

The HKU Scholars Hub

Title	Diffusion tensor imaging of liver fibrosis in an experimental model
Author(s)	Cheung, JSC; Fan, SJ; Gao, DS; Man, K; Wu, EX
Citation	The ISMRM-ESMRMB Joint Annual Meeting 2010, Stockholm, Sweden, 1-7 May 2010.
Issued Date	2010
URL	http://hdl.handle.net/10722/129711
Rights	Creative Commons: Attribution 3.0 Hong Kong License

Diffusion Tensor Imaging of Liver Fibrosis in an Experimental Model

J. S. Cheung^{1,2}, S. J. Fan^{1,2}, D. S. Gao^{1,2}, K. Man³, and E. X. Wu^{1,2}

¹Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China, People's Republic of, ²Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China, People's Republic of, ³Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong SAR, China, People's Republic of

Introduction

Though percutaneous liver biopsy is considered the gold standard for assessing liver fibrosis, its utility as **SCOUT** a tool for longitudinal monitoring has been limited because repeated biopsies of liver are not practicable clinically¹. Early diagnosis of liver fibrosis could facilitate early interventions and thus alleviate its progression to cirrhosis and/or hepatocellular carcinoma². Therefore, noninvasive imaging technique is needed to detect liver fibrosis at early stage and monitor the disease progression or treatment effects³ Several studies have shown that measurement of water diffusivity by diffusion-weighted imaging (DWI) was useful in the evaluation of liver fibrosis and cirrhosis⁴⁻⁸. The aim of this study was to characterize ADC longitudinal changes in diffusion properties of liver using diffusion tensor imaging (DTI) in an experimental model of liver fibrosis.

Methods

Animal Procedures: Liver fibrosis was induced in male Sprague-Dawley (SD) rats (220-260 g; N = 8) by subcutaneous injection of 1:1 mixture of CCl₄ in olive oil at a dose of 0.2mL/100g of body weight twice a week for 4 weeks^{9,10}. Animals were scanned before, 2 and 4 weeks after CCl₄ insult.

In Vivo MRI: MRI experiments were performed on a 7T Bruker MRI scanner with a 60 mm RF Tx/Rx quadrature resonator. Animals were fasted before scanning to reduce peristalsis. Each animal was anesthetized with ~1.5% isoflurane and maintained at about 36.5°C with respiratory monitoring. DTI was performed on one axial slice passing through the liver with respiratory-gated single-shot spin-echo echo-planar imaging (SE-EPI) sequence using TR = 2 respiratory cycles (~2.0-2.5 s), TE = 32 ms, two bvalues were used (0 and 1000 s/mm²) for 6 diffusion gradient directions. FOV = 5.12×5.12 cm², slice thickness = 2 mm, acquisition matrix = 64×64 , voxel size = $0.8 \times 0.8 \times 2$ mm³, NEX = 10, and total scan time of ~3 min. The DTI acquisition was repeated twice, and measurements of parameters were averaged. Fig. 1. Scout images (top row), ADC (middle row), and FA Data Analysis: DW images were first co-registered using AIR5.2.5¹¹. Apparent diffusion coefficient (bottom row) maps from one animal before, 2 and 4 weeks (ADC), fractional anisotropy (FA) and directional diffusivity (ADC// and ADC_) maps were generated after CCl4 insult. ADC (in mm²/s) and FA maps are displayed using DTIStudio¹². A large region of interest (ROI) was defined in the anatomical scout image to in the same scale for different time points encompass a large homogeneous region of liver parenchyma for DTI measurements. One-way ANOVA was employed to compare differences in parameters among different time points, with P values less than 0.05 were considered statistically significant.

Histology: Of the 8 animals scanned at 2 weeks after CCl4 insult, 2 were sacrificed after MRI for histological analysis. 4 weeks after CCl₄ insult, 2 of the remaining 6 animals were sacrificed after MRI. Furthermore, one normal animal was sacrificed as a control. The livers were embedded in paraffin, sectioned, and examined by light microscopy after standard hematoxylin-eosin (H&E) staining. Results

Fig. 1 shows the representative anatomical scout images, ADC maps and FA maps of liver before, 2 and 4 weeks after CCl4 insult. ADC, FA, ADC//, and ADC+ values of different time points of CCl4 insult are shown in Fig. 2. Significant decrease was found for ADC 2 weeks (P < 0.05) and 4 weeks (P < 0.01) after CCl₄ insult. FA at 2 weeks after CCl₄ insult was significantly lower than that before (P < 0.01) and 4 weeks after (P < 0.05) the insult. Compared with normal liver, collagen depositions and widespread fat $\stackrel{\circ}{=}$ 1.0 vacuoles were consistently observed in livers after CCl₄ insult, as shown in Fig. 3. Cell necrosis/apoptosis was evident in liver after 2-week CCl₄ insult (Fig. 3b), while collagen depositions were more pronounced in liver after 4 week of CCl4 insult.

Discussions

The histological observations confirmed established liver fibrosis in the animals studied. Despite the Fig. 2. ADC, FA, ADC_{\parallel} and ADC_{\perp} values of animals 0 potential water diffusivity increase caused by cell necrosis/apoptosis, ADC was observed to be (before injury), 2 and 4 weeks after CCl4 insult. One-way decreasing gradually after CCl₄ insult, probably due to the increased extracellular collagen deposition and intracellular fat droplets during the progression of liver fibrosis (Fig. 3b and 3c). FA decrease at 2

weeks after CCl₄ insult resulted from the significant decrease of ADC_{//} (P < 0.01). This was likely due to the prominent cell necrosis/apoptosis occurred (Fig. 3b), perturbing water diffusion along the radially oriented hepatic architecture. The subsequent FA increase at 4 weeks after CCl₄ insult arose from the significant decrease of ADC \perp (P < 0.01) thereafter. This might be caused by the pronounced extracellular collagen depositions (Fig. 3c), leading to decreased water diffusivity in the more isotropic extracellular compartment. Conclusion

Fig. 3. Typical H&E staining of normal liver (a), and livers subjected to 2-week (b) and 4-week (c) CCl₄ insult. Collagen depositions (green arrows), fat vacuoles (blue arrows), and cell necrosis/apoptosis (black arrows) were observed in The experimental results in this study insulted livers.

demonstrated that DTI could detect longitudinal changes in diffusion properties of liver in an experimental model of liver fibrosis. Therefore, DTI may be valuable in detecting liver fibrosis at early phase and monitoring its progression.

References [1] Bataller R et al. J Clin Invest 2005;115:209-218. [2] Poynard T et al. Hepatology 2000;32:1131-1137. [3] Afdhal NH et al. Am J Gastroenterol 2004;99:1160-1174. [4] Koinuma M et al. J Magn Reson Imaging 2005;22:80-85. [5] Annet L et al. J Magn Reson Imaging 2007;25:122-128. [6] Lewin M et al. Hepatology 2007;56:658-665. [7] Girometti R et al. J Magn Reson Imaging 2008;28:411-419. [8] Taouli B et al. J Magn Reson Imaging 2008;28:89-95. [9] Constandinou C et al. Methods Mol Med 2005;117:237-250. [10] Man K et al. AM J Transplant 2005;5:40-49. [11] RP Woods et al. J Comput Assist Tomogr 1998;22:139-152. [12] H Jiang et al. Comput Methods Programs Biomed 2006;81:106-116.

ANOVA was performed with ** for P < 0.01, * for P < 0.05, and n.s. for insignificance.