834 research outputs found

    Remote manipulator dynamic simulation

    Get PDF
    A simulator to generate the real time visual scenes required to perform man in the loop investigations of remote manipulator application and design concepts for the space shuttle is described. The simulated remote manipulator consists of a computed display system that uses a digital computer, the electronic scene generator, an operator's station, and associated interface hardware. A description of the capabilities of the implemented simulation is presented. The mathematical models and programs developed for the simulation are included

    Ground State Electromagnetic Moments of <sup>37</sup>Ca

    No full text
    The hyperfine coupling constants of neutron deficient 37^{37}Ca were deduced from the atomic hyperfine spectrum of the 4s 2S1/24s~^2S_{1/2} ↔\leftrightarrow 4p 2P3/24p~^2P_{3/2} transition in Ca II, measured using the collinear laser spectroscopy technique. The ground-state magnetic-dipole and spectroscopic electric-quadrupole moments were determined for the first time as μ=+0.7453(72)μN\mu = +0.7453(72) \mu_N and Q=−15(11)Q = -15(11) e2e^2fm2^2, respectively. The experimental values agree well with nuclear shell model calculations using the universal sd model-space Hamiltonians versions A and B (USDA/B) in the sdsd-model space with a 95\% probability of the canonical nucleon configuration. It is shown that the magnetic moment of 39^{39}Ca requires a larger non-sdsd-shell component than that of 37^{37}Ca for good agreement with the shell-model calculation, indicating a more robust closed sub-shell structure of 36^{36}Ca at the neutron number NN = 16 than 40^{40}Ca. The results are also compared to valence-space in-medium similarity renormalization group calculations based on chiral two- and three-nucleon interactions

    Isolation of Flow and Nonflow Correlations by Two- and Four-Particle Cumulant Measurements of Azimuthal Harmonics in sNN=\sqrt{s_{_{\rm NN}}} = 200 GeV Au+Au Collisions

    Get PDF
    A data-driven method was applied to measurements of Au+Au collisions at sNN=\sqrt{s_{_{\rm NN}}} = 200 GeV made with the STAR detector at RHIC to isolate pseudorapidity distance Δη\Delta\eta-dependent and Δη\Delta\eta-independent correlations by using two- and four-particle azimuthal cumulant measurements. We identified a component of the correlation that is Δη\Delta\eta-independent, which is likely dominated by anisotropic flow and flow fluctuations. It was also found to be independent of η\eta within the measured range of pseudorapidity ∣η∣<1|\eta|<1. The relative flow fluctuation was found to be 34%±2%(stat.)±3%(sys.)34\% \pm 2\% (stat.) \pm 3\% (sys.) for particles of transverse momentum pTp_{T} less than 22 GeV/cc. The Δη\Delta\eta-dependent part may be attributed to nonflow correlations, and is found to be 5%±2%(sys.)5\% \pm 2\% (sys.) relative to the flow of the measured second harmonic cumulant at ∣Δη∣>0.7|\Delta\eta| > 0.7

    Elliptic flow of electrons from heavy-flavor hadron decays in Au+Au collisions at sNN=\sqrt{s_{\rm NN}} = 200, 62.4, and 39 GeV

    Full text link
    We present measurements of elliptic flow (v2v_2) of electrons from the decays of heavy-flavor hadrons (eHFe_{HF}) by the STAR experiment. For Au+Au collisions at sNN=\sqrt{s_{\rm NN}} = 200 GeV we report v2v_2, for transverse momentum (pTp_T) between 0.2 and 7 GeV/c using three methods: the event plane method (v2v_{2}{EP}), two-particle correlations (v2v_2{2}), and four-particle correlations (v2v_2{4}). For Au+Au collisions at sNN\sqrt{s_{\rm NN}} = 62.4 and 39 GeV we report v2v_2{2} for pT<2p_T< 2 GeV/c. v2v_2{2} and v2v_2{4} are non-zero at low and intermediate pTp_T at 200 GeV, and v2v_2{2} is consistent with zero at low pTp_T at other energies. The v2v_2{2} at the two lower beam energies is systematically lower than at sNN=\sqrt{s_{\rm NN}} = 200 GeV for pT<1p_T < 1 GeV/c. This difference may suggest that charm quarks interact less strongly with the surrounding nuclear matter at those two lower energies compared to sNN=200\sqrt{s_{\rm NN}} = 200 GeV.Comment: Version accepted by PR

    Charged-to-neutral correlation at forward rapidity in Au+Au collisions at sNN\sqrt{s_{NN}}=200 GeV

    Full text link
    Event-by-event fluctuations of the ratio of inclusive charged to photon multiplicities at forward rapidity in Au+Au collision at sNN\sqrt{s_{NN}}=200 GeV have been studied. Dominant contribution to such fluctuations is expected to come from correlated production of charged and neutral pions. We search for evidences of dynamical fluctuations of different physical origins. Observables constructed out of moments of multiplicities are used as measures of fluctuations. Mixed events and model calculations are used as baselines. Results are compared to the dynamical net-charge fluctuations measured in the same acceptance. A non-zero statistically significant signal of dynamical fluctuations is observed in excess to the model prediction when charged particles and photons are measured in the same acceptance. We find that, unlike dynamical net-charge fluctuation, charge-neutral fluctuation is not dominated by correlation due to particle decay. Results are compared to the expectations based on the generic production mechanism of pions due to isospin symmetry, for which no significant (<1%) deviation is observed.Comment: 14 pages, 6 figure

    Azimuthal anisotropy in U+U and Au+Au collisions at RHIC

    Full text link
    Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, v2{2}v_2\{2\} and v2{4}v_2\{4\}, for charged hadrons from U+U collisions at sNN\sqrt{s_{\rm NN}} = 193 GeV and Au+Au collisions at sNN\sqrt{s_{\rm NN}} = 200 GeV. Nearly fully overlapping collisions are selected based on the amount of energy deposited by spectators in the STAR Zero Degree Calorimeters (ZDCs). Within this sample, the observed dependence of v2{2}v_2\{2\} on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. An initial-state model with gluon saturation describes the slope of v2{2}v_2\{2\} as a function of multiplicity in central collisions better than one based on Glauber with a two-component multiplicity model.Comment: Final paper version accepted for publication in Phys. Rev. Lett. New version includes comparisons to a constituent quark glauber mode
    • …
    corecore