
  

 

Abstract— We present a case study of an industrial-strength 
time-dependent and stochastic routing system, which makes use 
of predicted travel times for road networks. Next to a short 
theoretical consideration, the major focus of this research was 
on the practical implementation of the system, which aims at 
efficiently routing in a road network making use of stochastic 
travel time information. Using historical measurements 
collected by cell phone and GPS tracking techniques, we derive 
time-dependent travel time probability distributions for all 
links in our network. Making use of these distributions, one can 
accurately determine the travel time distributions for whole 
routes. In this way, the chance of arriving in time at the 
destination can be optimized. Moreover, a number of 
suggestions, not yet implemented due to various causes, for 
extending and improving the platform are presented. The 
results of this work are deployed by the industrial partners 
involved in this research. 

 

I. INTRODUCTION 

This article presents a practical time-dependent and 
stochastic routing system which was developed for the IBBT 
ICON project MobiRoute [1]. The goal of this project is to 
optimize routing by taking into account historical, actual and 
predicted travel time data. 

A time-dependent and stochastic routing algorithm has 
been developed, starting from well-known shortest path 
algorithms such as the algorithm of Dijkstra [2], which 
makes use of a single link cost (for example the financial 
cost, the travel time, the ecological cost, etc.). In reality, link 
costs, more specifically travel time, are dependent upon the 
time of the day. Traversing an important highway link in the 
rush hour (with a lot of traffic jams) will consume 
significantly more time than traversing that same link at 
night. One option to deal with this is replacing the single 
link costs with travel time functions. Algorithms, which 
make use of this time-dependent information, are called 
time-dependent routing algorithms. An overview of most 
commonly used time-dependent shortest path algorithms is 
given in [3]. Most of these algorithms originate from a 
modified Dijkstra algorithm [4], in which labels are updated 
according to the departure time in the origin. In order to 
calculate the time-dependent shortest routes for a whole day, 
a label-correcting algorithm [5] has been developed that 
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avoids iteratively applying this time-dependent path 
algorithm for every time of day.  

While routing time-dependently provides more accurate 
results, it does not take into account that, especially in road 
networks, the travel times of the different links are 
influenced by random factors (individual driver's behavior, 
weather conditions, accidents). By making use of stochastic 
distributions, one can solve this uncertainty problem. Instead 
of a two-dimensional cost function, links now have assigned 
to them a three-dimensional function, which contains a 
travel time distribution for every time of day.  

The stochastic shortest path problem first started to 
attract attention in the 70's, where a number of theoretical 
solutions have been proposed ([6] and [7]). Hall [8] was the 
first to address the time-dependent stochastic shortest path 
routing problem in a more practical way by proposing an 
algorithm which calculates the routes with the least expected 
travel time. He demonstrates that routing stochastically 
brings on a new spectrum of problems. Fu and Rilett [9] 
further investigated the problem of stochastic routing and 
proposed an expected travel time approximation making use 
of Taylor series. In [10], a promising stochastic shortest path 
problem is presented. Unfortunately the complexity of this 
algorithm is exponential, which makes it unusable for large 
transportation networks. 

In this paper we present a case study of a routing system, 
which makes use of historical data, to predict the travel 
times. The routes are calculated combining time-dependent 
and stochastic aspects, which means that the user, providing 
an origin, destination and departure time, receives the best 
route at this time together with a distribution of the expected 
travel time. In the next section the context of this research is 
described, together with an overview of the available 
resources. Section 3 gives a global overview of the routing 
system, while a more detailed discussion can be found in 
section 4. In the following section, some experimental 
results are presented to demonstrate the operation and some 
characteristics of the system. Section 6 then focuses on some 
optimization measures for the future system. We end this 
article with a conclusion. 

II. CONTEXT AND RESOURCES 

In order to better understand this paper, and appreciate 
the approach taken to tackle the problems, it is necessary to 
describe in some detail the context of our work. Since a few 
years, a major industrial player conquered the commercial 
field of traffic information by providing up-to-date and real-
time information on the current status of traffic flow on the 
road network in Belgium. Next to that, they also provide a 
limited service of traffic forecasting. An interesting way to 
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achieve this has proven to be very successful in measuring 
the actual throughput on any given moment of the day: they 
have a business agreement with one of the major cellular 
phone providers in the country, from which they receive 
real-time handover timings of cellular phones. This means 
that all phone subscribers are continuously tracked 
(anonymously), allowing to trace their routes and to measure 
the time it took to drive each road segment. This is done by 
complex calculations involving triangulation and the 
mapping of the signals on roadmaps. In practice, there are 
lots of phone users driving, which do provide timings on 
how long it takes to drive a certain segment of our road 
network. This allows not only for knowledge about current 
traffic jams, but collecting all this data provides an 
enormous amount of historical travel time data, which 
enables accurate predictions for future jams.  

The company contacted our research group, in order to 
develop a route planner which does take into account the 
historical data, and provides accurate estimates for the travel 
times together with uncertainty intervals. Indeed, it is 
perceived that a large number of people using route planners 
are not interested in the shortest route from A to B, but the 
fastest route, together with an uncertainty interval which 
indicates the chances of delay. The company provided us 
with a road network consisting of 53010 nodes and 96286 
directed links between these nodes. Together with this, a 
database of timing measurements was provided in the form 
of data from 10 Tuesdays throughout the year. For every 15 
minutes an average of the measurements was calculated. 
Together this made up for 96286 * 10 * 4 * 24 data-items, 
each representing the travel time measured in seconds. 
Taking everything together, this made up about 2GB of 
unprocessed data files. Sometimes measurements were 
missing (due to external measurement system failures) and 
in such cases the values were interpolated. 

The aim was to develop an industrial-strength (i.e. 
realistic and robust) commercial platform for probabilistic 
routing. To that aim, we had to make sure that the data 
structures and algorithms are both robust and scalable. 
Where necessary, a trade-off was made between theoretical 
issues and practical feasibility. We developed the system 
using a Java platform running on a stock PC with an Intel 
Dual Core 2.4GHz and 3.5GB RAM. 
 

III. GLOBAL SYSTEM OVERVIEW 
In the literature, mathematical solutions to the problem at 
hand have been proposed. Often, these are technically 
entirely correct, but suffer from the fact that they are not 
really practical: typically the computation times or memory 
constraints do not allow an industrial-strength deployment. 
Therefore, in this paper, we develop a theory which trades 
off mathematical rigor to practical usability. 
Figure 1 gives an overview of the system. Three major 
operations can be distinguished: data processing, graph 
modeling and stochastic routing. In this section we will 
shortly address each of them separately, while in the next 
section a more detailed discussion will be provided. 

 
Figure 1 System Overview 

A. Data Processing 
In the data processing step, raw historical data is 
transformed into distributions. A distribution needs to be 
determined for every link for every predefined timeslot of 
the day. It should be noted that in order to accurately predict 
these data points not only the measurement data of the 
current (predicted) timeslot should be taken into account but 
also the data of the neighboring timeslots. Nevertheless, this 
data should have a lower impact on the prediction than the 
data of the predicted timeslot. In this way, the predicted 
distribution of the travel time for timeslot 𝑝 can be modeled 
as 

𝑣(𝑝) =  
∬ 𝐺𝑝(𝑥,𝑦)𝐷(𝑥,𝑦)𝑑𝑥𝑑𝑦∞
−∞

∬ 𝐺𝑝(𝑥,𝑦)𝑑𝑥𝑑𝑦∞
−∞

 

where 𝐺𝑝(𝑥,𝑦) represents a weight function which states 
that the values of the specific timeslot are more important 
than the values of the neighboring timeslots. The function 
𝐷(𝑥,𝑦) is a density function which represents the measured 
data points. The denominator normalizes the predicted 
distribution. An example of a good weight function is 
depicted in Figure 2, where the original data points are 
shown in the horizontal plane. To predict the distribution of 
a different timeslot, the weight function 𝐺𝑝(𝑥,𝑦) is shifted 
parallel with the time axis. It should be noted that a 
distribution needs to be predicted for every link and for 
every timeslot. That means that if 𝑉 is the number of links 
and 𝑇 is the number of timeslots, 𝑉 ∗ 𝑇 distributions need to 
be calculated. 

 

 
Figure 2 Example Weight Function 

B. Graph Modeling 
Following most common graph models, the graph contains a 
set of nodes, representing geographic locations, together 
with a set of links connecting them. As the routing, 
presented in this paper, is both time-dependent and 
stochastic, special attention should be paid to link cost 
modeling. In our graph model every link has assigned to it a 
number of distributions, namely one for every timeslot. The 



  

amount of disk space needed to store the link costs is both 
dependent upon the number of timeslots, i.e. the granularity, 
and the size needed to store one distribution. It should be 
noted that the storage space needed for the complete network 
is consumed almost entirely by these link costs.  

C.  Stochastic Routing 
This is the main operation of the system, which calculates 
the stochastic shortest route for a given origin, destination 
and departure time. The starting point of this module is the 
algorithm of Dijkstra [2], i.e. the most common shortest path 
algorithm. This is a label setting algorithm, in which in each 
iteration the temporary node with the best label is made 
permanent and the labels of its neighbors are updated. In 
order to deal with stochastic travel times, two aspects of this 
algorithm need to be redesigned: calculating new labels and 
determining the best label out of a set.  
Calculating a new label means combining a label (stochastic 
distribution) with a travel time distribution. We will 
distinguish two extreme cases: all links are correlated or all 
links are completely uncorrelated. Links are correlated if the 
traffic on one link has an influence on the traffic on the other 
link. This is for example the case on a highway where a 
traffic jam on one part (i.e. link) has an impact on the traffic 
of the neighboring parts. Nevertheless, in a realistic 
transportation network some of the links are correlated, 
while others are not, and the exact value lies somewhere 
between the two extremes presented here. Determining the 
exact correlations between all links would have a major 
impact on the calculation time. For correlated distributions 
the pointwise sum should be used, while for combining 
completely uncorrelated distributions, the convolution 
product can be applied. It should be noted that a convolution 
product consumes remarkably more calculation time than a 
pointwise sum. For a more detailed discussion of the 
convolution product and the pointwise sum, we would like 
to refer to the following section.  
To determine the best distribution from a set, a comparison 
measure needs to be defined. For simplicity reasons, we 
opted to compare the 50% percentiles. In this way, the 
median values of the distributions are compared. If, at the 
other hand, the user wants routes with more certainty to 
arrive in time, the 90% percentiles can be used for 
comparison. This will be discussed in more detail in the 
following section. 

IV. DETAILED FRAMEWORK: OPTIMIZED DATA 
STRUCTURES AND ALGORITHMS 

In the previous section a general overview of the system 
was given. In this section we will elaborate further on the 
concepts mentioned there, enabling a practical 
implementation of the system. Translating the theoretical 
system to a practical efficient implementation here means 
implementing discrete versions of the traditional techniques 
of calculus.  

We make use of a specific data structure to model the 
stochastic (cumulative) distributions and then adapt a label 
setting algorithm in order to work with this stochastic 
information.  

A.  Data Processing 
The question that should be answered here is how to 

transform a large amount of data into a number of discrete 
distributions. First of all, a discrete distribution model needs 
to be defined, which is a tradeoff between the accuracy of 
the information and the storage space needed for it. Since we 
are working with actual measured data and we do not want 
to impose one standard stochastic distribution (defined by a 
number of parameters), we will define a distribution by a 
number of actual values. The more data points that are stored 
for a distribution, the more storage space is consumed, but 
limiting the storage size (in the extreme case to one single 
value) has a negative effect on the accuracy of the 
information. A distribution in our system is represented by 𝑛 
values, namely 𝑛 predefined precentiles of the accumulated 
distribution. Experiments have shown that a distribution 
with 5 values is a good tradeoff between storage needs and 
accuracy, namely the 10%, the 30%, the 50%, the 70% and 
the 90% percentiles. The x% percentile having a certain 
value means that there is x% chance that traversing the link 
will take no longer than the given value. To determine these 
percentiles, all values need to be ordered, resulting in the x% 
percentile on the 𝑛.𝑥

100
-th place, with 𝑛 the number of data 

points. If this number 𝑛.𝑥
100

 is not an integer, a weighted 
average of the neighboring values is used. 

Instead of ordering the complete list of values and then 
determining the according percentiles, order statistics [11] 
can be used, which speed up calculations, as the data only 
needs to be ordered partially.  

B. Graph Modeling 
As common practice, our graph model consists of a 

number of nodes together with a number of directed links, 
connecting these nodes. These links have cost objects 
assigned to them. An overview of the data structures is given 
in Figure 3. 

 
Figure 3 Data Structures of the Graph Model 

A cost object contains a distribution for every time of the 
day. To translate the time to the discrete domain, we opted 
for dividing the day in predefined number of timeslots. 
According to the historical data at hand, timeslots of 15 
minutes were used, leading to days of 96 timeslots. As 
mentioned before, distributions consist of 5 values which 
means that 5*96=480 values need to be stored in a cost 
object of a single link. It should be noted that, concerning 
storage capabilities, most space is consumed by the cost 
objects, as can also be seen in Figure 3.  

The network data at hand is data which is used in a 
number of commercial route planners. It contains a realistic 



  

version of the Belgian road network. As driving time data 
can only be measured on the most important, i.e. high level, 
roads, the first mile data, i.e. the data of the small streets that 
lead to the houses in residential areas, was omitted. Adding 
this data to the system would have no real impact, except for 
small storage issues, as these links have single travel time 
values since no measurements and thus no distributions are 
available. The first mile route then can be calculated using 
the standard shortest path algorithm of Dijkstra. 

C. Stochastic Routing 
As mentioned before, a time-dependent stochastic 

shortest path algorithm was developed, based on the 
algorithm of Dijkstra [2]. The main difference lies in the 
way the labels are calculated. The original algorithm of 
Dijkstra demands a graph with single cost values for every 
link. A tentative label of node 𝑏 then is calculated as 
follows: 

𝐿(𝑏) = 𝐿(𝑎) +  𝐶((𝑎, 𝑏)) 
where 𝐿(𝑎) represents the label of the previous node 𝑎 and 
𝐶((𝑎, 𝑏)) is the cost of link (𝑎, 𝑏). When routing time-
dependently, this cost is dependent upon the starting time 𝑡𝑠 
in the origin node, which leads to 

𝐿(𝑏) =  𝐿(𝑎) + 𝐶((𝑎, 𝑏), (𝑡𝑠 + 𝐿(𝑎))) 
where 𝐶((𝑎, 𝑏),𝑇) represent the cost of link (𝑎, 𝑏) at time 𝑇. 
It should be noted that we are working with travel times, 
which means that 𝑡𝑠 + 𝐿(𝑎) represents the time at which link 
(𝑎, 𝑏) is traversed. 
When working with stochastic distributions the sum operator 
cannot be applied. As stated before, two extreme cases are 
investigated: completely correlated links (pointwise sum) 
and completely uncorrelated links (convolution product). 
The pointwise sum can be defined as follows. Let us denote 
the stochastic distribution of link (𝑎, 𝑏) at time 𝑇 with 
𝑃((𝑎, 𝑏),𝑇), and the corresponding percentiles with 
𝑃𝑥%((𝑎, 𝑏),𝑇). Furthermore, the x% percentile of the 
distribution of label 𝐿(𝑎) is represented by 𝐿𝑥%(𝑎). The 
distribution of the tentative new label of node 𝑏 then can be 
represented by the percentiles 

𝐿𝑥%(𝑏) =  𝐿𝑥%(𝑎) + 𝑃𝑥%�(𝑎, 𝑏), (𝑡𝑠 + 𝐿𝑥%(𝑎))� 
with all parameters as previously defined. It can be seen that 
calculating the pointwise sum of two distributions, as 
defined in this system, results in calculating no more than 5 
sums, namely one for each percentile.  
In contrast with the pointwise sum, the convolution product, 
which is used when all links are uncorrelated, requires all 
possible combinations to be taken into account. The 
convolution product of two distributions 𝑓 and 𝑔 is defined 
as  

𝑓 ∗ 𝑔 = � 𝑓(𝑥)𝑔(𝑡 − 𝑥)𝑑𝑥
∞

−∞

 

The associative characteristic of the convolution product 
enables it to be used in routing algorithms. We translated the 
original definition to a calculable version in the discrete 
space. In order to calculate the tentative new label of node 𝑏, 
the following sum needs to be calculated for all possible 𝑥 
and 𝑦: 

𝑆𝑥,𝑦(𝑏) =  𝐿𝑥%(𝑎) +  𝑃𝑦%�(𝑎, 𝑏), 𝑡𝑠 + 𝐿𝑥%(𝑎)� 
Subsequently, the set of all elements 𝑆𝑥,𝑦(𝑏) is ordered and 
the 𝑛 percentiles of the distribution are collected. As shown 
in the data processing part of this section, these percentiles 
can be found faster by making use of order statistics. 
Nevertheless, in this case, a highly efficient mergesort 
algorithm can be applied to this set, as it can easily be 
divided into a number of ordered subsets. Calculating the 
sums 𝑆𝑥,𝑦(𝑏) for every value of 𝑥 results in subsets which 
are ordered according to 𝑦. By merging different ordered 
sets recursively, a remarkable calculation time gain can be 
realized for ordering the complete set. For small numbers of 
percentiles using the Fast Fourier Transformation does not 
pay off. 

V. RESULTS 
We deployed the stochastic and time-dependent routing 

system, according to the specifications stated in the previous 
section, as a web service of which a stripped down version is 
publicly available at [14]. This system uses the measured 
historical data to construct a number of distributions for each 
link. Subsequently, a network is built with time-dependent 
and stochastic link costs. The 'best' route then can be 
calculated on demand for every origin, destination and 
departure time. In this section, the operation and 
characteristics of this system will be clarified, making use of 
a number of results.  

The system routes time-dependently, which means that 
the result is dependent upon the time of the day. We 
calculated a route between Ghent and Liège at different 
departure times, namely at 6:00, 7:00, 8:00, 9:00 and 10:00. 
Figure 4 shows a part of these routes, namely the part around 
Brussels with a high chance of traffic jams at rush hour. We 
supposed the links to be completely uncorrelated and made 
use of the convolution product to combine distributions. It 
can be seen that before (6:00) and after (10:00) the rush hour 
the standard route is taken, namely the highway from Ghent 
over Brussels to Liège. In the rush hour the highway links 
with the traffic jams will be avoided by taking secondary 
roads, in order to arrive earlier at the destination. Leaving at 
7:00, the highway before Brussels is jammed when arriving 
there, which means that taking secondary roads from Aalst 
to Brussels is a better option. Nevertheless, once arrived in 
Brussels, the highway around Brussels can be taken to 
continue the trip. This is not possible when leaving at 8:00. 
When leaving at 9:00 the highway before Brussels is no 
longer congested, while the highway around Brussels still is. 
This results in the route as can be seen in the figure. 

Moreover, route calculations on 1000 randomly chosen 
origin-destination pairs with a random departure time have 
shown that by routing time-dependently an average travel 
time gain of around 15 % can be realized. 

As shown in the previous section distributions can be 
combined in two different ways, namely by making use of 
the convolution product or by applying the pointwise sum. 
To calculate a path between an origin and a destination at a 
certain starting hour, it takes approximately 30 milliseconds 
(ms) when the convolution product is used, and 20 ms with 



  

the pointwise sum, as expected since the pointwise sum 
needs fewer calculations to come to a solution. These results 
are the average calculation times of 1000 paths between a 
random origin and a random destination at a random starting 
hour. Paths in the network at hand averagely contain 100 
hops. 

 
Figure 4 Time-dependent Route Calculation 

As can be seen in Figure 1, routes are returned together 
with a stochastic distribution of their travel times. In order to 
get an overview of the resulting distributions during a whole 
day, the shortest route was calculated between a fixed origin 
and destination, namely Ghent and Liège, at different 
departure times. The result is shown in Figure 5, with above 
the pointwise sum (correlated links) and below the 
convolution product (uncorrelated links). The most 
important observation from this figure is the fact that the 
resulting pointwise sum distributions are more diverse than 
the convolution product distributions, i.e. the difference 
between the 90% percentile and the 10% percentile values is 
much larger. This can be explained intuitively as the 
convolution product takes all values of the distribution into 
account, resulting in extreme values being weakened by the 
others. When applying the pointwise sum, the extreme 
values remain and are even amplified since extreme 
percentiles usually have extreme values and vice versa. 
Moreover, in the case that the links are correlated, a delay on 
one link can have a large impact on the travel times of the 
succeeding links, while this is not the case when the links 
are uncorrelated. Nevertheless, the 50% percentiles show 
similar values for both the correlated and the uncorrelated 
links. This is obvious as in both cases these are combinations 
of the average values. Furthermore, the rush hours can be 
observed in this figure. Traversal times in the rush hour are 
much higher, which indicates that there is a major rush hour 
in the morning around 8am and a smaller one in the evening 
around 5pm. 

 
Figure 5 Day Overview  

(top: pointwise sum - bottom: convolution product) 

VI. THE FUTURE SYSTEM 
In this article, a basic routing system was presented, 

which will be further extended in the future. First, we intend 
to make the system multimodal, i.e. making use of two or 
more modes of transportation. Subsequently, two 
improvements to the operation of the temporary set of the 
algorithm will be presented. Lastly, we will go into the 
comparison of the stochastic distributions. 

For one thing, a larger (European) network will be used 
and real-time updates of the travel time data will be 
provided. Moreover, other modes of transportation will be 
added, making the network multimodal. As these modes are 
mostly public transportation modes bound to timetables, the 
travel time data is time-dependent but not stochastic. In 
order to make routing possible in the multimodal network, 
we assume the distribution of these travel times to be 
constant.  These extensions are not yet implemented, as we 
currently are gathering the appropriate data. In this section a 
number of optimizations are presented, which can speed up 
the calculations of this future routing system. We will focus 
on three aspects of the system: the data processing step, the 
convolution product of two distributions and the comparison 
between the different distributions. 



  

Secondly, the temporary set (now implemented as a 
priority queue) used in the shortest path algorithm can be 
optimized. Since a lookup operation in a priority queue is 
quite expensive, by not removing duplicate nodes when 
updating the temporary set, a significant speedup can be 
realized. Moreover, the temporary set can be implemented as 
a Fibonacci heap ([11] and [12]), which enables the 
temporary set updating operation to run in O(1) amortized 
time. 

In our system, to compare two distributions with each 
other, the 50% percentile is compared, in order to avoid the 
extensive calculations of determining the surface between 
the distribution’s curves. This is a good measure in most 
cases, but is not always accurate. This is illustrated in Figure 
6, in which 3 cumulated travel time distributions are 
depicted.  

 
Figure 6 Comparison between (accumulated) distributions 

Comparing distribution A with distribution B and A with 
C results in distribution A to be the best, i.e. the distribution 
with the lowest traversal times. This can be verified both 
intuitively and according to the definition. Comparing 
distributions B and C with each other is much harder. 
Intuitively we would indicate distribution B as the best, as 
the traversal times are almost equal to those of C for the 
lower percentiles and, for the higher percentiles, it has much 
smaller traversal times than distribution C. Nevertheless, 
according to the definition, distribution C is perceived as the 
best, i.e. it has the lowest value for the 50% percentile. To 
avoid these situations, another comparison measure is 
proposed, which leads to a partial ordering relationship. 
Instead of only comparing a single value of the distributions, 
all values can be compared. This results in a Pareto optimal 
set in which no distribution dominates any other. A 
distribution dominates another one if and only if all of its 
values are better than the corresponding values of the other 
distribution. Instead of the algorithm of Dijkstra, now a 
multiple objective shortest path algorithm [13] should be 
applied.  

VII. CONCLUSIONS 
In this article, a case study of a novel time-dependent and 

stochastic routing system was presented. Making use of 
historical data, which is extracted from cell phone signals on 
the road network, probability distributions are calculated for 
every link at certain times of the day. Subsequently, a time-
dependent and stochastic graph is built out of realistic 
network data and these distributions. To the best of our 
knowledge, the combination of these data structures and an 

especially adapted algorithm has never been used before. In 
this graph, routes can be calculated time-dependently and 
stochastically for each origin, destination and departure time. 
Two combining options are provided for the distributions, 
namely one in which is supposed that all links are 
uncorrelated (convolution product) and one in which is 
supposed that they are completely correlated (pointwise 
sum). A stripped down version of this routing system can be 
tested out at [14]. 

It is shown experimentally that this system indeed 
calculates the routes dynamically and avoids the predicted 
traffic jams. Moreover, these routes can be calculated in 
approximately 30 ms and 20 ms for the convolution product 
and the pointwise sum case respectively, for paths of 
averagely 100 hops. Furthermore, the pointwise sum causes 
the resulting distribution to be more diverse, i.e. to have a 
larger difference between the 90% and the 10% percentile, 
in comparison with the convolution product. 

The routing system described in this paper is an 
industrial-strength commercial system, which will be further 
improved in the future. In the previous section a number of 
optimizations were presented, which may speed up the 
calculations. Furthermore, the system will be extended to 
cope with more data sets (day-of-week) and multiple 
transportation modes. At this moment, only road traffic is 
taken into account. We are currently adding railroad traffic 
and other public transportation means. The system, as 
presented in this paper, is implemented [14] and used for 
commercial purposes. 
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