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Abstract

The gray wolf (Canis lupus) expanded its distribution in Europe over the last few decades.

To better understand the extent to which wolves could re-occupy their historical range, it is

important to test if anthropization can affect their fitness-related traits. After having

accounted for ecologically relevant confounders, we assessed how anthropization influ-

enced i) the growth of wolves during their first year of age (n = 53), ii) sexual dimorphism

between male and female adult wolves (n = 121), in a sample of individuals that had been

found dead in Italy between 1999 and 2021. Wolves in anthropized areas have a smaller

overall variation in their body mass, during their first year of age. Because they already have

slightly higher body weight at 3–5 months, possibly due to the availability of human-derived

food sources. The difference in the body weight of adult females and males slightly

increases with anthropization. However, this happens because of an increase in the body

mass of males only, possibly due to sex-specific differences in dispersal and/or to “dispersal

phenotypes”. Anthropization in Italy does not seem to have any clear, nor large, effect on

the body mass of wolves. As body mass is in turn linked to important processes, like survival

and reproduction, our findings indicates that wolves could potentially re-occupy most of their

historical range in Europe, as anthropized landscapes do not seem to constrain such of an

important life-history trait. Wolf management could therefore be needed across vast spatial

scales and in anthropized areas prone to social conflicts.

Introduction

The presence of medium and large carnivores in anthropized environments increased over the

last few decades, due to urban sprawl and agricultural development in the Global South [1],

and a mix of socio-ecological dynamics and legal protection in the Global North [2–4].
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Therefore, a growing number of studies explored how well these species can adapt to increased

levels of human presence, to improve their conservation planning and reduce the risk of con-

flicts with human activities.

Anthropization was found to have three main effects over medium and large carnivores. In

some cases, anthropized environments are sub-optimal, due to decreased prey availability [5]

the influence of human activity and artificial nightlight on foraging [6,7], persistent human

disturbance [8], the impact of infrastructures on population connectivity and mortality [9,10],

disease transmission and competition with domestic dogs [11] and the risk of accidental intox-

ication [12]. These dynamics can in turn raise metabolic stress [13], and limit reproduction

and survival, thus creating source-sink dynamics with undisturbed areas [14].

On other occasions, carnivores prosper in anthropized environments, attaining higher

body sizes [15–17] and densities [18] than those reported for environments with no human

presence. Mostly because of reduced competition [19] and the exploitation of alternative food

sources [20,21].

Finally, on some other cases, effects are non-linear: moderate levels of anthropization seem

to be advantageous [22], or detrimental [13], compared to natural environments, but these

effects reverse as anthropization increases.

The expansion of the gray wolf (Canis lupus) in Italy and Europe calls for further research

to better forecast its future trajectory. Between early 1990s and mid 2010s wolves recolonized

marginal areas in Europe, due to increased forest cover and rural abandonment [3]. In Italy,

wolves were legally protected since 1976 and benefited from recovering forests and ungulates

for decades, progressively saturating undisturbed habitat patches [23] and then further

expanding into increasingly anthropized ecosystems, recovering most of their historical range.

Nowadays wolves occur in peri-urban areas and even the Po plain, one the areas in Europe

with the highest human density (above 650 inhabitants/Km2).

This dynamic in Italy was probably facilitated by the capacity of local wolf population to

cope with human presence, as well as to use food waste as a substitute for large ungulates, a

prey base that had been depleted for decades [24], and possibly also by the availability of feral

and stray dogs for reproduction [25]. These conditions were certainly different at some other

areas in Europe, where forest recovery was often less marked than in Italy [26], in turn ham-

pering connectivity between wolf populations [27]. And where wolves were less adapted to

human presence, by having been segregated in areas with low disturbance and a stable prey

base like in Poland [28,29], Estonia [30], Sweden [31] or Finland [32].

Provided that this heterogeneity in long-term selective pressures might have turned into a

different capacity of exploiting human-dominated landscapes, the situation between Italy and

other countries from Southern, Central and Eastern Europe, some of whom have indeed been

colonized by individuals from the Italian peninsula (e.g., France) [27], seems to be temporally

lagged, but following a rather similar trajectory. Wolves are progressively colonizing human-

dominated landscapes, initially with single dispersing individuals or couples [33–35], and then

either with source-sink dynamics [36,37] and or with well-established packs [38,39] a process

that in Italy has been observed 20–15 years ago. Therefore, understanding the suitability of

anthropized areas for wolves in Italy, a country where wolf colonization is at a more advanced

stage, could be pivotal to evaluate the extent to which the species could re-occupy its historical

range in Europe and to forecast the spatial scale of future mitigation measures or zonation pol-

icies [40].

Considered the ecology and behavior of the gray wolf, all the three scenarios are equally

plausible. In the first one, anthropized areas could be sub-optimal, because replacing large

ungulates with smaller prey [41] might raise the energetic costs of foraging, given limited

nutritional benefits and because wolves may suffer from disease transmission from domestic
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dogs [11]. Alternatively, anthropized areas could be favorable for wolves, which could exploit

large amounts of food waste [42]. Finally, wolves could show non-linear response to anthropi-

zation, as areas with intermediate level of anthropization could still offer large ungulates

together with domestic animals and food waste at the same time.

Considered the ecology of gray wolves, anthropization is likely to act through two mecha-

nisms. In the first year of age, anthropization acts on early-life conditions, like for most mam-

mals [43] affecting growth and in turn survival and the capacity to disperse and reproduce of

young wolves. While during their first month wolf pups could be fed with food waste, the role

of conventional prey become progressively more important as individuals approach adulthood

and hunting strategies are developed [44]. Thus, the extent to which a certain environment is

optimal for pups is measured by the strength of the temporal growth in body mass, net the

effect of total body length. If the environment provided more food sources, young wolves

would grow faster and the linear interaction would therefore be positive, reinforcing the effect

of age in days over body mass (positive interaction). On the other hand, if environments were

sub-optimal, young wolves would grow slower and the effect of age in days over body mass

would be weaker (negative interaction).

From the second year of age, when wolves complete their growth [45,46], anthropization is

likely to act through sexual dimorphism. Wolves are moderately dimorphic carnivores, with

males weighting around 20% more than females [47]. In wolves males are believed to be larger

than females both because they engage more often in intergroup aggressions [48], and because

they provide prey to lactating females and pups [49]. In facts, a larger body size is deemed to

improve either the hunting proficiency of male wolves [50] and their capacity to kill large prey

[51,52]. Considered that in anthropized areas adult wolves could exploit human food waste,

not relying uniquely on large prey, we predicted the size of both sexes to increase. However,

due to reduced selective pressures for larger body size needed to prey upon large ungulates, we

expected the size of adult males to increase less than that of females, leading to a decrease in

sexual dimorphism. This study is a first attempt to address these two effects of anthropization,

across a gradient of urbanized areas in central Italy and a time span of 22 years.

Methods

Study area

The study area encompasses the Emilia-Romagna region, the northern provinces of the Tus-

cany region, and the Gran Sasso and Monti della Laga National Park, in the Abruzzo region,

in Italy (Fig 1).

In Emilia-Romagna and Tuscany, two contiguous regions, a wolf population of at least 110

packs was estimated between 2012 and 2016 [53,54]. In the 90’s wolves were dived in two dis-

tinct sub-populations, one in the Apennine ridge and one in coastal and hilly part of central-

southern Tuscany and Latium, which subsequently merged as the species expanded its distri-

bution around 2013 [55]. In the Gran Sasso and Monti della Laga National Park available esti-

mates indicate a population of 11–14 packs [56]. Both areas suffered from wolf-dog

hybridization, conflicts with livestock and illegal wolf killing [53,57].

The landscape includes a variety of different ecosystems, ranging from coastal areas charac-

terized by Mediterranean maquis to temperate broad-leaved forests and sub-alpine grasslands

in the Apennines. In the study area, the human exodus from marginal rural areas at higher ele-

vations [58], produced a strong gradient of anthropization (Fig 1). The portion of the study

area in the Emilia-Romagna and Tuscany regions hosts a population of 8.2 million people,

across 45,438 km2 (180 inhabitants/km2), while the Gran Sasso and Monti della Laga park

spans across 1500 km2 with a population of 138,669 people (92.5 inhabitants/km2).

PLOS ONE Wolf body mass and landscape anthropization

PLOS ONE | https://doi.org/10.1371/journal.pone.0282232 June 1, 2023 3 / 18

https://doi.org/10.1371/journal.pone.0282232


The trophic niche of wolves in the study area remained quite broad over the last three

decades, being centered on wild/domestic ungulates [59–66] which are available throughout

the region, as Central Italy hosts among the highest densities of wild ungulates in Europe [24],

and key prey such as roe deer (Capreolus capreolus) and wild boar (Sus scrofa) are abundant

even in croplands and peri-urban areas [67]. However, urban areas are also rich in human

food waste. In Italy, each citizen produces between 46 and 127 kg of food waste on each year

[68], and waste collection is characterized by periodical inefficiencies and long collection

times, with waste sometimes piling up at garbage bins for days and thus becoming available to

wildlife (https://www.euronews.com/my-europe/2022/05/18/how-rome-s-rubbish-problem-

is-attracting-wild-boar-into-the-italian-capital).

Fig 1. Map of the study area, representing the human footprint index and provinces covered by data collection

(highlighted) in Italy. The Human Footprint Index was available under a CCBY 4.0 license from Venter et al. (2016,

see the references) [76].

https://doi.org/10.1371/journal.pone.0282232.g001
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Collection of dead wolves and laboratory analyses

Our dataset included 107 wolves from the Emilia-Romagna and Tuscany region, as well as 68

wolves from the Abruzzo region. All these animals were dead and recovered by local authori-

ties between 1999 and 2021. The proportion of males, the age of recovered wolves, the season

when they were found, and the number of roadkill were similar between Abruzzo and the Emi-

lia-Romagna/Tuscany region (S1 to S4 Figs). A complete overview about our sample is avail-

able in Table 1.

The age of each animal was estimated based on dental development, body size and weight

[69], dividing individuals between 1–12 months, 13–24 months or older. Until 24 months,

individuals were aged by assuming they were born on the 1st of May [70]. We also recorded

Table 1. Sample overview. Main attributes of the wolves that were analyzed within this study.

Age class

Females Males

First year of age 25 30

Second year of age 25 39

Third year of age, or higher 23 33

Causes of mortality

Females Males

Collisions with trains or vehicles 50 64

Persecution 8 11

Natural injuries 11 16

Pathologies 3 10

Unspecified 1 1

Year

1999 0 1

2000 0 0

2001 2 2

2002 0 1

2003 0 0

2004 2 3

2005 1 1

2006 0 0

2007 2 2

2008 0 1

2009 4 4

2010 4 4

2011 3 8

2012 3 5

2013 3 4

2014 4 6

2015 2 6

2016 3 3

2017 6 11

2018 12 9

2019 6 12

2020 12 13

2021 4 6

https://doi.org/10.1371/journal.pone.0282232.t001
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total length (from the nose to the junction of the tail), the length of the tarsus and tail, the

height of the ear, and chest and neck circumferences.

Out of our sample of 175 wolves, 11 of them had not been genetically tested for hybridiza-

tion with domestic dogs. Among tested individuals, only 8 wolves were recent hybrids.

As the research did not deal with live animals, but instead with animals that had already

been found dead, and then subjected to necropsy, it was not necessary to obtain the approval

from the animal research ethics committee of the University of Bologna. Moreover, as data

were collected by local authorities across the study area, often on public land, no permission to

access the study site was needed.

Individual genotyping and taxonomy of individual

Genetic investigation on carcasses were conducted by Istituto Superiore per la Protezione e la

Ricerca Ambientale—ISPRA. A portion of lingual muscular tissue was taken and stored in

95% ethanol to genetically determine the species of the examined canids and to detect a possi-

ble presence of genetic hybridization signatures [71,72].

Statistical analyses and hypotheses

Both for growth and dimorphish, the parameter of interest, which we then used as a response

variable in statistical modeling, was the body mass of individuals. Body mass is strongly related

to body condition, which, in mammals, is often measured as the ratio between body mass and

total body length [73,74]. We rather modeled the contribution of body length to body mass

through a linear predictor, as a covariate-based approach ensured a higher level of flexibility

compared to a ratio between the two measures, for example by allowing for non-linear rela-

tionships or heteroskedasticity [75].

Body mass was measured as the weight of dead individuals that had been recovered, in

kg. Urbanization was measured by means of the Human Footprint Index (hereinafter HFI),

obtained by combining multiple layers about man-made structures from satellite, at the res-

olution of 1 km [76]. The median HFI was calculated in a buffer with a radius of 6 km

around the point. This size corresponded to an area of approx. 113 km2 around the point,

reflecting the most recent estimates for the home range of the species reported in Italy

[77,78].

We controlled for candidate confounding variables, through the so-called “back door cri-

terion” [79]. A complete overview of candidate confounders, acting through some unob-

served mediating variables, is shown in the (S5 Fig), in the form of a Directed Acyclic

Graph.

We also controlled for some temporal variables that characterized sampling. The day of the

year could have affected the level of urbanization of recovered wolves, because human pres-

ence in natural environments, and the probability of recovering wolf carcasses, is higher dur-

ing summer or during the hunting season, which lasts from autumn and early winter. In adult

wolves, these seasons could also be characterized by a higher availability of prey, such as young

ungulates, compared to winter and spring. Moreover, our data collection covered 22 years and

thus we controlled for the year on which each wolf was found. As the wolf population steadily

expanded its distribution in Italy, wolves were forced to disperse more and more in urbanized

areas [80], while at the same time they could also have increased their average body condition

due to the increased abundance of prey species, such as large ungulates. Moreover, as our data

had been collected on two separate geographical blocks, corresponding to the Emilia-Roma-

gna/Tuscany and the Abruzzo region, we controlled for this spatial heterogeneity with a

dichotomous covariate.
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As we found that wolves in the Emilia-Romagna/Tuscany area had a more heterogeneous

total body length, we controlled for this variable also on the conditioned variance of total body

mass [81].

Models were fitted through the “brms” R package [82]. After a preliminary exploration of

body mass distribution, the response variable was modeled as a Student’s-t distribution which,

for wolves of one year of age, was truncated at zero. Explanatory variables were standardized

and centered, before being included in the model. For each parameter, we selected a moder-

ately informative prior distribution, corresponding to a Normal distribution with mean equal

to zero and a variance of one [83]. Models had 5000 MCMC iterations and a burn-in of 1000

iterations. Model selection was based on a backward approach, starting by the most complex

model with a spline term and removing one term per time, then comparing nested models by

means of leave-one-out cross validation [84].

We performed two types of sensitivity analyses. First, we tested for “collapsibility”, or the

extent to which our interaction terms of interest were susceptible to the removal of confound-

ers, that were deemed redundant by leave-one-out cross. Ideally, the removal of unnecessary

confounders should not have changed the posterior distribution of interaction terms that we

were interested in. Then, once we identified the best candidate model, we performed a sensi-

tivity analysis, by refitting models with the median HFI, calculated on buffers with a radius

between 4 and 16 km. This practice created circles with an area between 12 and 800 km2,

which exceeded the whole spectrum of values reported for the core area and the home range of

the species in Italy, which attains a maximum of approx. 400 km2 [77].

Results

The best candidate model predicting wolf growth during their first year explained 79.0% of

total variability in the body mass. The year when wolves were found was the only confounding

variable that was retained. The body mass of young wolves increased throughout their first

year of age but, net the effect of body length, the magnitude of this change was rather mild.

Moreover, the growth in body mass became further milder as anthropization increased

(Table 2, Fig 2).

The best candidate model predicting differences in body mass between adult male and

female wolves explained 57.8% of total variability in the response. The best candidate model

Table 2. Outputs of the best candidate model for body mass of wolves in their first year of age, and for adult

wolves. Anthropization is calculated on a buffer with a 6km radius around the points where animals had been found.

Body mass in wolves of 1 year of age

Estimate S.E. 95% Credibility Interval

Intercept 0.03 0.05 (-0.07)–(0.14)

Age in days 0.06 0.06 (-0.06)–(0.18)

Anthropization 0.03 0.06 (-0.08)–(0.13)

Year when animals were found -0.12 0.06 (-0.23)–(-0.01)

Total body length 0.75 0.07 (0.61)–(0.88)

Age in days * Anthropization -0.09 0.06 (-0.20)–(0.03)

Body mass in adult wolves.

Estimate S.E. 95% Credibility Interval

Intercept -0.36 0.09 (-0.53)–(-0.19)

Sex (Male) 0.58 0.12 (0.36)–(0.80)

Anthropization 0.08 0.10 (-0.13)–(0.28)

Total body length 0.59 0.06 (0.48)–(0.71)

Sex (Male) * Anthropization 0.15 0.13 (-0.12)–(0.40)

https://doi.org/10.1371/journal.pone.0282232.t002
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retained the area where individuals had been found as a confounder, and as a predictor of vari-

ability in body mass. The body mass of male wolves showed a mild increase, for increasing lev-

els of anthropization, but the body mass of females did not (Table 2, Fig 3). This decreased

predictive accuracy, compared to the model for wolves in their first year of age, probably

depended upon the impossibility of correctly aging individuals older than three years, and

thus to account for age-related variability in their body mass, which increases until 6–8 years

of age [85].

The removal of redundant confounding variables did not change the interactive effect

between anthropization and the age of wolves during their first year, nor the interaction

between anthropization and the sexual dimorphism in weight among adult wolves (S7 and S8

Figs, S1 and S2 Tables). Moreover, findings from best candidate models did not change, when

Fig 2. Interactive effect of anthropization and the age in days of recovered wolves of 1 year of age (n = 53). Plots correspond to the first (a), second

(b), third (c) and fourth (d) quartiles of the distribution of median Human Footprint Index, calculated in a buffer with a 6-km radius around the point

where animals were found. Plots (a) to (d) therefore corresponds to increasingly urbanized areas. Variables are standardized and centered.

https://doi.org/10.1371/journal.pone.0282232.g002

Fig 3. Interaction between anthropization and the sex of recovered adult wolves (n = 121). Plots correspond to the first (a), second (b), third (c) and

fourth (d) quartiles of the distribution of median Human Footprint Index, calculated in a buffer with a 6-km radius around the point where animals were

found. Plots (a) to (d) therefore corresponds to increasingly urbanized areas. Variables are standardized and centered.

https://doi.org/10.1371/journal.pone.0282232.g003
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calculating anthropization on buffers of different size (Animation S1, S2, available at https://

osf.io/g2jsv/). In both models, the analyses of model residuals indicated linear relationships

and the semivariogram did not highlight any residual isotropic spatial correlation (S8 to S13

and S14 to S17 Figs). The analysis of posterior predictive checks indicated that the Student’s-t

distribution was a suitable approximation for the response variable, and the posterior distribu-

tion of model parameters indicated model convergence.

Discussion

To the best of our knowledge, this research was among the first ones [22] assessing the impact

of anthropization over the body condition of a large carnivore, the gray wolf, which is occupy-

ing increasingly anthropized landscapes in Italy and Europe. While other studies proved that

the gray wolf can exploit foods resources characterizing anthropized environments [41,42], we

assessed if these environments can affect the body condition of individuals. Our analyses

focused on responses measured at the landscape scale, and we did not quantify resource selec-

tion or the effect of time-varying resource availability.

This question is non-trivial, because the increased availability of alternative food sources,

characterizing anthropized environments, does not automatically translate into an increased

body condition of large carnivores. While food waste is abundant and rather predictable in

space, thus decreasing foraging costs [86], its nutritional quality might be suboptimal, as it

includes a high proportion of carbohydrates which are not processed by wolves which, com-

pared to domestic dogs, are lacking alpha-amylase [87] and have different gut microbiotas [88].

Moreover, foraging in urban environments is influenced by human disturbance. For example,

multiple studies reported negative physiological responses of birds and mammals to human dis-

turbance, like increased oxidative stress or inflammation [89]. As for large carnivores, available

evidence indicates that avoidance of humans leads pumas (Puma concolor) living in anthro-

pized landscapes, to engage in energetically expensive, and inefficient, movement behavior [90].

Our findings provide preliminary evidence that wolves, at least in Italy, are capable to cope

with anthropized landscapes in a way which is different from what has been reported for other

large carnivores: anthropized landscapes seem not to have any clear effect on the body mass of

individuals, an important life-history trait. Or, most likely, anthropized landscapes do not

show any clear tradeoff between negative and positive effects.

As we adopted a Bayesian framework for inference, we did not use p-values [91]. Instead,

our considerations about effects being significant were based on their magnitude, which in our

case largely overlapped with zero.

The body mass of young wolves in our sample grew throughout their first year of age, net

the effect of an increase in total body length. This reflected an increase in their muscular mass

and fat, two components of body condition. However, this growth had only a very mild inter-

action with anthropization (Fig 2). More anthropized areas had young wolves experiencing a

smaller variation in their body mass during their first year, but which have higher body masses

at 3–5 months of age. This suggests a positive influence of human derived food sources in the

first months of life, i.e. when pup rising is entirely dependent from adults provisioning. This

pattern does not provide any clear evidence on whether anthropized environments are optimal

or suboptimal for young wolves in their first year of life. Perhaps anthropized environments

can provide an abundance of food resources which could be exploited by young wolves during

their first weeks, but less prey such as large ungulates which may be better to sustain individu-

als at 10–12 months. These differences could also be explained with a different size of wolf

packs. Anecdotical evidence indicates that anthropized environments in Italy might have

smaller packs often represented by a pair with pups. This strategy can be favorable in areas
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with fewer large prey [92] and a rich disposal of small food items, represented by garbage and

domestic pets, but might not pay out well in most of our study area, characterized by high den-

sities of ungulates [24].

The effect of anthropization over sexual dimorphism in adult wolves is also partially

unclear. While we expected dimorphism to decrease, we instead found a mild increase, as

areas became more anthropized, in the body mass of adult males (Fig 3). Most interestingly,

the increase in weight involved only male wolves, while females did not increase in body mass

at all, despite urbanized areas should be favorable to both sexes. Even if in large mammals it

was shown that food shortage/abundance may constrain/favor the growth of males and

females differentially (e.g., wild ungulates) [93], the lack of any increase in the weight of

females, under potentially favorable conditions, opens the way to n another explanation. In

wolves, dispersal seems to be more common for males [53,94] and in mammals, individuals

who disperse usually have a larger size, known as “dispersal phenotype” [95]. Considered the

progressive saturation of undisturbed habitats by wolf packs [23,80], the pool of dispersing

individuals, could have been constituted preferably by large males, which would have dis-

persed towards more anthropized areas and they could have entered our sample.

Assessing the effect of anthropization on the body mass of wolves is also an urgent question.

Body condition is strongly associated with reproduction [96] and survival in mammals, two

demographic parameters that are paramount for the long-term viability of populations. Con-

sidering the rapid expansion of the gray wolf in Europe, if anthropized environments do not

have any effect on the body mass of individuals, as suggested by our study, this could mean

that soon wolves could colonize, reproduce, and survive in a significant portion of their histor-

ical range in Europe despite a consistent recent urbanization. Thus, policies for co-existing

with them, such as zonation or mitigation measures [40], will be needed across vast spatial

scales and their implementation might generate a widespread social debate, as it might go

beyond rural areas [97].

Considered the potential impacts of a widespread wolf presence in anthropized landscapes

of Europe, our findings urgently call for replication studies, addressing two main points. First,

studies should replicate our analyses in other geographical areas. Wild ungulates are core prey

for wolves and our study covers some of the areas in Europe with the highest densities of ungu-

lates, whose populations increased over the last two decades and which became widespread

even in urbanized settings [98]. Other European countries faced a decrease in the wild boar, a

key prey, due to the African Swine Fever [99], have high numbers of unprotected livestock and

a different amount of waste in the environment. Thus, in these areas, the impact of anthropiza-

tion over the body mass of wolves can be different.

At the same time, we also emphasize the need for studies based on much larger samples.

While we found no significant effect of urbanization on the growth and sexual dimorphism of

wolves, considered our sample size we cannot rule out that an effect with a low magnitude

exists statistical power increases with sample size and nuanced interactions can be reliably

quantified only by analyzing thousands of individuals. In this study we did not perform power

analysis, because we had no prior knowledge about effect size and because we aimed to provide

only preliminary evidence. However, if other studies will adopt similar sample sizes, there will

be no significant advancement in terms of statistical power and it will be impossible to capture

small environmental effects, which could nevertheless be potentially important in the long

term. Moreover, large-scale data sharing initiatives are needed also to address two other limita-

tions of this study. First, the gray wolf is distributed across the entire Palearctic, inhabiting a

variety of different ecosystems, characterized by different prey assemblages, as well as different

interactions with humans. It is therefore possible that in these contexts the effect of anthropiza-

tion over fitness-related traits might differ from our findings, obtained in a Mediterranean
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country, being mediated by different behavioral, ecological, and evolutionary mechanisms. As

we explained in the Introduction, wolves in Italy had been subjected to higher and more pro-

longed anthropogenic pressures, than other populations in Europe. Like in the case of other

mammals, this could have favored the selection of specific personality traits [100] that subse-

quently allowed individuals to thrive in human-dominated landscapes [101]. For example, in

countries where wolves have always lived in areas with low human densities, individuals con-

sistently seem to avoid human settlements and activities [102,103]. It is also unclear the extent

to which hybridization with domestic dogs, which in Italy is high, could have made wolves

more capable of tolerating human disturbance or more capable of processing carbohydrates

and exploit food waste, as amylase activity is highly variable even among domestic dogs [104].

For example, although no evidence is available for gray wolves and domestic dogs, in North

America hybrids between wolves and coyotes (Canis latrans), a human-tolerant canid, select

more anthropized landscapes than wolves [105]. These findings, altogether with the fact that

our recovered wolves did not constitute a randomly selected sample, but perhaps included

individuals with some specifically shy personality traits, call for further research at the Euro-

pean scale. Apart from this, although our study focused on body mass, numerous studies has

shown that a combination of different morphometric measures can better quantify sexual

dimorphism [106]. Although these measures are usually collected from museum specimens, it

is not impossible to obtain them from animals that are found dead. As our findings raise seri-

ous questions about the potential expansion of wolves in Europe, research groups should pool

together their data through collaborative platforms, and improve their collection through har-

monized protocols, to address them.
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