28 research outputs found

    Sub-continental transport mechanisms and pathways during two ozone episodes in northern Spain

    No full text
    International audienceTwo ozone episodes (occurring in June 2001 and June 2003) in the air quality monitoring network of the Basque Country (BC) are analyzed. The population information threshold was exceeded in many stations (urban, urban-background and rural). During this type of episodes, forced by a blocking anticyclone over the British Isles, ozone background concentrations over the area increase after the import of pollution from both, the continental Europe and the western Mediterranean areas (Gangoiti et al., 2002). For the present analysis, emphasis is made in the search for transport mechanisms, pathways and area sources contributing to the build-up of the episodes. Contributions from a selection of 17 urban and industrial conglomerates in the western European Atlantic (WEA) and the western Mediterranean (WM) are shown after the results of a coupled RAMS-HYPACT modelling system. Meteorological simulations are tested against both the high-resolution wind data recorded at the BC coastal area by a boundary layer wind-profiler radar (Alonso et al., 1998) and the wind soundings reported by the National Centres of Meteorology at a selection of European and north-African sites. Results show that during the accumulation phase of the episodes, background ozone concentrations increase in the whole territory as a consequence of transport from the Atlantic coast of France and the British Channel. For the peak phase, intrusions from new sources, located at the Western Mediterranean, Southern France, Ebro Valley, and, occasionally, the area of Madrid are added, resulting in a further increase in the ozone concentrations. Direct day and night transport within the north-easterly winds over the sea from the WEA source region, and night-time transport within the residual layer over continental areas (southern France, the Ebro Valley, and central Iberia) modulate the import sequence of pollutants and the local increase of ozone concentrations. The alternative direct use of low resolution meteorological data for the estimation of back-trajectories shows a more simple transport scheme with no contributions neither from the Western Mediterranean nor from the Madrid area

    Lactobacillus plantarum CIDCA 8327: An α-glucan producing-strain isolated from kefir grains

    No full text
    30 p.-4 fig.-3 tab.Lactobacillus plantarum CIDCA 8327 is an exopolysaccharide (EPS)-producer strain isolated from kefir with promising properties for the development of functional foods. The aim of the present study was to characterize the structure of the EPS synthesized by this strain grown in skim milk or semidefined medium (SDM). Additionally, genes involved in EPS synthesis were detected by PCR. L. plantarum produces an EPS with a molecular weight of 104 Da in both media. When grown in SDM produce an heteropolysaccharide composed mainly of glucose, glucosamine and rhamnose meanwhile the EPS produced in milk was composed exclusively of glucose indicating the influence of the sugar source. FTIR spectra of this EPS showed signals attributable to an α-glucan. Both by 1H NMR and methylation analysis it was possible to determine that this polysaccharide is a branched α-(1 → 4)-d-glucan composed of 80% linear α-(1 → 4)-d-glucopyranosyl units and 19% (1 → 4)-d-glucopyranosyl units substituted at O-3 by single α-d-glucopyranosil residues.This study was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), CONICET and UNLP, the Spanish Ministry of Science and Innovation (AGL2012-40084-C03), the Basque Government (no. IT866-13).Peer reviewe

    Discovery of a New Class of Highly Potent Inhibitors of Acid Ceramidase: Synthesis and Structure–Activity Relationship (SAR)

    No full text
    Acid ceramidase (AC) is an intracellular cysteine amidase that catalyzes the hydrolysis of the lipid messenger ceramide. By regulating ceramide levels in cells, AC may contribute to the regulation of cancer cell proliferation and senescence and to the response to cancer therapy. We recently identified the antitumoral agent carmofur (4a) as the first nanomolar inhibitor of intracellular AC activity (rat AC, IC50 = 0.029 μM). In the present work, we expanded our initial structure-activity relationship (SAR) studies around 4a by synthesizing and testing a series of 2,4-dioxopyrimidine-1-carboxamides. Our investigations provided a first elucidation of the structural features of uracil derivatives that are critical for AC inhibition and led us to identify the first single-digit nanomolar inhibitors of this enzyme. The present results confirm that substituted 2,4-dioxopyrimidine-1-carboxamides are a novel class of potent inhibitors of AC. Selected compounds of this class may represent useful probes to further characterize the functional roles of AC
    corecore