1,428 research outputs found

    On the Ricci dark energy model

    Full text link
    We study the Ricci dark energy model (RDE) which was introduced as an alternative to the holographic dark energy model. We point out that an accelerating phase of the RDE is that of a constant dark energy model. This implies that the RDE may not be a new model of explaining the present accelerating universe.Comment: 8 page

    Exact solutions in a scalar-tensor model of dark energy

    Full text link
    We consider a model of scalar field with non minimal kinetic and Gauss Bonnet couplings as a source of dark energy. Based on asymptotic limits of the generalized Friedmann equation, we impose restrictions on the kinetic an Gauss-Bonnet couplings. This restrictions considerable simplify the equations, allowing for exact solutions unifying early time matter dominance with transitions to late time quintessence and phantom phases. The stability of the solutions in absence of matter has been studied.Comment: 30 pages, 2 figures, to appear in JCA

    Potential-driven Galileon inflation

    Full text link
    For the models of inflation driven by the potential energy of an inflaton field ϕ\phi, the covariant Galileon Lagrangian (∂ϕ)2□ϕ(\partial\phi)^2\Box \phi generally works to slow down the evolution of the field. On the other hand, if the Galileon self-interaction is dominant relative to the standard kinetic term, we show that there is no oscillatory regime of inflaton after the end of inflation. This is typically accompanied by the appearance of the negative propagation speed squared cs2c_s^2 of a scalar mode, which leads to the instability of small-scale perturbations. For chaotic inflation and natural inflation we clarify the parameter space in which inflaton oscillates coherently during reheating. Using the WMAP constraints of the scalar spectral index and the tensor-to-scalar ratio as well, we find that the self coupling λ\lambda of the potential V(ϕ)=λϕ4/4V(\phi)=\lambda \phi^4/4 is constrained to be very much smaller than 1 and that the symmetry breaking scale ff of natural inflation cannot be less than the reduced Planck mass MplM_{\rm pl}. We also show that, in the presence of other covariant Galileon Lagrangians, there are some cases in which inflaton oscillates coherently even for the self coupling λ\lambda of the order of 0.1, but still the instability associated with negative cs2c_s^2 is generally present.Comment: 22 pages, 15 figure

    Treatment of backscattering in a gas of interacting fermions confined to a one-dimensional harmonic atom trap

    Full text link
    An asymptotically exact many body theory for spin polarized interacting fermions in a one-dimensional harmonic atom trap is developed using the bosonization method and including backward scattering. In contrast to the Luttinger model, backscattering in the trap generates one-particle potentials which must be diagonalized simultaneously with the two-body interactions. Inclusion of backscattering becomes necessary because backscattering is the dominant interaction process between confined identical one-dimensional fermions. The bosonization method is applied to the calculation of one-particle matrix elements at zero temperature. A detailed discussion of the validity of the results from bosonization is given, including a comparison with direct numerical diagonalization in fermionic Hilbert space. A model for the interaction coefficients is developed along the lines of the Luttinger model with only one coupling constant KK. With these results, particle densities, the Wigner function, and the central pair correlation function are calculated and displayed for large fermion numbers. It is shown how interactions modify these quantities. The anomalous dimension of the pair correlation function in the center of the trap is also discussed and found to be in accord with the Luttinger model.Comment: 19 pages, 5 figures, journal-ref adde

    Charged Higgs Observability Through Associated Production With W at a Muon Collider

    Full text link
    The observability of a charged Higgs boson produced in association with a W boson at future muon colliders is studied. The analysis is performed within the MSSM framework. The charged Higgs is assumed to decay to tb and a fully hadronic final state is analyzed, i.e., mu+mu- \rightarrow H\pmW\mp \rightarrow tbW \rightarrow WbbW \rightarrow jjjjbb. The main background is tt production in fully hadronic final state which is an irreducible background with very similar kinematic features. It is shown that although the discovery potential is almost the same for a charged Higgs mass in the range 200 GeV < mH\pm < 400 GeV, the signal significance is about 1sigma for tanbeta = 50 at integrated luminosity of 50 fb-1. The signal rate is well above that at e+e- linear colliders with the same center of mass energy and enough data (O(1 ab-1)) will provide the same discovery potential for all heavy charged Higgs masses up to mH\pm \sim 400 GeV, however, the muon collider cannot add anything to the LHC findings.Comment: 18 pages, 11 figure

    Does entropic force always imply the Newtonian force law?

    Full text link
    We study the entropic force by introducing a bound S≤A3/4S \le A^{3/4} between entropy and area which was derived by imposing the non-gravitational collapse condition. In this case, applying a modified entropic force to this system does not lead to the Newtonian force law.Comment: 11 pages, version to appear in EPJ

    Cosmological constraints on extended Galileon models

    Full text link
    The extended Galileon models possess tracker solutions with de Sitter attractors along which the dark energy equation of state is constant during the matter-dominated epoch, i.e. w_DE = -1-s, where s is a positive constant. Even with this phantom equation of state there are viable parameter spaces in which the ghosts and Laplacian instabilities are absent. Using the observational data of the supernovae type Ia, the cosmic microwave background (CMB), and baryon acoustic oscillations, we place constraints on the tracker solutions at the background level and find that the parameter s is constrained to be s=0.034 (-0.034,+0.327) (95% CL) in the flat Universe. In order to break the degeneracy between the models we also study the evolution of cosmological density perturbations relevant to the large-scale structure (LSS) and the Integrated-Sachs-Wolfe (ISW) effect in CMB. We show that, depending on the model parameters, the LSS and the ISW effect is either positively or negatively correlated. It is then possible to constrain viable parameter spaces further from the observational data of the ISW-LSS cross-correlation as well as from the matter power spectrum.Comment: 17 pages, 9 figures, uses RevTeX4-

    Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard

    Get PDF
    This research was supported by the Australian Research Council, the ImPACT Program of the Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), the RIKEN iTHES Project, the MURI Center for Dynamic Magneto-Optics, a Grant-in-Aid for Scientific Research (type A), and the State of Bavaria.Exciton-polaritons are hybrid light-matter quasiparticles formed by strongly interacting photons and excitons (electron-hole pairs) in semiconductor microcavities. They have emerged as a robust solid-state platform for next-generation optoelectronic applications as well as for fundamental studies of quantum many-body physics. Importantly, exciton-polaritons are a profoundly open (that is, non-Hermitian) quantum system, which requires constant pumping of energy and continuously decays, releasing coherent radiation. Thus, the exciton-polaritons always exist in a balanced potential landscape of gain and loss. However, the inherent non-Hermitian nature of this potential has so far been largely ignored in exciton-polariton physics. Here we demonstrate that non-Hermiticity dramatically modifies the structure of modes and spectral degeneracies in exciton-polariton systems, and, therefore, will affect their quantum transport, localization and dynamical properties. Using a spatially structured optical pump, we create a chaotic exciton-polariton billiard-a two-dimensional area enclosed by a curved potential barrier. Eigenmodes of this billiard exhibit multiple non-Hermitian spectral degeneracies, known as exceptional points. Such points can cause remarkable wave phenomena, such as unidirectional transport, anomalous lasing/absorption and chiral modes. By varying parameters of the billiard, we observe crossing and anti-crossing of energy levels and reveal the non-trivial topological modal structure exclusive to non-Hermitian systems. We also observe mode switching and a topological Berry phase for a parameter loop encircling the exceptional point. Our findings pave the way to studies of non-Hermitian quantum dynamics of exciton-polaritons, which may uncover novel operating principles for polariton-based devices.PostprintPeer reviewe
    • …
    corecore