793 research outputs found

    Universal Probability Distribution Function for Bursty Transport in Plasma Turbulence

    Full text link
    Bursty transport phenomena associated with convective motion present universal statistical characteristics among different physical systems. In this letter, a stochastic univariate model and the associated probability distribution function for the description of bursty transport in plasma turbulence is presented. The proposed stochastic process recovers the universal distribution of density fluctuations observed in plasma edge of several magnetic confinement devices and the remarkable scaling between their skewness SS and kurtosis KK. Similar statistical characteristics of variabilities have been also observed in other physical systems that are characterized by convection such as the X-ray fluctuations emitted by the Cygnus X-1 accretion disc plasmas and the sea surface temperature fluctuations.Comment: 10 pages, 5 figure

    Control of Transport-barrier relaxations by Resonant Magnetic Perturbations

    Full text link
    Transport-barrier relaxation oscillations in the presence of resonant magnetic perturbations are investigated using three-dimensional global fluid turbulence simulations from first principles at the edge of a tokamak. It is shown that resonant magnetic perturbations have a stabilizing effect on these relaxation oscillations and that this effect is due mainly to a modification of the pressure profile linked to the presence of both residual residual magnetic island chains and a stochastic layer.Comment: 4 page

    Angular momentum transport modeling: achievements of a gyrokinetic quasi-linear approach

    Get PDF
    QuaLiKiz, a model based on a local gyrokinetic eigenvalue solver is expanded to include momentum flux modeling in addition to heat and particle fluxes. Essential for accurate momentum flux predictions, the parallel asymmetrization of the eigenfunctions is successfully recovered by an analytical fluid model. This is tested against self-consistent gyrokinetic calculations and allows for a correct prediction of the ExB shear impact on the saturated potential amplitude by means of a mixing length rule. Hence, the effect of the ExB shear is recovered on all the transport channels including the induced residual stress. Including these additions, QuaLiKiz remains ~10 000 faster than non-linear gyrokinetic codes allowing for comparisons with experiments without resorting to high performance computing. The example is given of momentum pinch calculations in NBI modulation experiments

    Stability analysis of secondary modes, driven by the phase space island

    Get PDF
    We present a new theoretical approach, based on the Hamiltonian formalism, to investigate the stability of islands in phase space, generated by trapping of energetic particles (EPs) in plasma waves in a tokamak. This approach is relevant to MHD modes driven by EPs (EP-MHD) such as toroidal Alfvén eigenmodes (TAEs), EP-driven geodesic acoustic modes (EGAMs) or fishbones. A generic problem of a single isolated EP-MHD mode is equivalent to and hence can be replaced by a 2D Hamiltonian dynamics in the vicinity of the phase space island. The conventional Langmuir wave/bump-on-tail problem is then used as a representative reduced model to describe the dynamics of the initial EP-MHD. Solving the Fokker-Planck equation in the presence of pitch angle scattering, velocity space diffusion and drag and retaining plasma drifts in a model, we find a 'perturbed' equilibrium, associated with these phase space islands. Its stability is then explored by addressing the Vlasov/Fokker-Planck-Poisson system. The Lagrangian of this system provides the dispersion relation of the secondary modes and allows an estimate of the mode onset. The secondary instabilities have been confirmed to be possible but under certain conditions on the primary island width and in a certain range of mode numbers. The threshold island width, below which the mode stability is reached, is calculated. The secondary mode growth rate is found to be maximum when the associated resonant velocity approaches the boundary of the primary island. This, in turn, leads to a conclusion that the onset of the secondary mode can be prevented provided the primary wave number is the lowest available

    Effect of the curvature and the {\beta} parameter on the nonlinear dynamics of a drift tearing magnetic island

    Get PDF
    We present numerical simulation studies of 2D reduced MHD equations investigating the impact of the electronic \beta parameter and of curvature effects on the nonlinear evolution of drift tearing islands. We observe a bifurcation phenomenon that leads to an amplification of the pressure energy, the generation of E \times B poloidal flow and a nonlinear diamagnetic drift that affects the rotation of the magnetic island. These dynamical modifications arise due to quasilinear effects that generate a zonal flow at the onset point of the bifurcation. Our simulations show that the transition point is influenced by the \beta parameter such that the pressure gradient through a curvature effect strongly stabilizes the transition. Regarding the modified rotation of the island, a model for the frequency is derived in order to study its origin and the effect of the \beta parameter. It appears that after the transition, an E \times B poloidal flow as well as a nonlinear diamagnetic drift are generated due to an amplification of the stresses by pressure effects

    Island Stability in Phase Space

    Get PDF
    Starting with a conventional bump on tail problem, which is equivalent to finding a solution of the Vlasov/Fokker-Planck equation in the presence of the phase space island, we obtain a primary equilibrium state. The stability of this state is investigated as a function of the effective velocity-space drag and diffusion, as well as the width of these phase space islands. The secondary instabilities have been found in a certain range of plasma parameters and wave numbers. Solving the full Vlasov/Fokker-Planck - Poisson system, we obtain the dispersion function, which provides information about the secondary mode onset and allows an estimate of the secondary mode growth rate for different input plasma parameters
    corecore