550 research outputs found

    AFM Application in III-Nitride Materials and Devices

    Get PDF

    Cytogenetic and molecular identification of a new wheat-Thinopyrum intermedium addition line with resistance to powdery mildew

    Get PDF
    Thinopyrum intermedium, which has many useful traits, is valuable for wheat breeding. A new wheat-Thinopyrum addition line, SN100109, was developed from the progeny of common wheat cultivar Yannong 15 and Th. intermedium. It was resistant to most races of Blumeria graminis f. sp tritici (Bgt), which caused powdery mildew in wheat, and its reactions were different from the reactions of gene Pm40 and Pm43. Genomic in situ hybridization (GISH) and molecular marker analysis were used to identify the genomic composition of SN100109. GISH results showed that SN100109 was a wheat-Th. intermedium disomic addition line containing one pair of J chromosomes, and the resistance gene was located on the alien additional chromosomes of SN100109. And four molecular markers BE425942, BF482714, Xgdm93 and BV679214 which were assigned to homologous group 2, were specific molecular markers of the additional chromosomes. All the results indicated that SN100109 contained one pair of 2J chromosomes. SN100109 can be used as a novel germplasm source for introducing powdery mildew resistance genes to wheat in breeding programs

    In-plane and Out-of-plane Plasma Resonances in Optimally Doped La1.84Sr0.16CuO4

    Full text link
    We addressed the inconsistency between the electron mass anisotropy ratios determined by the far-infrared experiments and DC conductivity measurements. By eliminating possible sources of error and increasing the sensitivity and resolution in the far-infrared reflectivity measurement on the single crystalline and on the polycrystalline La1.84Sr0.16CuO4, we have unambiguously identified that the source of the mass anisotropy problem is in the estimation of the free electron density involved in the charge transport and superconductivity. In this study we found that only 2.8 % of the total doping-induced charge density is itinerant at optimal doping. Our result not only resolves the mass anisotropy puzzle but also points to a novel electronic structure formed by the rest of the electrons that sets the stage for the high temperature superconductivity

    Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and Îœp nucleosynthesis processes

    Get PDF
    © 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∌10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr–Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous Îœp-process simulations.Peer reviewe

    Direct Measurements of the Branching Fractions for D0→K−e+ÎœeD^0 \to K^-e^+\nu_e and D0→π−e+ÎœeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0→K−e+ÎœeD^0 \to K^-e ^+\nu_e and D0→π−e+ÎœeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0→K−e+ÎœeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0→π−e+ÎœeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0→K−e+Îœe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0→π−e+Îœe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be ∣f+K(0)∣=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and ∣f+π(0)∣=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be ∣f+π(0)/f+K(0)∣=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons

    Full text link
    The branching fractions for the inclusive Cabibbo-favored ~K*0 and Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with the BES-II detector at the BEPC collider. The branching fractions for the decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 -> \~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X) < 6.6%
    • 

    corecore