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Exciton-polaritons are hybrid light-matter quasiparticles formed by strongly interacting 
photons and excitons (electron-hole pairs) in semiconductor microcavities1–3. They have 
emerged as a robust solid-state platform for next-generation optoelectronic applications as 
well as fundamental studies of quantum many-body physics. Importantly, exciton-
polaritons are a profoundly open (i.e., non-Hermitian4,5) quantum system: it requires 
constant pumping of energy and continuously decays releasing coherent radiation6. Thus, 
the exciton-polaritons always exist in a balanced potential landscape of gain and loss. 
However, the inherent non-Hermitian nature of this potential has so far been largely 
ignored in exciton-polariton physics. Here we demonstrate that non-Hermiticity 
dramatically modifies the structure of modes and spectral degeneracies in exciton-
polariton systems, and, therefore, will affect their quantum transport, localisation, and 
dynamical properties7–9. Using a spatially-structured optical pump10–12, we create a chaotic 
exciton-polariton billiard. Eigenmodes of this billiard exhibit multiple non-Hermitian 
spectral degeneracies – exceptional points13,14. These are known to cause remarkable wave 
phenomena, such as unidirectional transport15, anomalous lasing/absorption16,17, and chiral 
modes18. By varying parameters of the billiard, we observe crossing and anti-crossing of 
energy levels and reveal the nontrivial topological modal structure exclusive to non-
Hermitian systems9,13–22. We also observe the mode switching and topological Berry phase 
for a parameter loop encircling the exceptional point23,24. Our findings pave the way for 
studies of non-Hermitian quantum dynamics of exciton-polaritons, which can uncover 
novel operating principles for polariton-based devices.  

Studies of open quantum systems go back to Gamow’s theory of nuclear alpha-decay 
developed in the early days of quantum mechanics4. Indeed, metastable states of a single 
quantum particle in a spherically symmetric potential well with semi-transparent barriers decay 
in time, and therefore are characterized by complex energies. Furthermore, introducing a 2D 
potential well with nontrivial geometry, i.e., quantum billiard, results in strongly correlated 
energy levels and transition to quantum chaos7,19,21,25–28. Spectral degeneracies crucially 
determine transport and dynamical properties in both non-Hermitian and chaotic wave systems 7–

9,15–17. In chaotic and disordered wave systems, spectral degeneracies underpin statistical 
properties and quantum phase transitions from the localised to delocalised dynamics8,9. In non-
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Hermitian (including PT-symmetric) systems, nontrivial topology of eigenmodes and unusual 
transport properties in the vicinity of exceptional points15–17,19 are currently under intense 
investigation. To date, basic non-Hermitian or stochastic dynamics were studied in the context of 
microwave9,18–20,24, optical15–17,19,21, atomic22,26,27, and electron25,28 waves. However, the concepts 
of non-Hermiticity and quantum chaos remain largely separated from each other, due to the lack 
of a simple quantum system in which both features would be readily accessible. Moreover, it is 
challenging to produce artificial complex potentials with gain and loss for classical waves, as 
well as to observe nanoscopic electron states in solids.  

Microcavity exciton-polaritons represent a unique quantum macroscopic system, which 
combines the main advantages of light and matter waves1–3. Being bosons, exciton-polaritons 
can display collective quantum behaviour, Bose-Einstein condensation (BEC), when they occupy 
a single-particle quantum state in massive numbers. Exciton-polaritons have provided a very 
accessible playground for studies of the collective quantum behaviour because they condense at 
the temperatures ranging from 10 K to room temperature (compared to nano-Kelvins for neutral 
atoms) and do not require painstaking isolation from the environment.  

The schematics of exciton-polariton condensation under continuous-wave incoherent 
optical excitation conditions1 are shown in Fig. 1a. The optical pump, far detuned from the 
exciton resonance in the cavity, effectively creates an incoherent reservoir of ‘hot’, exciton-like 
polaritons. Above a threshold phase-space density of the reservoir, relaxation and stimulated 
scattering into the coherent BEC state of exciton-polaritons dominate the dynamics. The 
continuously pumped condensate decays releasing coherent photons, which escape the cavity 
carrying all information about the condensed state. The interactions between the reservoir and 
condensed exciton-polaritons are responsible for the formation of effective pump-induced 
potentials10–12. Thus, the macroscopic matter wave function is shaped by an optical pump and 
spatially resolved via free-space optical microscopy. This enables us to clearly observe and 
control non-Hermitian and irregular quantum dynamics. 

We use a structured optical pump10–12 to create a non-Hermitian potential in the shape of a 
Sinai billiard with a circular defect of radius R7 (see Fig. 1b) for condensed exciton-polaritons 
(see Methods for details). In our experiment the billiard has ‘soft’ (inelastic) walls of a finite 
width and height. The main properties of eigenstates of the exciton-polariton condensate in the 
billiard can be described by a linear Schrodinger equation with a complex two-dimensional 
potential V r( ) = !V r( )+ i !!V r( ) . Here ′V r( )∝P r( )  is the potential barrier shaped as a Sinai 
billiard boundary with a Gaussian envelope. This potential is proportional to the optical pump 
rate, P r( ) , and is induced by the strong repulsive interaction between the excitonic reservoir 
populated by the pump and the polariton BEC10–12. The imaginary part of the potential, 
′′V r( )∝P r( )−γ , combines the gain profile produced by the same optical pump P r( )  with the 

spatially-uniform loss γ  due to the polariton decay (Fig. 1b). Despite the strong polariton-
polariton interactions, the corresponding nonlinearity mostly affects the relative population of 
the energy eigenstates, as well as the overall blueshift (see Methods). 

Changing the radius of the defect, R, varies the geometry of the billiard and hence affects 
the energy levels. Figures 1c and 1d show the experimentally measured and numerically 
computed energy spectra E R( )  of the first 11 levels as a function of R . Variations of the shape 
of the 2D potential tunes eigenvalues of different modes at different rates, and as a result some 
energy levels approach each other at certain values of R. One can see (Fig. 1c,d) that multiple 
degeneracies (or near-degeneracies) appear in the spectrum. In a ‘hard-wall’ Hermitian Sinai 
billiard, the proliferation of degeneracies is a signature of the transition from regular to chaotic 
dynamics7. Although our exciton-polariton billiard has ‘soft’ walls and can generically exhibit 
mixed regular-chaotic behaviour27, we clearly observe multiple degeneracies similar to the ‘hard-
wall’ case7. In Hermitian billiards, the levels generically avoid crossing (anti-cross) in the 
vicinity of degeneracies, which correspond to the average level repulsion and Wigner 
distribution of the nearest-neighbour energy spacings8. In contrast, the non-Hermitian systems 
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can exhibit both crossings and anti-crossings of levels9,19–22. This is because the energy 
eigenvalues in non-Hermitian systems are complex: the real part and imaginary parts correspond 
to the real energies and linewidths of the modes, respectively. A crossing of the energies is 
accompanied by an anti-crossing of the linewidths and vice versa. In our experiment, we 
measure the spectral profile of the cavity photoluminescence at a particular spatial position and 
extract both peak energies and widths of spectral resonances (see Methods). Crossings as well as 
anti-crossings of real energy levels are clearly seen both in experiments (Fig. 1b) and numerics 
(Fig. 1c). 

To observe the transition between the crossing and anti-crossing for the same near-
degenerate pair of eigenvalues, one needs to vary a second control parameter. In our exciton-
polariton billiard this additional parameter is the thickness, d , of the billiard walls. Provided the 
internal area of the billiard remains intact, this parameter does not affect the geometry of the 
billiard and primarily controls the imaginary part ′′V  of the non-Hermitian potential barrier. 
Figure 2 shows one pair of billiard modes highlighted in Fig. 1b in the vicinity of a near-
degeneracy for two values of the control parameter d . One can clearly see the anti-crossing 
(crossing) behaviour of the real (imaginary) parts of the complex eigenenergies in the billiard 
with thick walls (Figs. 2a,c) and the opposite behaviour for the thin-wall billiard (Figs. 2b,d).  

Importantly, the energy-resolved real-space imaging of the photoluminescence provides all 
the information about complex eigenvalues as well as the spatial structure of the eigenmodes 
(wave functions). In particular, the levels shown in Figure 2 correspond (at R = 0 ) to the third 
mode with three horizontal lobes and the forth mode with two vertical lobes. The experimentally 
imaged and calculated spatial profiles of these eigenmodes are shown as insets in Figures 2a,b 
along the eigenenergy curves. We observe that the two modes are hybridised and therefore 
change their spatial profiles in the near-degeneracy region, and ‘exchange’ their spatial profiles 
after passing it. 

The behaviour of two billiard modes in the vicinity of a degeneracy can be described by a 
simple model of a two-level system with an effective coupling (see Methods). The corresponding 
non-Hermitian Hamiltonian reads9,18–22: 
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E1,2 = E1,2 − iΓ1,2 . (1) 

Here  
E1,2  are the complex eigenevalues of two uncoupled modes (with E1,2  being the real 

energies and Γ1,2  being the decay/gain rates), whereas q  characterizes the coupling between 

these two modes. We will also use the mean complex energy 
 
E = E1 + E2( ) / 2 ≡ E − iΓ , and the 

complex energy difference 
 
δ E = E2 − E1( ) / 2 ≡ δE − iδΓ . The eigenvalues of the Hamiltonian 

(1) are  λ1,2 =
E ± δ E2 + q 2 ; their real and imaginary parts, which depend on the parameters 

 δ
!E = δE,δΓ( ) , are shown in Figure 3. These complex eigenvalues coalesce, λ1 = λ2 , at the 

exceptional points13–22, where  iδ
!EEP = ± q . At these points, the eigenstates also coalesce and 

form a single chiral mode13,14,18. Assuming that the coupling constant q  is fixed, the exceptional 
points appear in the parameter plane as δEEP ,δΓEP( ) = 0,± q( ) . We assume δΓ > 0  in our range 
of parameters, so that there is only one exceptional point in the domain of interest. The 
exceptional point can be encircled in the δE,δΓ( )  plane by varying these two parameters, as seen 
in Fig. 3.  
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Two parameters of the model, δE,δΓ( ) , approximately correspond to the varying 
parameters R,d( )  of our exciton-polariton billiard. The radius R  mostly affects the real part of 
the potential, ′V r( ) , and hence the energy difference between the modes. Increasing R  
corresponds to a tighter spatial confinement and therefore to increasing δE . In turn, the 
thickness d  of the billiard walls controls the gain/loss profile ′′V r( ) . Different modes have 
different spatial overlaps with the imaginary potential ′′V r( ) , and, therefore, are characterised 
by different integral (spatially-averaged) dissipation parameters Γ1,2  (see Methods). In our case, 
increasing d  corresponds to decreasing δΓ . The effective coupling q  in model (1) is 
determined by the spatial overlap between the two modes away from the hybridisation region9. 
The red and blue curves in Figure 3 show the crossing/anti-crossing behaviour of the real and 
imaginary parts of the eigenvalues versus the energy difference δE  for two values of the 
dissipation parameter: δΓ < δΓEP  and δΓ > δΓEP . This behaviour is perfectly consistent with that 
in the experimental Figure 2, which means that our range of varying parameters includes the 
exceptional point.  

The complex-eigenvalues structure in the vicinity of the exceptional point reveals 
nontrivial topology of a branch-point type13–22 shown in Figure 3. Therefore, continuous 
encircling of the non-Hermitian degeneracy in the two-parameter plane (e.g., along the green 
contour in Fig. 3) results in the transition to the other branch. When the contour is traversed 
twice, we return to the original mode, most significantly with a π  topological phase shift23,24. 
We use the method suggested in the microwave experiment24 to trace the above topological 
structure of two modes in the vicinity of the exceptional point. Namely, we compare the 
eigenmodes at neighbouring values of parameters δE,δΓ( ) ~ R,d( )  along the contour encircling 
the exceptional point (see Fig. 3). Notably, we do not consider adiabatic evolution of modes due 
to variations of the parameters R,d( )  in time; such evolution would be accompanied by 
unavoidable nonadiabatic transitions in the non-Hermitian case29,30. Rather, we examine the 
natural topological structure and geometrical connection of stationary modes depending on the 
parameter values. Figure 4 depicts the experimentally measured intensities and the 
corresponding numerically simulated phase profiles of the two modes from Fig. 2 for the 
parameters values lying on the contour encircling the exceptional point (Fig. 3). In Figure 4a, we 
start on the upper branch (blue in Figs. 2a and 3a) at R < REP , d > dEP  and trace the eigenmode 
transmutation as the radius is increased to R > REP . This takes us from the vertical two-lobe 
mode, through the anti-crossing, to the horizontal three-lobe mode (still on the blue upper 
branch). Then, we decrease the thickness to d < dEP  and stay on the same horizontal three-lobe 
mode, which now corresponds to the red branch in Figs. 2b and 3a. Next, reducing the radius R  
takes this mode through the crossing and recovers its three-lobe structure. Increasing d  closes 
the loop. Thus, the continuous transformation brought us from the vertical two-lobe mode (‘start’ 
in Figure 4a) to the horizontal three-lobe mode (‘end’ in Figure 4a) at the same values of 
parameters. Repeating this traverse one more time (Figure 4b) returns us to the original vertical 
two-lobe mode, but now with the π  topological phase shift (clearly seen in the simulated phase 
profiles). The experimental density distribution of the modes is in very good agreement with that 
calculated numerically. Therefore we can associate the phase structure of the simulated spatial 
modes with the experimental mode profiles24. 

Thus, we have demonstrated creation of highly controllable complex (non-Hermitian) 
potentials for exciton-polaritons, and implemented a chaotic non-Hermitian exciton-polariton 
billiard with multiple spectral degeneracies. We have provided detailed experimental 
observations of the non-trivial behaviour of complex eigenvalues and eigenmodes in the vicinity 
of an exceptional point. These include crossing/anti-crossing transitions as well as mode 
switching and topological Berry phase when encircling the exceptional point in the two-
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parameter plane. Our results show that the inherent non-Hermitian nature of exciton-polaritons 
determines their basic properties, which are crucial for transport and quantum information 
processing. Therefore, these features should be taken into account in future studies and 
applications involving confinement and manipulation of exciton-polaritons. Most importantly, 
this complex quantum dynamics can bring novel functionality to polariton-based devices 
operating at the interface between photonics and electronics. Generally, exciton-polaritons offer 
a novel macroscopic quantum platform for studies of non-Hermitian physics and quantum chaos 
at the confluence of light and matter.  
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Figure 1. Non-Hermitian exciton-polariton Sinai billiard and its spectrum. (a) Exciton-
polariton dispersion showing the incoherent excitonic reservoir, continuously replenished by the 
optical pump and polariton BEC decaying into cavity photoluminescence1–3. (b) Schematics of 
the exciton-polariton Sinai billiard formed in the plane of a quantum well embedded into the 
microcavity (see Methods). The barrier is induced by the optical pump via the excitonic 
reservoir, and the square modulus of the wave function of the confined polariton BEC (shown in 
greyscale inside the billiard) is imaged via the photoluminescence. The billiard dimensions are 
W = 14µm , L = 23µm , the radius of the defect R  is varied from 0 to W , and the thickness of 
the walls d  is varied from 3µm  to 7µm  (see Methods). Experimentally measured (c) and 
numerically simulated (d) spectra E R( )  for the first 11 modes of the billiard. With growing R , 
numerous degeneracies and quasi-degeneracies proliferate in the grey area, which is a signature 
of the transition to quantum chaos in the Hermitian Sinai billiards7. Topological properties of 
two near-degenerate modes (red and blue in the yellow rectangle) are analysed in detail in 
Figs. 2–4. 
 
Figure 2. Crossing and anti-crossing for the two near-degenerate modes highlighted in 
Figs. 1c,d. Experimentally observed anti-crossing (a) and crossing (b) of eigenenergies of two 
modes in the spectrum of the exciton-polariton Sinai billiard with varying parameter R  (see 
Fig. 1) for thick,  d  6µm , (a,c) and thin,  d  4µm , (b,d) billiard walls; dEP  is the value 
corresponding to the exceptional point. Panels (c) and (d) show the corresponding crossing and 
anti-crossing of the linewidths (i.e., imaginary parts of the complex eigenvalues). The upper 
(lower) inset panels in (a,b) illustrate the numerically calculated (experimentally imaged) spatial 
structure of the eigenmodes at different values of the parameter R . Details of the hybridisation 
region are found in Methods. 

 
Figure 3. Eigenvalues of a two-level non-Hermitian model in the vicinity of the exceptional 
point. Real (a) and imaginary (b) parts of the eigenvalues λ1,2  of the model (1) as functions of 
two parameters δE  and δΓ . The exceptional point is shown in magenta. The crossing and anti-
crossing of the real and imaginary parts of the eigenvalues as functions of δE , for δΓ < δΓEP  
and δΓ > δΓEP , are shown in red and blue. This is in correspondence with the experimentally 
observed behaviour in Fig. 2. Traversing along the green contour encircling the exceptional point 
in the δE,δΓ( )  plane reveals the nontrivial topology of eigenmodes, as shown in Fig. 4. 

 

Figure 4. Observation of the topological Berry phase for circling around the exceptional 
point in the parameter plane. Transmutations of spatial distributions of the selected eigenmode 
(from the pair shown in Fig. 2) along the closed contour in the parameter space  R,d( )  δE,δΓ( )  
encircling the exceptional point (see Fig. 3). Parameters are not varied in time during the 
measurements, and each distribution corresponds to the stationary mode at the corresponding 
parameters values. The first loop (a) shows the transition to a different branch (mode) through 
the hybridization region (see explanations in text). The second loop (b) returns the mode to the 
original one with a π  topological phase shift23,24. The phases are inferred from comparison with 
the numerically calculated modes. 

 
 
 


