜂
𝑖
𝜆
𝑖
[𝐶

ℓ𝑚𝑖
]
𝜅𝜆

∫∏

𝑛

𝑑𝑎
(0)

𝑛

⋅ exp(−
1

2
∑

𝑖,𝑗

𝑎
(0)

𝑖
𝐴

𝑖𝑗
𝑎
(0)

𝑗
+ ∑

𝑖

𝑎
(0)

𝑖
𝐽
𝑖
)𝑎

(0)

ℓ
𝑎
(0)

𝑚
,

(52)

where𝐴
𝑖𝑗
= −(2𝑖/ℏ)𝑘𝜆

𝑗
𝛿
𝑖𝑗
and 𝐽

𝑖
= (𝑖/ℏ)𝜆

𝑖
𝜂
𝑖
. Performing the

integration we obtain

1

𝑁
∫D𝐴

(0) exp [
𝑖

ℏ
𝑘∫

𝑀

(𝐴
(0)

∧ 𝑑𝐴
(0)

+
1

𝑘
𝐴
(0)

∧ 𝑑𝜂)]

⋅ [𝑖 ∫
𝑀

𝐴
(1)

∧ 𝑑𝜂] =
3

8
Θ

𝜅𝜆

∑

𝑖,𝑗,ℓ

𝜆
𝑗
𝜆
ℓ
[𝐶

𝑖𝑗ℓ
]
𝜅𝜆

⋅ exp(−
𝑖

4𝑘ℏ
∫
𝑀

𝜂 ∧ 𝑑𝜂)(
𝑖

4ℏ𝑘2
𝜂
𝑖
𝜂
𝑗
𝜂
ℓ
−

1

2𝑘

⋅

𝛿
𝑖𝑗
𝜂
ℓ

𝜆
𝑗

) .

(53)

Finally the third contribution in (38) associated with
the factor ∫

𝑀

𝐴
(0)

∧ 𝑑𝐴
(1); then the term to compute is the

following:

2𝑖𝑘

ℏ𝑁
∫D𝐴

(0) exp [
𝑖

ℏ

⋅ 𝑘 ∫
𝑀

(𝐴
(0)

∧ 𝑑𝐴
(0)

+
1

𝑘
𝐴
(0)

∧ 𝑑𝜂)] [∫
𝑀

𝐴
(0)

∧ 𝑑𝐴
(1)

] =
2𝑘

𝑁
∫∏

𝑚

𝑑𝑎
(0)

𝑚

⋅ exp[
𝑖

ℏ
𝑘(∑

𝑚

𝜆
𝑚
[(𝑎

(0)

𝑚
)
2

+
1

𝑘
𝑎
(0)

𝑚
𝜂
𝑚
])]

⋅ [

[

3

8

𝑖

ℏ
Θ

𝜅𝜆

∑

𝑖,𝑗,ℓ

𝜆
𝑗
𝜆
ℓ
𝑎
0

𝑖
𝑎
0

𝑗
𝑎
(0)

ℓ
[𝐶

𝑖𝑗ℓ
]
𝜅𝜆

]

]

.

(54)

The integral has the form in terms of 𝐴
𝑖𝑗
and 𝐽

𝑖
; then we get

the expression

2𝑖𝑘

ℏ
∫∏

𝑚

𝑑𝑎
(0)

𝑚

⋅ exp[
𝑖

ℏ
𝑘(∑

𝑚

𝜆
𝑚
[(𝑎

(0)

𝑚
)
2

+
1

𝑘
𝑎
(0)

𝑚
𝜂
𝑚
])] ⋅ [

[

3

8

⋅ Θ
𝜅𝜆

∑

𝑖,𝑗,ℓ

𝜆
𝑗
𝜆
ℓ
𝑎
0

𝑖
𝑎
0

𝑗
𝑎
(0)

ℓ
[𝐶

𝑖𝑗ℓ
]
𝜅𝜆

]

]

=
3

8

⋅ Θ
𝜅𝜆

∑

𝑖,𝑗,ℓ

𝜆
𝑗
𝜆
ℓ
[𝐶

𝑖𝑗ℓ
]
𝜅𝜆

exp (−
𝑖

4ℏ𝑘
∫
𝑀

𝜂 ∧ 𝑑𝜂)

⋅ [−
𝑖

4ℏ𝑘2
𝜂
𝑖
𝜂
𝑗
𝜂
ℓ
+

1

2𝑘
(

𝛿
𝑖ℓ
𝜂
𝑗

𝜆
𝑖

+

𝛿
𝑗ℓ
𝜂
𝑖

𝜆
𝑗

+

𝛿
𝑖𝑗
𝜂
ℓ

𝜆
𝑗

)] .

(55)

Thus, the total contribution to the Jones-like polynomial
up to first order in Θ defined in (38) is obtained from
the superposition of (39), (53), and (55), yielding to the
expression

𝐽
𝐶
(Θ) = exp (−

𝑖

4ℏ𝑘
∫
𝑀

𝜂 ∧ 𝑑𝜂)[

[

1

+
3

16𝑘
Θ

𝜅𝜆

∑

𝑖,𝑗

([𝐶
𝑖𝑗𝑖
]
𝜅𝜆

𝜆
𝑗
𝜂
𝑗
+ [𝐶

𝑖𝑗𝑗
]
𝜅𝜆

𝜆
𝑗
𝜂
𝑖
)]

]

.

(56)

As we can see the 0-th order is the usual 𝑈(1) “Jones” poly-
nomial, where 𝜂 is the Poincaré dual of 𝐶 and the following
term is a polynomial overΘ related to the noncommutativity
up to first order.

6. Noncommutative Aharonov-Bohm Effect

This section is devoted to explore some physical applications
of the noncommutative Wilson loops and linking numbers;
in particular we consider the Aharonov-Bohm effect which
is a very good arena to test the physical ideas and extract
visible effects. We are aware that some noncommutative
extensions of the Aharonov-Bohm effect are present in the
literature; see, for instance, [42–47]. We will see that our
results will agree with their results. Aharonov-Bohm effect
consists of an electron beam through a double slit in presence
of a small impenetrable solenoid which has a nonvanishing
constant magnetic field inside (and therefore a nonvanishing
vector potential 𝐴

(0)

𝜇
). Outside the solenoid the magnetic

field is zero, but not the potential; thus an interference
pattern is observed due to the fact that the vector potential
is nonvanishing. The effect is measured as a phase factor in
the wave function.

In the usual Aharonov-Bohm effect it is assumed that
the wave function is of the form Φ = 𝜙 exp(𝐹). Under this
ansatz one finds the value of 𝐹 by means of the covariant
derivative𝐷

𝑗
exp(𝐹) = 𝑘

𝑗
exp(𝐹). In our case, we will assume
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that the corresponding noncommutative function 𝐹 can be
expanded in terms of the noncommutative parameter Θ;
given by the ansatz [45], 𝐹 = 𝐹

(0)

+ 𝐹
(1)

+ 𝐹
(2)

+ ⋅ ⋅ ⋅ . We will
also determine 𝐹 using the covariant derivative defined in the
first section. Thus we have

𝐷
𝑗
⋆ exp

⋆
(𝐹) = 𝑘

𝑗
exp

⋆
(𝐹) ; (57)

considering just the expansion up to second order, it can be
written up to second order as

𝜕
𝑗
[exp (𝐹

(0)

) (1 + 𝐹
(1)

+ 𝐹
(2)

+
1

2
(𝐹

(1)

)
2

)]

− 𝑖 (𝐴
(0)

𝑗
+ 𝐴

(1)

𝑗
+ 𝐴

(2)

𝑗
)

⋅ exp (𝐹
(0)

) (1 + 𝐹
(1)

+ 𝐹
(2)

+
1

2
(𝐹

(1)

)
2

) +
1

2

⋅ Θ
𝜅𝜆

[𝜕
𝜅
(𝐴

(0)

𝑗
+ 𝐴

(1)

𝑗
)] [𝜕

𝜆
(𝐹

(0)

+ 𝐹
(1)

)] = 𝑘
𝑗
.

(58)

Thus we obtain the following equations at each order:

𝜕
𝑗
𝐹
(0)

− 𝑖𝐴
(0)

𝑗
= 𝑘

𝑗
,

𝜕
𝑗
𝐹
(1)

− 𝑖𝐴
(1)

𝑗
+

1

2
Θ

𝜅𝜆

(𝜕
𝜅
𝐴
(0)

𝑗
) (𝜕

𝜆
𝐹
(0)

) = 0,

𝜕
𝑗
𝐹
(2)

− 𝑖𝐴
(2)

𝑗
+

1

2
Θ

𝜅𝜆

(𝜕
𝜅
𝐴
(0)

𝑗
) (𝜕

𝜆
𝐹
(1)

)

+
1

2
Θ

𝜅𝜆

(𝜕
𝜅
𝐴
(1)

𝑗
) (𝜕

𝜆
𝐹
(0)

) = 0.

(59)

We can solve 𝐹
(0) in terms of 𝐴(0)

𝑗
; then we solve for 𝐹

(1) in
terms of𝐴(1) and𝐹

(0), and so on. In this way we find explicitly
at each order the 𝐹

(𝑖)’s

𝐹
(0)

= 𝑘
𝑗
𝑥
𝑗

+ 𝑖 ∫
𝐶

𝐴
(0)

𝑗
𝑑𝑥

𝑗

,

𝐹
(1)

= 𝑖 ∫
𝐶

𝐴
(1)

𝑗
𝑑𝑥

𝑗

−
1

2
Θ

𝜅𝜆

∫
𝐶

(𝜕
𝜅
𝐴
(0)

𝑗
) (𝜕

𝜆
𝐹
(0)

) 𝑑𝑥
𝑗

,

𝐹
(2)

= 𝑖 ∫
𝐶

𝐴
(2)

𝑗
𝑑𝑥

𝑗

−
1

2
Θ

𝜅𝜆

∫
𝐶

(𝜕
𝜅
𝐴
(0)

𝑗
) (𝜕

𝜆
𝐹
(1)

) 𝑑𝑥
𝑗

−
1

2
Θ

𝜅𝜆

∫
𝐶

(𝜕
𝜅
𝐴
(1)

𝑗
) (𝜕

𝜆
𝐹
(0)

) .

(60)

Finally the expression for 𝐹 up to second order is given by

𝐹 = 𝑘
𝑗
𝑥
𝑗

+ 𝑖 ∫
𝐶

(𝐴
(0)

𝑗
+ 𝐴

(1)

𝑗
+ 𝐴

(2)

𝑗
) 𝑑𝑥

𝑗

−
1

2

⋅ Θ
𝜅𝜆

∫
𝐶

[(𝜕
𝜅
𝐴
(0)

𝑗
) (𝜕

𝜆
𝐹
(0)

) + (𝜕
𝜅
𝐴
(0)

𝑗
) (𝜕

𝜆
𝐹
(1)

)

+ (𝜕
𝜅
𝐴
(1)

𝑗
) (𝜕

𝜆
𝐹
(0)

)] 𝑑𝑥
𝑗

.

(61)

From this equation we easily recognize the second term
which corresponds to the second order expansion of the
noncommutative Wilson loop, and the following terms are
the noncommutative corrections to the holonomy.

In the usual Aharonov-Bohm effect the potential outside
the solenoid is given by

𝐴
(0)

1
= −

𝑥
2

𝑥
2

1
+ 𝑥

2

2

,

𝐴
(0)

2
=

𝑥
1

𝑥
2

1
+ 𝑥

2

2

;

(62)

for reference the expansion up to first and second order of
this potential is

𝐴
(1)

1
=

1

2
Θ

12
𝑥
2

(𝑥
2

1
+ 𝑥

2

2
)
2
,

𝐴
(1)

2
= −

1

2
Θ

12
𝑥
1

(𝑥
2

1
+ 𝑥

2

2
)
2
,

𝐴
(2)

1
= −

1

4
(Θ

12

)
2 2𝑥

3

2
+ 𝑥

2

1
𝑥
2

(𝑥
2

1
+ 𝑥

2

2
)
4
,

𝐴
(2)

2
=

1

2
(Θ

12

)
2 2𝑥

3

1
+ 𝑥

1
𝑥
2

2

(𝑥
2

1
+ 𝑥

2

2
)
4
.

(63)

Meanwhile inside the components of the solenoid are

𝐴
(0)

1
= −

𝐵

2
𝑥
2
,

𝐴
(0)

2
=

𝐵

2
𝑥
1
,

(64)

where 𝐵 is the magnitude of a constant magnetic field. At first
and second order the potential is given by

𝐴
(1)

1
= −

3

8
𝐵
2

Θ
12

𝑥
2
,

𝐴
(1)

2
=

3

8
𝐵
2

Θ
12

𝑥
1
,

𝐴
(2)

1
= −

5

16
𝐵
3

(Θ
12

)
2

𝑥
2
,

𝐴
(2)

2
=

5

16
𝐵
3

(Θ
12

)
2

𝑥
1
.

(65)

In analogy to the usual Aharonov-Bohm effect the phase
difference is modified proportional to the flux through the
solenoid. Then substituting (64) and (65) into (61) we obtain
the wave function’s phase of the noncommutative Aharonov-
Bohm effect,

𝐹 = 𝑘
𝑗
𝑥
𝑗

+ 𝑖𝜋𝐵𝑟
2

+ 𝑖
1

2
Θ

12

𝜋𝐵𝑟
2

+
5

8
𝑖 (Θ

12

)
2

𝜋𝐵𝑟
2

, (66)

where Φ = 𝜋𝑟
2

𝐵 is the flux of the magnetic field through
the solenoid (whose radius is 𝑟). Finally the correction to the
phase due the noncommutativity is

exp (𝐹) ≈ exp(
𝑖𝑒

ℏ
𝑘
𝑗
𝑥
𝑗

)

⋅ exp [
𝑖𝑒

ℏ
Φ +

3𝑖𝑒

4ℏ
ΦΘ

12

+
5𝑖𝑒

8ℏ
Φ (Θ

12

)
2

] .

(67)



10 Advances in Mathematical Physics

As we can see the first term in the imaginary exponential
is the standard holonomy (commutative); the second and
third terms are corrections to the holonomy due to the
noncommutativity up to second order given in terms of the
usual flux and the noncommutative parameter.

Now we proceed to show that the phase of (67) is related
to the noncommutative Landau levels (see, e.g., [53]). To
check closely this affirmation let us make some explicit
computations. First of all we define the noncommutative
canonical momentum Π̂

𝜇
by minimal coupling changing the

usual gauge field 𝐴
𝜇
by its noncommutative one 𝐴

𝜇
; that is,

Π̂
𝜇
= 𝑝

𝜇
+ 𝑒𝐴

𝜇
= 𝑝

𝜇
+ 𝑒 (𝐴

(0)

𝜇
+ 𝐴

(1)

𝜇
+ 𝐴

(2)

𝜇
+ ⋅ ⋅ ⋅) . (68)

In addition, the consideration of quantum mechanical sys-
tems in a noncommutative space leads to the following
commutation relations:

[𝑝
𝜇
, 𝑝]] = 0,

[𝑥
𝜇
, 𝑥]] = 0,

[𝑝
𝜇
, 𝑥

𝜇
] = −𝑖ℏ𝛿

𝜇].

(69)

With the aid of previous relations and bearing in mind
expressions (64)–(65) let us compute the following commu-
tator up to first order in Θ; this is given by

[Π̂
1
, Π̂

2
] = −𝑖𝑒ℏ𝐵 (1 +

3

4
Θ

12

) . (70)

Let us construct the creation-annihilation operators as

𝑎 =
Π̂

1
− 𝑖Π̂

2

√(2𝑒ℏ𝐵) (1 + (3/4)Θ
12)

,

𝑎
†

=
Π̂

1
+ 𝑖Π̂

2

√(2𝑒ℏ𝐵) (1 + (3/4)Θ
12)

,

(71)

which satisfy the usual relation [𝑎, 𝑎
†

] = 1. Now we will
consider the hamiltonian 𝐻 = (1/2𝑚)(Π̂

2

1
+ Π̂

2

2
) and rewrite

it in terms of 𝑎 and 𝑎
†:

𝐻 =
𝑒𝐵ℏ

2𝑚
(1 +

3

4
Θ

12

) (𝑎𝑎
†

+ 𝑎
†

𝑎) , (72)

where the factor 𝜔 = (𝑒𝐵/2𝑚)(1 + (3/4)Θ
12

) is the angular
frequency. Using the normal ordering we finally get

𝐻 = ℏ𝜔(𝑎
†

𝑎 +
1

2
) . (73)

By examination of the phase in (67) up to first order, it clearly
contains the frequency of the noncommutative Landau levels.

To estimate the order of Θ we can compare with the
results in [45], where they do not use the Seiberg-Wittenmap.
Similar to [45], it is possible to formulate the problem of
scattering charged particles in an effective radial potential.
The computation is exactly the same. Thus, at the first order

we obtain the same result as that in [45] if we make the
following substitution: Θ by −3Θ

12. Then we conclude that
the noncommutative parameter is precisely of the same order
of magnitude as they had been in [45] estimated Θ

12

≈

[10Tev]−2.

7. Final Remarks

In this paper we proposed to use the gauge field provided
by the Seiberg-Witten map to study noncommutativeWilson
loops. After a brief account on noncommutative Wilson
loops, we study abelian Chern-Simons theory on a three-
dimensional manifold. It was shown that the effect of non-
commutativity is the appearance of 6𝑛 new knots at the 𝑛th
order of the Seiberg-Witten expansion.These knots constitute
trivial homology cycles which are Poincaré duals to the high-
order Seiberg-Witten potentials of the expansion. Moreover
the linking number at 𝑛th order of a standard 1-cycle with
the multiple Poincaré duals of the gauge fields is shown to be
written as the sum of the linking number of this 1-cycle with
themultiple Poincaré duals of the Seiberg-Witten gauge fields
at this order (32). The generalization to higher dimensions
can be done straightforwardly.

Furthermore as a topological application of the noncom-
mutative gauge theories and Wilson loops in the abelian
case, by using the path integral formalism and the Chern-
Simons theory we computed the first order and nonvanishing
correction due to the noncommutativity of the abelian Jones-
like polynomials (56).This term is also of a topological nature
and it represents a new noncommutative topological effect of
link invariants of three manifolds.

Furthermore as a physical applicationwe compute explic-
itly the abelianAharonov-Bohm effect inR3 and calculate the
wave function up to second order in the noncommutativity
parameter (67). It results in the usual wave function in terms
of the eigenvalue 𝑘

𝑗
in the real exponential and in the imag-

inary part the contribution of the usual flux (commutative)
and a second order contribution which is proportional to
the square of the flux appear. We also discuss the relation
of the Aharonov-Bohm effect and the Landau levels in the
noncommutative context. These results are found to agree
with those found in [42–47]. In particular, the parameter Θ

is constrained and it basically coincides with that of [45].
It could be interesting to explore some geometrical

aspects; we might extend the linking number between knots
in the three-dimensional Euclidean space in a noncommu-
tative sense and explore the different orders of the gauge
potential and how they could give new information about
linking numbers.

Moreover we would like to extend the present noncom-
mutative ideas to higher-dimensional theories, through a
BF theory since it is a higher-dimensional generalization of
Chern-Simons theory and theWilson line will be interpreted
in terms of linking numbers between higher-dimensional
objects [37–40].

Wilson loops for the spin connection are very important
in some theories of quantum gravity [48–51]. A noncom-
mutative version of these models is worth studying by using
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the noncommutative Wilson loops described here. Some of
this work is left for future research.

As a further step we are interested in the natural exten-
sion to the nonabelian case, where we will deal with two
expansions: the first one focusing on the noncommutative
parameter and the second one being due to the nonabelianity
of the Chern-Simons theory. Also we will study the physical
implications using nonabelian Aharonov-Bohm effect [54].
For future work we leave the problem of studying the
generalization of noncommutative Aharonov-Bohm effect
and its associated Landau levels for this nonabelian case.
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[44] M. Chaichian, P. Prešnajder, M. M. Sheikh-Jabbari, and A.
Tureanu, “Aharonov-Bohm effect in noncommutative spaces,”
Physics Letters B, vol. 527, no. 1-2, pp. 149–154, 2002.

[45] H. Falomir, J. Gamboa, M. Loewe, F. Méndez, and J. C. Rojas,
“Testing spatial noncommutativity via the Aharonov-Bohm
effect,” Physical ReviewD, vol. 66, no. 4, Article ID 045018, 2002.

[46] K. Li and S. Dulat, “The Aharonov-Bohm effect in noncommu-
tative quantum mechanics,”The European Physical Journal C—
Particles and Fields, vol. 46, no. 3, pp. 825–828, 2006.

[47] S. Dulat and K. Li, “Landau problem in noncommutative
quantum mechanics,” Chinese Physics C, vol. 32, no. 2, pp. 92–
95, 2008.

[48] C. Rovelli and L. Smolin, “Knot theory and quantum gravity,”
Physical Review Letters, vol. 61, no. 10, article 1155, 1988.

[49] A. Ashtekar, “Introduction to loop quantum gravity and cos-
mology,” inQuantumGravity andQuantumCosmology, Lecture
Notes in Physics, pp. 31–56, Springer, Berlin, Germany, 2013.

[50] E.Witten, “Topology-changing amplitudes in 2 + 1 dimensional
gravity,” Nuclear Physics B, vol. 323, no. 1, pp. 113–140, 1989.

[51] E. Witten, “A note on the Chern-Simons and Kodama wave
functions,” http://arxiv.org/abs/gr-qc/0306083.
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