11,072 research outputs found
New nuclear three-body clusters \phi{NN}
Binding energies of three-body systems of the type \phi+2N are estimated. Due
to the strong attraction between \phi-meson and nucleon, suggested in different
approaches, bound states can appear in systems like \phi+np (singlet and
triplet) and \phi+pp. This indicates the principal possibility of the formation
of new nuclear clusters
Diffusion tensor imaging of liver fibrosis in an experimental model
Posters - Metabolism Liver & Other 1: no. 4637Early diagnosis of liver fibrosis could facilitate early interventions and thus alleviate its progression to cirrhosis and/or hepatocellular carcinoma. Several studies have shown that measurement of water diffusivity by diffusion-weighted imaging (DWI) was useful in the evaluation of liver fibrosis and cirrhosis. The aim of this study was to characterize longitudinal changes in diffusion properties of liver using diffusion tensor imaging (DTI) in an experimental model of liver fibrosis. The experimental results in this study demonstrated that DTI could detect longitudinal changes in diffusion properties of liver in an experimental model of liver fibrosis.postprin
Recommended from our members
Ozone production in four major cities of China: sensitivity to ozone precursors and heterogeneous processes
Abstract. Despite a large volume of research over a number of years, our understandings of the key precursors that control tropospheric ozone production and the impacts of heterogeneous processes remain incomplete. In this study, we analyze measurements of ozone and its precursors made at rural/suburban sites downwind of four large Chinese cities – Beijing, Shanghai, Guangzhou and Lanzhou. At each site the same measurement techniques were utilized and a photochemical box model based on the Master Chemical Mechanism (v3.2) was applied, to minimize uncertainties in comparison of the results due to differences in methodology. All four cities suffered from severe ozone pollution. At the rural site of Beijing, export of the well-processed urban plumes contributed to the extremely high ozone levels (up to an hourly value of 286 ppbv), while the pollution observed at the suburban sites of Shanghai, Guangzhou and Lanzhou was characterized by intense in-situ ozone production. The major anthropogenic hydrocarbons were alkenes and aromatics in Beijing and Shanghai, aromatics in Guangzhou, and alkenes in Lanzhou. The ozone production was found to be in a VOCs-limited regime in both Shanghai and Guangzhou, and a mixed regime in Lanzhou. In Shanghai, the ozone formation was most sensitive to aromatics and alkenes, while in Guangzhou aromatics were the predominant ozone precursors. In Lanzhou, either controlling NOx or reducing emissions of olefins from the petrochemical industry would mitigate the local ozone production. The potential impacts of several heterogeneous processes on the ozone formation were assessed. The hydrolysis of dinitrogen pentoxide (N2O5), uptake of the hydroperoxyl radical (HO2) on particles, and surface reactions of NO2 forming nitrous acid (HONO) present considerable sources of uncertainty in the current studies of ozone chemistry. Further efforts are urgently required to better understand these processes and refine atmospheric models
Skeletal trade-offs in coralline algae in response to ocean acidification
Ocean acidification is changing the marine environment, with potentially serious consequences for many organisms. Much of our understanding of ocean acidification effects comes from laboratory experiments, which demonstrate physiological responses over relatively short timescales. Observational studies and, more recently, experimental studies in natural systems suggest that ocean acidification will alter the structure of seaweed communities. Here, we provide a mechanistic understanding of altered competitive dynamics among a group of seaweeds, the crustose coralline algae (CCA). We compare CCA from historical experiments (1981-1997) with specimens from recent, identical experiments (2012) to describe morphological changes over this time period, which coincides with acidification of seawater in the Northeastern Pacific. Traditionally thick species decreased in thickness by a factor of 2.0-2.3, but did not experience a change in internal skeletal metrics. In contrast, traditionally thin species remained approximately the same thickness but reduced their total carbonate tissue by making thinner inter-filament cell walls. These changes represent alternative mechanisms for the reduction of calcium carbonate production in CCA and suggest energetic trade-offs related to the cost of building and maintaining a calcium carbonate skeleton as pH declines. Our classification of stress response by morphological type may be generalizable to CCA at other sites, as well as to other calcifying organisms with species-specific differences in morphological types
An investigation of fast tool servo machining of optical microstructures
2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions
©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein
Virtual Compton Scattering off a Spinless Target in AdS/QCD
We study the doubly virtual Compton scattering off a spinless target
within the Anti-de Sitter(AdS)/QCD formalism. We find
that the general structure allowed by the Lorentz invariance and gauge
invariance of the Compton amplitude is not easily reproduced with the standard
recipes of the AdS/QCD correspondence. In the soft-photon regime, where the
semi-classical approximation is supposed to apply best, we show that the
measurements of the electric and magnetic polarizabilities of a target like the
charged pion in real Compton scattering, can already serve as stringent tests.Comment: 21 pages, version to be published in JHEP
Visual Working Memory Capacity Does Not Modulate the Feature-Based Information Filtering in Visual Working Memory
Background: The limited capacity of visual working memory (VWM) requires us to select the task relevant information and filter out the irrelevant information efficiently. Previous studies showed that the individual differences in VWM capacity dramatically influenced the way we filtered out the distracters displayed in distinct spatial-locations: low-capacity individuals were poorer at filtering them out than the high-capacity ones. However, when the target and distracting information pertain to the same object (i.e., multiple-featured object), whether the VWM capacity modulates the featurebased filtering remains unknown. Methodology/Principal Findings: We explored this issue mainly based on one of our recent studies, in which we asked the participants to remember three colors of colored-shapes or colored-landolt-Cs while using two types of task irrelevant information. We found that the irrelevant high-discriminable information could not be filtered out during the extraction of VWM but the irrelevant fine-grained information could be. We added 8 extra participants to the original 16 participants and then split the overall 24 participants into low- and high-VWM capacity groups. We found that regardless of the VWM capacity, the irrelevant high-discriminable information was selected into VWM, whereas the irrelevant fine-grained information was filtered out. The latter finding was further corroborated in a second experiment in which the participants were required to remember one colored-landolt-C and a more strict control was exerted over the VWM capacity
Optimization viewpoint on Kalman smoothing, with applications to robust and sparse estimation
In this paper, we present the optimization formulation of the Kalman
filtering and smoothing problems, and use this perspective to develop a variety
of extensions and applications. We first formulate classic Kalman smoothing as
a least squares problem, highlight special structure, and show that the classic
filtering and smoothing algorithms are equivalent to a particular algorithm for
solving this problem. Once this equivalence is established, we present
extensions of Kalman smoothing to systems with nonlinear process and
measurement models, systems with linear and nonlinear inequality constraints,
systems with outliers in the measurements or sudden changes in the state, and
systems where the sparsity of the state sequence must be accounted for. All
extensions preserve the computational efficiency of the classic algorithms, and
most of the extensions are illustrated with numerical examples, which are part
of an open source Kalman smoothing Matlab/Octave package.Comment: 46 pages, 11 figure
- …