6 research outputs found

    Attributional and Relational Processing in Pigeons

    Get PDF
    Six pigeons were trained using a matching-to-sample procedure where sample and rewarded comparisons matched on both attributional (color) and relational (horizontal or vertical orientation) dimensions. Probes then evaluated the pigeons’ preference to comparisons that varied in these dimensions. A strong preference was found for the attribute of color. The discrimination was not found to transfer to novel colors, however, suggesting that a general color rule had not been learned. Further, when color could not be used to guide responding, some influence of other attributional cues such as shape, but not relational cues, was found. We conclude that pigeons based their performance on attributional properties of but not on relational properties between elements in our matching-to-sample procedure. Future studies should look at examining other attributes to compare attributional versus relational processing

    Loss of MAP Function Leads to Hippocampal Synapse Loss and Deficits in the Morris Water Maze with Aging

    No full text
    International audienceHyperphosphorylation and accumulation of tau aggregates are prominent features in tauopathies, including Alzheimer's disease, but the impact of loss of tau function on synaptic and cognitive deficits remains poorly understood. We report that old (19 - 20 months; OKO) but not middle-aged (8 - 9 months; MKO) tau knock-out mice develop Morris Water Maze(MWM) deficits and loss of hippocampal acetylated alpha-tubulin and excitatory synaptic proteins. Mild motor deficits and reduction in tyrosine hydroxylase (TH) in the substantia nigra were present by middle age, but did not affect MWM performance, whereas OKO mice showed MWM deficits paralleling hippocampal deficits. Deletion of tau, a microtubule-associated protein (MAP), resulted in increased levels of MAP1A, MAP1B, and MAP2 in MKO, followed by loss of MAP2 and MAP1B in OKO. Hippocampal synaptic deficits in OKO mice were partially corrected with dietary supplementation with docosahexaenoic acid (DHA) and both MWM and synaptic deficits were fully corrected by combining DHA with alpha-lipoic acid (ALA), which also prevented TH loss. DHA or DHA/ALA restored phosphorylated and total GSK3 beta and attenuated hyperactivation of the tau C-Jun N-terminal kinases (JNKs) while increasing MAP1B, dephosphorylated (active) MAP2, and acetylated alpha-tubulin, suggesting improved microtubule stability and maintenance of active compensatory MAPs. Our results implicate the loss of MAP function in age-associated hippocampal deficits and identify a safe dietary intervention, rescuing both MAP function and TH in OKO mice. Therefore, in addition to microtubule-stabilizing therapeutic drugs, preserving or restoring compensatory MAP function may be a useful new prevention strategy

    The History, Means, and Effects of Structural Surveillance

    No full text
    corecore