280 research outputs found

    Population biology and prospects for suppression of the solanaceous fruit fly, Bactrocera latifrons (Diptera: Tephritidae).

    Get PDF
    Bactrocera latifrons (Hendel) is a tephritid fruit fly native to South and Southeast Asia. First detected in Hawaii in 1983, it primarily infests fruits of solanaceous plants but has also been found to infest fruits of some species of cucurbitaceous plants in Hawaii. Because it has been known in Hawaii for a much shorter period of time than the other three introduced tephritid fruit flies of economic importance, there has been much less opportunity to study its basic biology and ecology. One area not yet sufficiently understood is the population ecology of this species. Here, we report on the population levels of B. latifrons as they relate to turkeyberry (Solanum torvum Sw) phenology in a cattle pasture with abundant turkeyberry patches in the vicinity of Haiku, Maui

    The role of smoking and body mass index in mortality risk assessment for geriatric hip fracture patients

    Get PDF
    Background Smoking, obesity, and being below a healthy body weight are known to increase all-cause mortality rates and are considered modifiable risk factors. The purpose of this study is to assess whether adding these risk factors to a validated geriatric inpatient mortality risk tool will improve the predictive capacity for hip fracture patients. We hypothesize that the predictive capacity of the Score for Trauma Triage in the Geriatric and Middle-Aged (STTGMA) tool will improve. Methodology Between October 2014 and August 2021, 2,421 patients \u3e55-years-old treated for hip fractures caused by low-energy mechanisms were analyzed for demographics, injury details, hospital quality measures, and mortality. Smoking status was recorded as a current every-day smoker, former smoker, or never smoker. Smokers (current and former) were compared to non-smokers (never smokers). Body mass index (BMI) was defined as underweight (\u3c18.5 kg/

    Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere

    Full text link
    Einstein realised that the fluctuations of a Brownian particle can be used to ascertain properties of its environment. A large number of experiments have since exploited the Brownian motion of colloidal particles for studies of dissipative processes, providing insight into soft matter physics, and leading to applications from energy harvesting to medical imaging. Here we use optically levitated nanospheres that are heated to investigate the non-equilibrium properties of the gas surrounding them. Analysing the sphere's Brownian motion allows us to determine the temperature of the centre-of-mass motion of the sphere, its surface temperature and the heated gas temperature in two spatial dimensions. We observe asymmetric heating of the sphere and gas, with temperatures reaching the melting point of the material. This method offers new opportunities for accurate temperature measurements with spatial resolution on the nanoscale, and a new means for testing non-equilibrium thermodynamicsComment: 5 pages, 4 figures, supplementary material available upon reques

    Susceptibility profiles of helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) to deltamethrin reveal a contrast between the northern and the southern Benin

    Get PDF
    Open Access Journal; Published online: 28 May 2019Helicoverpa armigera is an indigenous species in Africa and has been reported in the destruction of several crops in Benin. Management of H. armigera pest is mainly focused on the use of synthetic pyrethroids, which may contribute to resistance selection. This study aimed to screen the susceptibility pattern of field populations of H. armigera to deltamethrin in Benin. Relevant information on the type of pesticides used by farmers were gathered through surveys. Collected samples of Helicoverpa (F0) were reared to F1. F0 were subjected to morphological speciation followed by a confirmation using restriction fragment length polymorphism coupled with a polymerase chain reaction (RFLP-PCR). F1 (larvae) were used for insecticide susceptibility with deltamethrin alone and in the presence of the P450 inhibitor Piperonyl Butoxide (PBO). Deltamethrin and lambda-cyhalothrin were the most used pyrethroids in tomato and cotton farms respectively. All field-sampled Helicoverpa were found to be H. armigera. Susceptibility assays of H. armigera to deltamethrin revealed a high resistance pattern in cowpea (resistance factor (RF) = 2340), cotton (RF varying from 12 to 516) and tomato (RF=85) farms which is a concern for the control of this major polyphagous agricultural pest. There was a significant increase of mortality when deltamethrin insecticide was combined with piperonyl butoxide (PBO), suggesting the possible involvement of detoxification enzymes such as oxidase. This study highlights the presence of P450 induced metabolic resistance in H. armigera populations from diverse cropping systems in Benin. The recorded high levels of deltamethrin resistance in H. armigera is a concern for the control of this major agricultural pest in Benin as the country is currently embarking into economical expansion of cotton, vegetables and grain-legumes cropping systems

    The complex TIE between macrophages and angiogenesis

    Get PDF
    Macrophages are primarily known as phagocytic immune cells, but they also play a role in diverse processes, such as morphogenesis, homeostasis and regeneration. In this review, we discuss the influence of macrophages on angiogenesis, the process of new blood vessel formation from the pre-existing vasculature. Macrophages play crucial roles at each step of the angiogenic cascade, starting from new blood vessel sprouting to the remodelling of the vascular plexus and vessel maturation. Macrophages form promising targets for both pro- and anti-angiogenic treatments. However, to target macrophages, we will first need to understand the mechanisms that control the functional plasticity of macrophages during each of the steps of the angiogenic cascade. Here, we review recent insights in this topic. Special attention will be given to the TIE2-expressing macrophage (TEM), which is a subtype of highly angiogenic macrophages that is able to influence angiogenesis via the angiopoietin-TIE pathway

    PEG–Polypeptide Block Copolymers as pH-Responsive Endosome-Solubilizing Drug Nanocarriers

    Get PDF
    Herein we report the potential of click chemistry-modified polypeptide-based block copolymers for the facile fabrication of pH-sensitive nanoscale drug delivery systems. PEG–polypeptide copolymers with pendant amine chains were synthesized by combining N-carboxyanhydride-based ring-opening polymerization with post-functionalization using azide–alkyne cycloaddition. The synthesized block copolymers contain a polypeptide block with amine-functional side groups and were found to self-assemble into stable polymersomes and disassemble in a pH-responsive manner under a range of biologically relevant conditions. The self-assembly of these block copolymers yields nanometer-scale vesicular structures that are able to encapsulate hydrophilic cytotoxic agents like doxorubicin at physiological pH but that fall apart spontaneously at endosomal pH levels after cellular uptake. When drug-encapsulated copolymer assemblies were delivered systemically, significant levels of tumor accumulation were achieved, with efficacy against the triple-negative breast cancer cell line, MDA-MB-468, and suppression of tumor growth in an in vivo mouse model.Novartis Institutes of Biomedical ResearchNational Institutes of Health (U.S.) (Centers for Cancer Nanotechnology Excellence Grant P30 CA14051)National Institutes of Health (U.S.) (Centers for Cancer Nanotechnology Excellence Grant 5 U54 CA151884-02)National Science Foundation (U.S.). Graduate Research FellowshipNatural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship

    Ehrlichia chaffeensis Transcriptome in Mammalian and Arthropod Hosts Reveals Differential Gene Expression and Post Transcriptional Regulation

    Get PDF
    BACKGROUND: Human monocytotropic ehrlichiosis is an emerging life-threatening zoonosis caused by obligately intracellular bacterium, Ehrlichia chaffeensis. E. chaffeensis is transmitted by the lone star tick, Amblyomma americanum, and replicates in mononuclear phagocytes in mammalian hosts. Differences in the E. chaffeensis transcriptome in mammalian and arthropod hosts are unknown. Thus, we determined host-specific E. chaffeensis gene expression in human monocyte (THP-1) and in Amblyomma and Ixodes tick cell lines (AAE2 and ISE6) using a whole genome microarray. METHODOLOGY/PRINCIPAL FINDINGS: The majority (∼80%) of E. chaffeensis genes were expressed during infection in human and tick cells. There were few differences observed in E. chaffeensis gene expression between the vector Amblyomma and non-vector Ixodes tick cells, but extensive host-specific and differential gene expression profiles were detected between human and tick cells, including higher transcriptional activity in tick cells and identification of gene subsets that were differentially expressed in the two hosts. Differentially and host-specifically expressed ehrlichial genes encoded major immunoreactive tandem repeat proteins (TRP), the outer membrane protein (OMP-1) family, and hypothetical proteins that were 30-80 amino acids in length. Consistent with previous observations, high expression of p28 and OMP-1B genes was detected in human and tick cells, respectively. Notably, E. chaffeensis genes encoding TRP32 and TRP47 were highly upregulated in the human monocytes and expressed as proteins; however, although TRP transcripts were expressed in tick cells, the proteins were not detected in whole cell lysates demonstrating that TRP expression was post transcriptionally regulated. CONCLUSIONS/SIGNIFICANCE: Ehrlichia gene expression is highly active in tick cells, and differential gene expression among a wide variety of host-pathogen associated genes occurs. Furthermore, we demonstrate that genes associated with host-pathogen interactions are differentially expressed and regulated by post transcriptional mechanisms

    New Model of Macrophage Acquisition of the Lymphatic Endothelial Phenotype

    Get PDF
    Macrophage-derived lymphatic endothelial cell progenitors (M-LECPs) contribute to new lymphatic vessel formation, but the mechanisms regulating their differentiation, recruitment, and function are poorly understood. Detailed characterization of M-LECPs is limited by low frequency in vivo and lack of model systems allowing in-depth molecular analyses in vitro. Our goal was to establish a cell culture model to characterize inflammation-induced macrophage-to-LECP differentiation under controlled conditions.Time-course analysis of diaphragms from lipopolysaccharide (LPS)-treated mice revealed rapid mobilization of bone marrow-derived and peritoneal macrophages to the proximity of lymphatic vessels followed by widespread (∼50%) incorporation of M-LECPs into the inflamed lymphatic vasculature. A differentiation shift toward the lymphatic phenotype was found in three LPS-induced subsets of activated macrophages that were positive for VEGFR-3 and many other lymphatic-specific markers. VEGFR-3 was strongly elevated in the early stage of macrophage transition to LECPs but undetectable in M-LECPs prior to vascular integration. Similar transient pattern of VEGFR-3 expression was found in RAW264.7 macrophages activated by LPS in vitro. Activated RAW264.7 cells co-expressed VEGF-C that induced an autocrine signaling loop as indicated by VEGFR-3 phosphorylation inhibited by a soluble receptor. LPS-activated RAW264.7 macrophages also showed a 68% overlap with endogenous CD11b(+)/VEGFR-3(+) LECPs in the expression of lymphatic-specific genes. Moreover, when injected into LPS- but not saline-treated mice, GFP-tagged RAW264.7 cells massively infiltrated the inflamed diaphragm followed by integration into 18% of lymphatic vessels.We present a new model for macrophage-LECP differentiation based on LPS activation of cultured RAW264.7 cells. This system designated here as the "RAW model" mimics fundamental features of endogenous M-LECPs. Unlike native LECPs, this model is unrestricted by cell numbers, heterogeneity of population, and ability to change genetic composition for experimental purposes. As such, this model can provide a valuable tool for understanding the LECP and lymphatic biology

    Bioreducible Liposomes for Gene Delivery: From the Formulation to the Mechanism of Action

    Get PDF
    BACKGROUND: A promising strategy to create stimuli-responsive gene delivery systems is to exploit the redox gradient between the oxidizing extracellular milieu and the reducing cytoplasm in order to disassemble DNA/cationic lipid complexes (lipoplexes). On these premises, we previously described the synthesis of SS14 redox-sensitive gemini surfactant for gene delivery. Although others have attributed the beneficial effects of intracellular reducing environment to reduced glutathione (GSH), these observations cannot rule out the possible implication of the redox milieu in its whole on transfection efficiency of bioreducible transfectants leaving the determinants of DNA release largely undefined. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of addressing this issue, SS14 was here formulated into binary and ternary 100 nm-extruded liposomes and the effects of the helper lipid composition and of the SS14/helper lipids molar ratio on chemical-physical and structural parameters defining transfection effectiveness were investigated. Among all formulations tested, DOPC/DOPE/SS14 at 25:50:25 molar ratio was the most effective in transfection studies owing to the presence of dioleoyl chains and phosphatidylethanolamine head groups in co-lipids. The increase in SS14 content up to 50% along DOPC/DOPE/SS14 liposome series yielded enhanced transfection, up to 2.7-fold higher than that of the benchmark Lipofectamine 2000, without altering cytotoxicity of the corresponding lipoplexes at charge ratio 5. Secondly, we specifically investigated the redox-dependent mechanisms of gene delivery into cells through tailored protocols of transfection in GSH-depleted and repleted vs. increased oxidative stress conditions. Importantly, GSH specifically induced DNA release in batch and in vitro. CONCLUSIONS/SIGNIFICANCE: The presence of helper lipids carrying unsaturated dioleoyl chains and phosphatidylethanolamine head groups significantly improved transfection efficiencies of DOPC/DOPE/SS14 lipoplexes. Most importantly, this study shows that intracellular GSH levels linearly correlated with transfection efficiency while oxidative stress levels did not, highlighting for the first time the pivotal role of GSH rather than oxidative stress in its whole in transfection of bioreducible vectors

    How a slow-ovipositing parasitoid can succed as a biological control agent of the invasive mealybug Phenacoccus peruvianus: implications for future classical and conservation biological control programs

    Full text link
    [EN] Phenaccocus peruvianus Granara de Willink (Hemiptera: pseudococcidae) is an invasive mealybug that has become a pest of ornamental plants in Europe and has recently been detected in California, USA. In this work, we studied the tritrophic interaction among this mealybug, its main parasitoid Acerophagus n. sp. near coccois (Hymenoptera: Encyrtidae) and tending ants to disclose the success of this parasitoid controlling P. peruvianus. Acerophagus n. sp. near coccois accepted mealybugs for parasitism regardless of their size but did not hostfeed. We recorded three active defenses of P. peruvianus. Host handling time-consuming process that required more than 30 min. Tending ants, Lasius grandis (Hymenoptera: Encyrtidae), reduced the time spent by parasitoids in a patch and disrupted oviposition attempts. The low numbers of ants tending mealybugs colonies in Spain and France could explain why this parasitoid, with a long handling time, is an efficient biological control agent for P. peruvianus.Beltrà Ivars, A.; Soto Sánchez, AI.; Tena Barreda, A. (2015). How a slow-ovipositing parasitoid can succed as a biological control agent of the invasive mealybug Phenacoccus peruvianus: implications for future classical and conservation biological control programs. BioControl. 60(4):473-484. https://doi.org/10.1007/s10526-015-9663-6S473484604Arakelian G (2013) Bougainvillea mealybug (Phenacoccus peruvianus). Factsheet 2013. County of Los Angeles. Department of agricultural commissioner/weights and measures, USABartlett BR (1961) The influence of ants upon parasites, predators, and scale insects. Ann Entomol Soc Am 54:543–551Bartlett BR (1978) Pseudococcidae. In: Clausen CP (ed) Introduced parasites and predators of arthropod pests and weeds: a world review, 1st edn. Agricultural Research Service USDA, Washington, USA, pp 137–170Barzman MS, Daane KM (2001) Host-handling behaviors in parasitoids of black scale, Saissetia oleae (Homoptera: Coccidae): a case for ant-mediated evolution. J Anim Ecol 70:237–247Beltrà A, Soto A, Germain JF, Matile-Ferrero D, Mazzeo G, Pellizzari G, Russo A, Franco JC, Williams DJ (2010) The Bougainvillea mealybug Phenacoccus peruvianus, a rapid invader from South America to Europe. Entomol Hell 19:137–143Beltrà A, Garcia-Marí F, Soto A (2013a) Seasonal phenology, spatial distribution, and sampling plan for the invasive mealybug Phenacoccus peruvianus (Hemiptera: Pseudococcidae). J Econ Entomol 106:1486–1494Beltrà A, Tena A, Soto A (2013b) Fortuitous biological control of the invasive mealybug Phenacoccus peruvianus in Southern Europe. BioControl 58:309–317Beltrà A, Tena A, Soto A (2013c) Reproductive strategies and food sources used by Acerophagus n. sp. near coccois, a new successful parasitoid of the invasive mealybug Phenacoccus peruvianus. J Pest Sci 86:253–259Berlinger MJ, Golberg AM (1978) The effect of the fruit sepals on the citrus mealybug population and on its parasite. Entomol Exp Appl 24:238–243Blumstein DT, Daniel JC (2007) Quantifying behavior the JWatcher way. Sinauer Associates Inc., Sunderland, UKBoavida C, Ahounou M, Vos M, Neuenschwander P, van Alphen JJM (1995) Host stage selection and sex allocation by Gyranusoidea tebygi (Hymenoptera: Encyrtidae), a parasitoid of the mango mealybug, Rastrococcus invadens (Homoptera: Pseudococcidae). Biol Control 5:487–496Bokonon-Ganta AH, Neuenschwander P, van Alphen JJM, Vos M (1995) Host stage selection and sex allocation by Anagyrus mangicola (Hymenoptera: Encyrtidae), a parasitoid of the mango mealybug, Rastrococcus invadens (Homoptera: Pseudococcidae). Biol Control 5:479–486Bugila AAA, Franco JC, Borges da Silva E, Branco M (2014a) Defense response of native and alien mealybugs (Hemiptera: Pseudococcidae) against the solitary parasitoid Anagyrus sp. nr. pseudococci (Girault) (Hymenoptera: Encyrtidae). J Insect Behav 27:439–453Bugila AAA, Branco M, Borges da Silva E, Franco JC (2014b) Host selection behavior and specificity of the solitary parasitoid of mealybugs Anagyrus sp. nr. pseudococci (Girault) (Hymenoptera, Encyrtidae). Biocontrol Sci Techn 24:22–38Bynum EK (1937) Pseudococcobius terryi Fullaway, a Hawaiian parasite of Gray Sugarcane mealybug in the United States. J Econ Entomol 30:756–761Cadée N, van Alphen JJM (1997) Host selection and sex allocation in Leptomastidea abnormis, a parasitoid of the citrus mealybug Planococcus citri. Entomol Exp Appl 83:277–284Clausen CP (1924) The parasites of Pseudococcus maritimus (Ehrhorn) in California (Hymenoptera, Chalcidoidea). Part II. Biological studies and life histories. UC Pub Entomol 3:253–288Daane KM, Barzman MS, Caltagirone LE, Hagen KS (2000) Metaphycus anneckei and Metaphycus hageni: two discrete species parasitic on black scale, Saissetia oleae. BioControl 45:269–284Daane KM, Bentley WJ, Walton VM, Malakar-Kuenen R, Millar JC, Ingels CA, Weber EA, Gispert C (2006) New controls investigated for vine mealybug. Calif Agric 60:31–38Daane KM, Sime KR, Fallon J, Cooper ML (2007) Impacts of Argentine ants on mealybugs and their natural enemies in California’s coastal vineyards. Ecol Entomol 32:583–596De Farias AM, Hopper KR (1999) Oviposition behavior of Aphelinus asychis (Hymenoptera: Aphelinidae) and Aphidius matricariae (Hymenoptera: Aphidiidae) and defense behavior of their host Diuraphis noxia (Homoptera: Aphididae). Environ Entomol 28:858–862Dorn B, Mattiacci L, Bellotti AC, Dorn S (2001) Host specificity and comparative foraging behavior of Aenasius vexans and Acerophagus coccois, two endo-parasitoids of the cassava mealybug. Entomol Exp Appl 99:331–339Eisner T, Silberglied RE (1988) A chrysopid larva that cloaks itself in mealybug wax. Psyche 95:15–20Flanders SE (1963) Predation by parasitic Hymenoptera, the basis of ant-induced outbreaks of a host species. J Econ Entomol 56:116Foldi I (1983) Structure et fonctions des glandes tégumentaires de cochenilles Pseudococcines et de leurs secretions. Ann Soc Entomol Fr 19:155–156Foldi I (1997) Defense strategies in scale insects: phylogenetic inference and evolutionary scenarios (Hemiptera, Coccoidea). In: Grandcolas P (ed) The origin of biodiversity in insects: phylogenetic tests of evolutionary scenarios, 1st edn. Muséum National d’Histoire Naturelle, Paris, France, pp 203–230Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton, USAGonzález-Hernández H, Johnson MW, Reimer NJ (1999) Impact of Pheidole megacephala (F.) (Hymenoptera: Formicidae) on the biological control of Dysmicoccus brevipes (Cockerell) (Homoptera: Pseudococcidae). Biol Control 15:145–152Gross P (1993) Insect behavioral and morphological defenses against parasitoids. Annu Rev Entomol 38:251–273Gullan PJ (1997) Relationships with ants. In: Ben-Dov Y, Hodgson CJ (eds) Soft scale insects—their biology natural enemies and control, 1st edn. Elsevier, Amsterdam, The Netherlands, pp 351–373Gullan PJ, Kosztarab M (1997) Adaptations in scale insects. Annu Rev Entomol 42:23–50Hcidari M, Jahan M (2000) A study of ovipositional behavior of Anagyrus pseudococci a parasitoid of mealybugs. J Agric Sci Technol 2:49–53Honda JY, Luck RF (1995) Scale morphology effects on feeding behavior and biological control potential of Rhyzobius lophanthae (Coleoptera: Coccinellidae). Ann Entomol Soc Am 88:441–450Joyce AL, Hoddle MS, Bellows TS, Gonzalez D (2001) Oviposition behavior of Coccidoxenoides peregrinus, a parasitoid of Planococcus ficus. Entomol Exp Appl 98:49–57Karamaouna F (1999) Biology of the parasitoids Leptomastix epona (Walker) and Pseudaphycus flavidulus (Brèthes) and behavioural interactions with the host mealybug Pseudococcus viburni (Signoret). Ph.D. Thesis, University of London, UK, p 333Karamaouna F, Copland MJ (2000) Oviposition behavior, influence of experience on host size selection, and niche overlap of the solitary Leptomastix epona and the gregarious Pseudaphycus flavidulus, two endoparasitoids of the mealybug Pseudococcus viburni. Entomol Exp Appl 97:301–308Klotz JH, Hansen L, Pospischil R, Rust M (2008) Urban ants of North America and Europe. Cornell University Press, Ithaca, USAMailleux AC, Deneubourg JL, Detrain C (2003) Regulation of ants foraging to resource productivity. P R Soc Lond B Bio 270:1609–1616Majerus ME, Sloggett JJ, Godeau JF, Hemptinne JL (2007) Interactions between ants and aphidophagous and coccidophagous ladybirds. Popul Ecol 49:15–27Mgocheki N, Addison P (2009) Interference of ants (Hymenoptera: Formicidae) with biological control of the vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). Biol Control 49:180–185Moore D (1988) Agents used for biological control of mealybugs (Pseudococcidae). Biocontrol News Inf 9:209–225Paris CI, Espadaler X (2009) Honeydew collection by the invasive garden ant Lasius neglectus versus the native ant L grandis. Arthropod Plant Interact 3:75–85Pekas A, Tena A, Aguilar A, Garcia-Marí F (2011) Spatio-temporal patterns and interactions with honeydew-producing Hemiptera of ants in a Mediterranean citrus orchard. Agric Forest Entomol 13:89–97Pennacchio F, Strand MR (2006) Evolution of developmental strategies in parasitic Hymenoptera. Annu Rev Entomol 51:233–258Pijls JW, Hofker KD, Staalduinen MJ, van Alphen JJM (1995) Interspecific host discrimination and competition in Apoanagyrus (Epidinocarsis) lopezi and A(E) diversicornis parasitoids of the cassava mealybug Phenacoccus manihoti. Ecol Entomol 20:326–332Robert Y (1987) Dispersion and migration. In: Minks AK, Harrewijn P (eds) Aphids—their biology, natural enemies and control, 1st edn. Elsevier, Amsterdam, The Netherlands, pp 299–313Sandanayaka WRM, Charles JG, Allan DJ (2009) Aspects of the reproductive biology of Pseudaphycus maculipennis (Hym: Encyrtidae), a parasitoid of obscure mealybug, Pseudococcus viburni (Hem: Pseudococcidae). Biol Control 48:30–35Sarkar D (2008) Lattice: multivariate data visualization with R. Springer, New York, USASime KR, Daane KM (2014) Rapid, non-discriminatory oviposition behaviors are favored in mealybug parasitoids when Argentine ants are present. Environ Entomol 43:995–1002Tena A, Garcia-Marí F (2008) Suitability of citricola scale Coccus pseudomagnoliarum (Hemiptera: Coccidae) as host of Metaphycus helvolus (Hymenoptera: Encyrtidae): Influence of host size and encapsulation. Biol Control 46:341–347Tena A, Hoddle CD, Hoddle MS (2013) Competition between honeydew producers in an ant–hemipteran interaction may enhance biological control of an invasive pest. Bull Entomol Res 103:714–723The R Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austriavan Driesche RG, Belloti A, Herrera CJ, Castello JA (1987a) Host preferences of two encyrtid parasitoids for the Columbian Phenacoccus spp. of cassava mealybugs. Entomol Exp Appl 43:261–266van Driesche RG, Belloti A, Herrera CJ, Castello JA (1987b) Host feeding and ovipositor insertion as sources of mortality in the mealybug Phenacoccus herreni caused by two encyrtids Epidinocarsis diversicornis and Acerophagus coccois. Entomol Exp Appl 44:97–100Vet LE, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172Völkl W, Woodring J, Fischer M, Lorenz MW, Hoffmann KH (1999) Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 118:483–491Wajnberg E (1989) Analysis of variations of handling-time in Trichogramma maidis. Entomophaga 34:397–407Way MJ (1963) Mutualism between ants and honeydew-producing Homoptera. Annu Rev Entomol 8:307–344Weiss MR (2006) Defecation behavior and ecology of insects. Annu Rev Entomol 51:635–661Wyckhuys KAG, Stone L, Desneux N, Hoelmer KA, Hopper KR, Heimpel GE (2008) Parasitism of the soybean aphid Aphis glycines by Binodoxys communis: the role of aphid defensive behavior and parasitoid reproductive performance. Bull Entomol Res 98:361–370Zain-ul-Abdin, Arif MJ, Suhail A, Gogi MD, Arshad M, Wakil W, Abbas SK, Altaf A, Shaina H, Manzoor A (2012) Molecular analysis of the venom of mealybug parasitoid Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae). Pak Entomol 34:189–193Zinna G (1959) Specializzazione entomoparassitica negli Encyrtidae: studio morfologico etologico e fisiologico del Leptomastix dactylopii. Howard Boll Lab agr Filippo Silvestri 18:1–14
    corecore