25 research outputs found

    Spatial dynamic metabolomics identifies metabolic trajectories during human kidney epithelium development

    No full text
    Accumulating evidence demonstrates important roles for metabolism in cell fate determination. However, It is a challenge to assess metabolism at a spatial resolution that acknowledges both heterogeneity and cellular dynamics in its tissue microenvironment. Using a multi-omics platform to study cell-type specific dynamics in metabolism in complex tissues, we describe the metabolic trajectories during nephrogenesis in the developing human kidney. Exploiting in situ analysis of isotopic labeling, a shift from glycolysis towards fatty acid β-oxidation was observed during the differentiation from the renal vesicle, towards the S-shaped body and the proximal tubules. In addition, we show that hiPSC-derived kidney organoids are characterized by a metabolic immature phenotype, that fails to use mitochondrial long-chain fatty acids for energy metabolism. Furthermore, supplementation of butyrate enhances tubular epithelial differentiation and maturation in cultured kidney organoids. Our findings highlight the relevance of understanding metabolic trajectories to efficiently guide stem cell differentiation. </p

    Modeling and Path Planning for Persistent Surveillance by Unmanned Ground Vehicle

    No full text

    <b>A cell-free nutrient-supplemented perfusate allows four-day ex vivo metabolic preservation of human kidneys</b>

    No full text
    The growing disparity between the demand for transplants and the available donor supply, coupled with an aging donor population and increasing prevalence of chronic diseases, highlights the urgent need for the development of platforms enabling reconditioning, repair, and regeneration of deceased donor organs. This necessitates the ability to preserve metabolically active kidneys ex vivo for days. However, current kidney normothermic machine perfusion (NMP) approaches allow metabolic preservation only for hours. Here we show that human kidneys discarded for transplantation can be preserved in a metabolically active state up to 4 days when perfused with a cell-free perfusate supplemented with TCA cycle intermediates at subnormothermia (25°C). Using spatially resolved isotope tracing we demonstrate preserved metabolic fluxes in the kidney microenvironment up to Day4 of perfusion. Beyond Day4, significant changes were observed in renal cell populations through spatial lipidomics, and increases in injury markers such as LDH, NGAL and oxidized lipids. Finally, we demonstrate that perfused kidneys maintain functional parameters up to Day4. Collectively, these findings provide evidence that this approach enables metabolic and functional preservation of human kidneys over multiple days, establishing a solid foundation for future clinical investigations.The exported and processed datasets are provided here, as well as the data underlying the untargeted lipidomics. </p

    HTDet: A Hybrid Transformer-Based Approach for Underwater Small Object Detection

    No full text
    As marine observation technology develops rapidly, underwater optical image object detection is beginning to occupy an important role in many tasks, such as naval coastal defense tasks, aquaculture, etc. However, in the complex marine environment, the images captured by an optical imaging system are usually severely degraded. Therefore, how to detect objects accurately and quickly under such conditions is a critical problem that needs to be solved. In this manuscript, a novel framework for underwater object detection based on a hybrid transformer network is proposed. First, a lightweight hybrid transformer-based network is presented that can extract global contextual information. Second, a fine-grained feature pyramid network is used to overcome the issues of feeble signal disappearance. Third, the test-time-augmentation method is applied for inference without introducing additional parameters. Extensive experiments have shown that the approach we have proposed is able to detect feeble and small objects in an efficient and effective way. Furthermore, our model significantly outperforms the latest advanced detectors with respect to both the number of parameters and the mAP by a considerable margin. Specifically, our detector outperforms the baseline model by 6.3 points, and the model parameters are reduced by 28.5 M

    Apolipoprotein CIII regulates lipoprotein-associated phospholipase A2 expression via the MAPK and NFκB pathways

    No full text
    Apolipoprotein CIII (apo CIII), a small glycoprotein that binds to the surfaces of certain lipoproteins, is associated with inflammatory and atherogenic responses in vascular cells. Lipoprotein-associated phospholipase A2 (Lp-PLA2) has been proposed as an inflammatory biomarker and potential therapeutic target for cardiovascular disease (CVD). Here, we report that apo CIII increases Lp-PLA2 mRNA and protein levels in dose- and time- dependent manner in human monocytic THP-1 cells, and the increase can be abolished by MAPK and NFκB pathway inhibitors. Lp-PLA2 inhibitor, 1-linoleoyl glycerol attenuates the inflammation induced by apo CIII. In turn, exogenous Lp-PLA2 expression upregulates apo CIII and the upregulation can be inhibited by 1-linoleoyl glycerol in HepG2 cells. Moreover, plasma Lp-PLA2 level is correlated with apo CIII expression in pig liver. In vivo, Lp-PLA2 expression in monocytes and its activity in serum were significantly increased in human apo CIII transgenic porcine models compared with wild-type pigs. Our results suggest that Lp-PLA2 and apo CIII expression level is correlated with each other in vitro and in vivo

    Overexpression of porcine lipoprotein-associated phospholipase A2 in swine

    No full text
    Lipoprotein-associated phospholipase A 2 (Lp-PLA2) is associated with the risk of vascular disease. It circulates in human blood predominantly in association with low-density lipoprotein cholesterol (LDL-C) and hydrolyses oxidized phospholipids into pro-inflammatory products. However, in the mouse circulation, it predominantly binds to high-density lipoprotein cholesterol (HDL-C) and exhibits anti-inflammatory properties. To further investigate the effects of Lp-PLA2 in the circulation, we generated over-expressed Lp-PLA2 transgenic swine. The eukaryotic expression plasmid of porcine Lp-PLA2 which driven by EF1α promoter was constructed and generate transgenic swine via SCNT. The expression and activity of Lp-PLA2 in transgenic swine were evaluated, and the total cholesterol (TC), HDL-C, LDL-C and triglyceride (TG) levels in the fasting and fed states were also assessed. Compared with wild-type swine controls, the transgenic swine exhibited elevated Lp-PLA2 mRNA levels and activities, and the activity did not depend on the feeding state. The TC, HDL-C and LDL-C levels were not significantly increased. There was no change in the TG levels in the fasting state between transgenic and control pigs. However, in the fed state, the TG levels of transgenic swine were slightly increased compared with the control pigs and were significantly elevated compared with the fasting state. In addition, inflammatory gene (interleukin [IL]-6, monocyte chemotactic protein [MCP]-1 and tumor necrosis factor [TNF]-α) mRNA levels in peripheral blood mononuclear cells (PBMCs) were significantly increased. The results demonstrated that Lp-PLA2 is associated with triglycerides which may be helpful for understanding the relationship of this protein with cardiovascular disease

    Data from: The evolutionary road from wild moth to domestic silkworm

    No full text
    The Silk Road, which derives its name from the trade of silk produced by the domestic silkworm Bombyx mori, was an important episode in the development and interaction of human civilizations. However, the detailed history behind silkworm domestication remains ambiguous, and little is known about the underlying genetics with respect to important aspects of its domestication. Here, we reconstruct the domestication processes and identify selective sweeps by sequencing 137 representative silkworm strains. The results present an evolutionary scenario in which silkworms may have been initially domesticated in China as trimoulting lines, then subjected to independent spreads along the Silk Road that gave rise to the development of most local strains, and further improved for modern silk production in Japan and China, having descended from diverse ancestral sources. We find that genes with key roles in nitrogen and amino acid metabolism may have contributed to the promotion of silk production, and that circadian-related genes are generally selected for their adaptation. We additionally identify associations between several candidate genes and important breeding traits, thereby advancing the applicable value of our resources

    Glomerular Function and Structural Integrity Depend on Hyaluronan Synthesis by Glomerular Endothelium

    No full text
    Contains fulltext : 209662.pdf (publisher's version ) (Closed access

    Shear Stress Regulation of Endothelial Glycocalyx Structure Is Determined by Glucobiosynthesis

    No full text
    OBJECTIVE: Endothelial cells exposed to laminar shear stress express a thick glycocalyx on their surface that plays an important role in reducing vascular permeability and endothelial anti-inflammatory, antithrombotic, and antiangiogenic properties. Production and maintenance of this glycocalyx layer is dependent on cellular carbohydrate synthesis, but its regulation is still unknown. Approach and Results: Here, we show that biosynthesis of the major structural component of the endothelial glycocalyx, hyaluronan, is regulated by shear. Both in vitro as well as in in vivo, hyaluronan expression on the endothelial surface is increased on laminar shear and reduced when exposed to oscillatory flow, which is regulated by KLF2 (Krüppel-like Factor 2). Using a CRISPR-CAS9 edited small tetracysteine tag to endogenous HAS2 (hyaluronan synthase 2), we demonstrated increased translocation of HAS2 to the endothelial cell membrane during laminar shear. Hyaluronan production by HAS2 was shown to be further driven by availability of the hyaluronan substrates UDP-glucosamine and UDP-glucuronic acid. KLF2 inhibits endothelial glycolysis and allows for glucose intermediates to shuttle into the hexosamine- and glucuronic acid biosynthesis pathways, as measured using nuclear magnetic resonance analysis in combination with 13C-labeled glucose. CONCLUSIONS: These data demonstrate how endothelial glycocalyx function and functional adaptation to shear is coupled to KLF2-mediated regulation of endothelial glycolysis.status: publishe
    corecore