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Abstract. Sophisticated strategies have been recently pro-
posed for the detection of moving objects in non-stabilized
camera setups. These strategies model both, background
and foreground, using spatio-temporal non-parametric esti-
mation. However, as no appropriate methods for dynamical
kernel bandwidth are available, high-quality results cannot
be obtained in all situations. Here, an automatic and efficient
kernel bandwidth estimation strategy for spatio-temporal mod-
eling is proposed. Background kernel bandwidth is estimated
via a novel statistical analysis of spatially weighted data dis-
tributions, whereas foreground kernel bandwidth is estimated
using a mean shift based analysis of previously detected
foreground regions. © 2012 Society of Photo-Optical Instrumentation
Engineers (SPIE). [DOI: 10.1117/1.OE.51.4.040501]
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1 Introduction
Moving object detection is a key step for high-level object
analysis tasks such as tracking and event analysis.1 Several
non-parametric strategies for background and foreground
object modeling have been proposed in the literature.2

These schemes model pixel statistics using kernel density
estimation, taking pixel values in previous frames as empiri-
cal reference samples. They yield high-quality detections in
multimodal scenarios2 and show great flexibility and adap-
tive capacity, and are thus, in principle, perfect for scene
modeling and motion detection.

Recently, interesting extensions for these non-parametric
strategies have been proposed,3 which build complex back-
ground and foreground models considering jointly color
and spatial domains. The models are built using reference
samples from multiple neighboring pixels in several pre-
vious frames, and are thus suitable for cameras without
image stabilization.

However, these strategies depend strongly on kernel band-
width selection,2 and in addition, no appropriate dynamic
estimation scheme has been proposed for this type of spa-
tio-temporal modeling.4 Therefore, automatic and dynamic
strategies for kernel bandwidth estimation are highly needed.5

In this letter, an efficient automatic bandwidth estimation
strategy is presented, which is specially designed for moving

object detection based on background-foreground spatio-
temporal non-parametric modeling. On the one hand, for
background modeling, kernel bandwidth is derived via a
robust statistical analysis of empirical color distributions,
weighted according to their spatial location in the images.
On the other hand, foreground bandwidth estimation is car-
ried out by means of a novel and fast mean shift based clus-
tering combined with a particle filter-based tracking strategy.

2 Spatio-Temporal Non-Parametric Modeling
Let us define a pixel in the current image domain as a five-
dimensional vector p ¼ ðR;G;B; r; cÞ, where ðR;G;BÞ are
its RGB color components and ðr; cÞ are its spatial coordi-
nates. The probability density function for both background,
β, and foreground, φ, can be estimated from five-dimensional
(spatio-color) reference samples via multidimensional kernels.
The probability of each pixel to belong to the foreground class
can be obtained through Bayes’ theorem as:

PrðφjpÞ ¼ PrðφÞf̂ ðpjφÞ
PrðβÞf̂ ðpjβÞ þ PrðφÞf̂ ðpjφÞ

; (1)

where f̂ ðpjβÞ and f̂ ðpjφÞ are, respectively, the estimated
background and foreground density functions, PrðφÞ re-
presents the foreground prior probability, and PrðβÞ ¼
1 − PrðφÞ is the background prior probability.

3 Background Modeling
Let us consider a set of Nβ background reference sam-
ples, xi ¼ ðRi;Gi ;Bi; ri; ciÞ, from the Tβ previous images
(Tβ ≤ Nβ). Applying Gaussian kernels the background
density function can be estimated as:

f̂ ðpjβÞ ¼ 1

Nβð2πÞ5=2jHβj1=2

×
XNβ

i¼1

Y5
j¼1

exp

�
−
½pðjÞ − xiðjÞ�2

2Hβðj; jÞ
�
; (2)

where Hβ ¼ diagðh2β;R; h2β;G; h2β;B; h2β;r; h2β;cÞ. The refer-
ence samples available for the background modeling are
uniformly distributed in space. So, kernels with fixed spatial
bandwidths, hβ;r ¼ hβ;c ¼ hs, are used. However, the band-
widths corresponding to the RGB color components
(hβ;R; hβ;G; hβ;B) should be estimated. For this purpose, we
propose a robust statistical method for the estimation of
the variance of the underlying color distributions at p,
which will be used as kernel bandwidths. Our algorithm
draws on,6 which robustly estimates the bandwidth for
each color component, Hβðj; jÞ, through the analysis of
the distribution of reference sample differences between con-
secutive images. Because this distribution is a Gaussian den-
sity function N½0; 2Hβðj; jÞ�, the median of the distribution of
the absolute differences, mj, is equivalent to its quarter per-
centile. Therefore, the kernel bandwidth is:

Hβðj; jÞ ¼
mj

0.68
ffiffiffi
2

p ; j ∈ f1; 2; 3g: (3)
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The proposed spatio-temporal strategy expands this med-
ian estimation to include the reference sample differences at
all the spatial positions, weighting each difference according
to its spatial distance to p. As the influence of the reference
samples over p decreases with their distance to p, these
weights are obtained through the evaluation of spatial Gaus-
sians at these distances:

wi ∝ exp

�
−
½ðr − riÞ2 þ ðc − ciÞ2�

2h2s

�
;

i ∈ f1; : : : ;Nβg: (4)

4 Foreground Modeling
The likelihood of the foreground, φ, is estimated as a mixture
of a uniform colorspace distribution and a kernel density
function.2 Using Nφ reference samples, zi, obtained from
the detections along the last Tφ images, this likelihood is
defined as:

f̂ ðpjφÞ¼ αγþ ð1−αÞ
Nφð2πÞ5=2jHφj1=2

×
XNφ

i¼1

Y5
j¼1

exp

�
−
½pðjÞ−ziðjÞ�2
2Hφðj; jÞ

�
; (5)

where Hφ ¼ diagðh2φ;R; h2φ;G; h2φ;B; h2φ;r; h2φ;cÞ, α ∈ ð0; 1Þ
is a mixture factor, and γ is the constant density of a uni-
form random variable in the bounded five-dimensional set
of components.

In addition, to improve the quality of the results, the spa-
tial coordinates of the foreground reference samples are
updated from each image to the next one to compensate
for the displacement of the moving foreground objects.7

This update is done by a multi-region particle filter that is
able to deal with appearing and disappearing foreground
objects. As a consequence, the updated reference samples
are distributed as color-spatial homogeneous foreground
regions corresponding to the real modes of the foreground
probability density function.

Therefore, assigning to each foreground sample a band-
width matrix adapted to the mode it belongs to, the fore-
ground model can be accurately estimated. To obtain these
bandwidth matrices we propose to cluster these homoge-
neous regions by the application of a five-dimensional
mean shift based segmentation.

Unlike most approaches using mean shift,8 to improve the
quality of the resulting clustering, we use kernels that con-
sider different bandwidth values for each dimension and ben-
efit from the use of the previously estimated bandwidth
matrices, Hφ. Taking into account these considerations, fore-
ground clusters can be obtained by iteratively applying on
each reference sample the vector:

vðzÞ ¼
�XNφ

i¼1

Gðz − ziÞzi
��XNφ

i¼1

Gðz − ziÞ
�−1

− z; (6)

whereG is the negative derivative of the profile of the kernel.
We propose to use Epanechnikov kernels, as they allow a
very fast computation of vðzÞ. Therefore, vðzÞ is finally
calculated as:

vðzÞ ¼ 1

jΨj
X
i∈Ψ

ðz − ziÞ;

where Ψ ¼
�
i ∈ ð1; : : : ;NφÞ

.���� zi − z

H1=2
φ

���� ≤ 1

�
;

(7)

where jΨj is the cardinality of the set Ψ.

Fig. 1 (a) Original images. (b) Background log-negative likelihood. (c) Three dimensional representation of the foreground likelihood. (d) Final
detections; (i) results with Ref. 3, and (ii) our results.

Optical Engineering 040501-2 April 2012/Vol. 51(4)

OE Letters



5 Results
The proposed strategy has been tested on a great variety of
scenarios. Here, a selection of three sequences representing
three challenging situations (e.g., dynamic backgrounds or
moving objects similar to background regions) has been
used to show the performance of our proposal.

Our algorithms have been compared with an outstanding
background-foreground non-parametric modeling approach.3

It makes use of fixed diagonal bandwidth matrices in a spatio-
temporal set of components, and could be considered the
reference spatio-temporal non-parametric modeling strategy.

Figure 1 presents some partial and final results where the
proposed strategy [Fig. 1(ii)] is compared with the reference
method [Fig. 1(i)]. These results show that the proposed
dynamical estimation strategies provide smoother back-
ground models and more accurate foreground likelihoods,
resulting in improved final detections.

Finally, recall-precision percentages and F values are pro-
vided in Fig. 2. These results show that the proposed meth-
ods significantly augment the F values, because they reduce
the amount of false alarms (higher precision) and increase the
amount of correctly detected foreground pixels (higher
recall).

6 Conclusion
An innovative dynamic kernel bandwidth estimation strategy
has been presented, which is suitable for spatio-temporal

non-parametric background and foreground modeling schemes.
In the background modeling, kernel bandwidth is estimated
from a robust statistical analysis of spatially weighted differ-
ences between reference samples. On the other hand, kernel
bandwidth for the foreground modeling is estimated through
a mean shift based analysis over previously detected fore-
ground regions that have been spatially updated using a par-
ticle filter-based tracking strategy.

Our proposal has been compared with an outstanding
reference moving object detection approach. The obtained
results clearly show the excellent capabilities of our ap-
proach, as it reduces the amount of false positives, whereas
increasing the amount of correctly detected foreground
pixels.
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