73 research outputs found

    Surgical management and oncological follow-up of cutaneous squamous cell carcinomas arising in epidermolysis bullosa patients

    Get PDF
    Background Hereditary epidermolysis bullosa (EB) is a rare genodermatosis characterized by skin fragility and blistering of the skin and mucous membranes in reaction to minimal traumas. The development of cutaneous squamous cell carcinomas (cSCCs) is one of the most common medical complications in junctional and dystrophic forms of the disease. Complete surgical excision of cutaneous tumors represents the gold standard of treatment. However, not only recognition of cSCCs can be challenging in the affected skin but also wound closure after surgical excision poses a great therapeutic challenge in EB patients. The aim of our study was to analyze the postoperative outcomes of such patients in order to have a better knowledge of the main critical issues in their surgical management and oncological follow-up. Methods We retrospectively identified a cohort of five EB patients treated at Modena University Hospital. Collected data included patient age and sex, date of cSCC diagnosis, relapses/recurrences, site of the neoplasm, number of surgical interventions, use of dermal substitutes, and postoperative infections. Results A total of 26 cSCCs were detected in our cohort. Forty-one surgical interventions were necessary to achieve excision of cSCCs with clear margins, varying from 1 to 4 surgical sessions per cSCC. Dermal substitutes were used in most cases but carried a higher infectious risk. Conclusions EB patients tend to develop numerous cSCCs that often relapse even after complete excision with clear margins. These results stress the importance of early cSCC diagnosis and strict postsurgical follow-up

    Role of Na+/H+ exchange in thrombin-induced platelet-activating factor production by human endothelial cells.

    Get PDF
    Thrombin-stimulated endothelial cells produce platelet-activating factor (PAF) in a dose-dependent manner: the activation of a Ca2+-dependent lyso-PAF acetyltransferase is the rate-limiting step in this process. The present study shows that acetyltransferase activation and consequent PAF production induced by thrombin in human endothelial cells are markedly inhibited in Na+-free media or after addition of the amiloride analog 5-(N-ethyl-N-isopropyl)amiloride, suggesting that a Na+/H+ antiport system is present in endothelial cells and plays a prominent role in thrombin-induced PAF synthesis. Accordingly, thrombin elicits a sustained alkalinization in 6-carboxyfluorescein-loaded endothelial cells, that is abolished in either Na+-free or 5-(N-ethyl-N-isopropyl)amiloride-containing medium. Extracellular Ca2+ influx induced by thrombin (as measured by quin2 and 45Ca methods) is completely blocked in the same experimental conditions, and monensin, a Na+/H+ ionophore mimicking the effects of the antiporter activation, evokes a dose-dependent PAF synthesis and a marked Ca2+ influx, which are abolished in Ca2+-free medium. An amiloride-inhibitable Na+/H+ exchanger is present in the membrane of human endothelial cells, its apparent Km for extracellular Na+ is 25 mM, and its activity is greatly enhanced when the cytoplasm is acidified. These results suggest that Na+/H+ exchange activation by thrombin and the resulting intracellular alkalinization play a direct role in the induction of Ca2+ influx and PAF synthesis in human endothelial cells

    A human-neutral large carnivore? No patterns in the body mass of gray wolves across a gradient of anthropization

    Get PDF
    The gray wolf (Canis lupus) expanded its distribution in Europe over the last few decades. To better understand the extent to which wolves could re-occupy their historical range, it is important to test if anthropization can affect their fitness-related traits. After having accounted for ecologically relevant confounders, we assessed how anthropization influenced i) the growth of wolves during their first year of age (n = 53), ii) sexual dimorphism between male and female adult wolves (n = 121), in a sample of individuals that had been found dead in Italy between 1999 and 2021. Wolves in anthropized areas have a smaller overall variation in their body mass, during their first year of age. Because they already have slightly higher body weight at 3–5 months, possibly due to the availability of human-derived food sources. The difference in the body weight of adult females and males slightly increases with anthropization. However, this happens because of an increase in the body mass of males only, possibly due to sex-specific differences in dispersal and/or to “dispersal phenotypes”. Anthropization in Italy does not seem to have any clear, nor large, effect on the body mass of wolves. As body mass is in turn linked to important processes, like survival and reproduction, our findings indicates that wolves could potentially re-occupy most of their historical range in Europe, as anthropized landscapes do not seem to constrain such of an important life-history trait. Wolf management could therefore be needed across vast spatial scales and in anthropized areas prone to social conflicts

    Management of acute diverticulitis with pericolic free gas (ADIFAS). an international multicenter observational study

    Get PDF
    Background: There are no specific recommendations regarding the optimal management of this group of patients. The World Society of Emergency Surgery suggested a nonoperative strategy with antibiotic therapy, but this was a weak recommendation. This study aims to identify the optimal management of patients with acute diverticulitis (AD) presenting with pericolic free air with or without pericolic fluid. Methods: A multicenter, prospective, international study of patients diagnosed with AD and pericolic-free air with or without pericolic free fluid at a computed tomography (CT) scan between May 2020 and June 2021 was included. Patients were excluded if they had intra-abdominal distant free air, an abscess, generalized peritonitis, or less than a 1-year follow-up. The primary outcome was the rate of failure of nonoperative management within the index admission. Secondary outcomes included the rate of failure of nonoperative management within the first year and risk factors for failure. Results: A total of 810 patients were recruited across 69 European and South American centers; 744 patients (92%) were treated nonoperatively, and 66 (8%) underwent immediate surgery. Baseline characteristics were similar between groups. Hinchey II-IV on diagnostic imaging was the only independent risk factor for surgical intervention during index admission (odds ratios: 12.5, 95% CI: 2.4-64, P =0.003). Among patients treated nonoperatively, at index admission, 697 (94%) patients were discharged without any complications, 35 (4.7%) required emergency surgery, and 12 (1.6%) percutaneous drainage. Free pericolic fluid on CT scan was associated with a higher risk of failure of nonoperative management (odds ratios: 4.9, 95% CI: 1.2-19.9, P =0.023), with 88% of success compared to 96% without free fluid ( P <0.001). The rate of treatment failure with nonoperative management during the first year of follow-up was 16.5%. Conclusion: Patients with AD presenting with pericolic free gas can be successfully managed nonoperatively in the vast majority of cases. Patients with both free pericolic gas and free pericolic fluid on a CT scan are at a higher risk of failing nonoperative management and require closer observation

    High–temporal resolution profiling reveals distinct immune trajectories following the first and second doses of COVID-19 mRNA vaccines

    Get PDF
    Knowledge of the mechanisms underpinning the development of protective immunity conferred by mRNA vaccines is fragmentary. Here, we investigated responses to coronavirus disease 2019 (COVID-19) mRNA vaccination via high–temporal resolution blood transcriptome profiling. The first vaccine dose elicited modest interferon and adaptive immune responses, which peaked on days 2 and 5, respectively. The second vaccine dose, in contrast, elicited sharp day 1 interferon, inflammation, and erythroid cell responses, followed by a day 5 plasmablast response. Both post-first and post-second dose interferon signatures were associated with the subsequent development of antibody responses. Yet, we observed distinct interferon response patterns after each of the doses that may reflect quantitative or qualitative differences in interferon induction. Distinct interferon response phenotypes were also observed in patients with COVID-19 and were associated with severity and differences in duration of intensive care. Together, this study also highlights the benefits of adopting high-frequency sampling protocols in profiling vaccine-elicited immune responses

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe
    corecore