62 research outputs found

    Engineering a catabolic pathway in plants for the degradation of 1,2-dichloroethane

    Get PDF
    Plants are increasingly being employed to clean up environmental pollutants such as heavy metals; however, a major limitation of phytoremediation is the inability of plants to mineralize most organic pollutants. A key component of organic pollutants is halogenated aliphatic compounds that include 1,2-dichloroethane (1,2-DCA). Although plants lack the enzymatic activity required to metabolize this compound, two bacterial enzymes, haloalkane dehalogenase (DhlA) and haloacid dehalogenase (DhlB) from the bacterium Xanthobacter autotrophicus GJ10, have the ability to dehalogenate a range of halogenated aliphatics, including 1,2-DCA. We have engineered the dhlA and dhlB genes into tobacco (Nicotiana tabacum ‘Xanthi’) plants and used 1,2-DCA as a model substrate to demonstrate the ability of the transgenic tobacco to remediate a range of halogenated, aliphatic hydrocarbons. DhlA converts 1,2-DCA to 2-chloroethanol, which is then metabolized to the phytotoxic 2-chloroacetaldehyde, then chloroacetic acid, by endogenous plant alcohol dehydrogenase and aldehyde dehydrogenase activities, respectively. Chloroacetic acid is dehalogenated by DhlB to produce the glyoxylate cycle intermediate glycolate. Plants expressing only DhlA produced phytotoxic levels of chlorinated intermediates and died, while plants expressing DhlA together with DhlB thrived at levels of 1,2-DCA that were toxic to DhlA-expressing plants. This represents a significant advance in the development of a low-cost phytoremediation approach toward the clean-up of halogenated organic pollutants from contaminated soil and groundwater

    Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales.

    Get PDF
    Betalain pigments are unique to the Caryophyllales and structurally and biosynthetically distinct from anthocyanins. Two key enzymes within the betalain synthesis pathway have been identified: 4,5-dioxygenase (DODA) that catalyzes the formation of betalamic acid and CYP76AD1, a cytochrome P450 gene that catalyzes the formation of cyclo-DOPA. We performed phylogenetic analyses to reveal the evolutionary history of the DODA and CYP76AD1 lineages and in the context of an ancestral reconstruction of pigment states we explored the evolution of these genes in relation to the complex evolution of pigments in Caryophylalles. Duplications within the CYP76AD1 and DODA lineages arose just before the origin of betalain pigmentation in the core Caryophyllales. The duplications gave rise to DODA-α and CYP76AD1-α isoforms that appear specific to betalain synthesis. Both betalain-specific isoforms were then lost or downregulated in the anthocyanic Molluginaceae and Caryophyllaceae. Our findings suggest a single origin of the betalain synthesis pathway, with neofunctionalization following gene duplications in the CYP76AD1 and DODA lineages. Loss of DODA-α and CYP76AD1-α in anthocyanic taxa suggests that betalain pigmentation has been lost twice in Caryophyllales, and exclusion of betalain pigments from anthocyanic taxa is mediated through gene loss or downregulation. [Correction added after online publication 13 May 2015: in the last two paragraphs of the Summary the gene name CYP761A was changed to CYP76AD1.].S.C. was supported by a grant to IRRI from the Bill and Melinda Gates Foundation and UKAID. This work was supported by a National Science Foundation award (grant numbers DEB 1354048 and DEB 1352907) to S.F.B., M.J.M. and S.A.S., and a NERC Independent Research Fellowship to S.F.B. The 1000 Plants (1KP) initiative, led by G.K.S.W., is funded by the Alberta Ministry of Enterprise and Advanced Education, Alberta Innovates Technology Futures (AITF), Innovates Centre of Research Excellence (iCORE), Musea Ventures and BGI-Shenzhen.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/nph.1344

    Expression in grasses of multiple transgenes for degradation of munitions compounds on live fire training ranges

    Get PDF
    The deposition of toxic munitions compounds, such as hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), on soils around targets in live-fire training ranges is an important source of groundwater contamination. Plants take up RDX but do not significantly degrade it. Reported here is the transformation of two perennial grass species, switchgrass (Panicum virgatum) and creeping bentgrass (Agrostis stolonifera), with the genes for degradation of RDX. These species possess a number of agronomic traits making them well equipped for the uptake and removal of RDX from root zone leachates. Transformation vectors were constructed with xplA and xplB, which confer the ability to degrade RDX, and nfsI, which encodes a nitroreductase for the detoxification of the co-contaminating explosive 2, 4, 6-trinitrotoluene (TNT). The vectors were transformed into the grass species using Agrobacterium tumefaciens infection. All transformed grass lines showing high transgene expression levels removed significantly more RDX from hydroponic solutions and retained significantly less RDX in their leaf tissues than wild-type plants. Soil columns planted with the best-performing switchgrass line were able to prevent leaching of RDX through a 0.5-m root zone. These plants represent a promising plant biotechnology to sustainably remove RDX from training range soil, thus preventing contamination of groundwater

    Structure-guided mechanisms behind the metabolism of 2,4,6- trinitrotoluene by glutathione transferases U25 and U24 that lead to alternate product distribution

    Get PDF
    The explosive xenobiotic 2,4,6-trinitrotoluene (TNT) is a major worldwide environmental pollutant and its persistence in the environment presents health and environmental concerns. The chemical structure of TNT dictates that biological detoxification pathways follow predominantly reductive transformation of the nitro groups, and as a result, TNT is notoriously recalcitrant to mineralization in the environment. Plant-based technologies to remediate this toxic pollutant rely on a solid understanding of the biochemical detoxification pathways involved. Towards this, two Arabidopsis Tau class glutathione transferases, GSTU24 and GSTU25, have been identified that catalyze the formation of three TNT-glutathionylated conjugates. These two GSTs share 79 % identity yet only GSTU25 catalyzes the substitution of a nitro group for sulfur to form 2-glutathionyl-4,6-dinitrotoluene. The production of this compound is of interest because substitution of a nitro group could lead to destabilization of the aromatic ring, enabling subsequent biodegradation. To identify target amino acids within GSTU25 that might be involved in the formation of 2-glutathionyl-4,6-dinitrotoluene, the structure for GSTU25 was determined, in complex with oxidized glutathione, and used to inform site-directed mutagenesis studies. Replacement of five amino acids in GSTU24 established a conjugate profile and activity similar to that found in GSTU25. These findings contribute to the development of plant-based remediation strategies for the detoxification of TNT in the environment

    La exigencia cognitiva en los exámenes tipo test en contexto universitario y su relación con los enfoques de aprendizaje, la autorregulación, los métodos docentes y el rendimiento académico

    No full text
    The quality of academic performance and learning outcomes depend on various factors, both psychological and contextual. The academic context includes the training activities and the type of evaluation or examination, which also influences cognitive and motivational factors, such as learning and study approaches and self-regulation. In our university context, the predominant type of exam is that of multiple-choice questions. The cognitive requirement of these questions may vary. From Bloom's typical taxonomy, it is considered that from lower to higher cognitive demand we have questions about factual, conceptual, application knowledge, etc. Normally, the teacher does not take these classifications into account when preparing this type of exam. We propose here an adaptation model of the multiple choice questions classification according to cognitive requirement (associative memorization, comprehension, application), putting it to the test analyzing an examination of a subject in Psychology Degree and relating the results with measures of learning approaches (ASSIST and R-SPQ-2F questionnaires) and self-regulation in a sample of 87 subjects. The results show differential academic performance according to "cognitive" types of questions and differences in approaches to learning and self-regulation. The convenience of taking into account these factors of cognitive requirement when elaborating multiple choice questions is underlinedLa calidad del rendimiento académico y los resultados de aprendizaje dependen de diversos factores, tanto de tipo psicológico como de tipo contextual. El contexto académico incluye las actividades formativas y el tipo de evaluación o examen, sobre el cual también influyen factores cognitivos y motivacionales, tales como los enfoques de aprendizaje y estudio y la autorregulación. En nuestro contexto universitario el tipo de examen predominante es el de preguntas de opción múltiple. La exigencia cognitiva de estas preguntas puede variar. Desde la típica taxonomía de Bloom se considera que de menor a mayor exigencia cognitiva tenemos preguntas sobre conocimiento factual, conceptual, de aplicación, etc. Normalmente el profesor no tiene en cuenta estas clasificaciones a la hora de elaborar este tipo de examen. Se propone aquí un modelo de adaptación de la clasificación de preguntas de opción múltiple según exigencia cognitiva (memorización asociativa, comprensión, aplicación), poniéndolo a prueba analizando un examen de una asignatura de Grado en Psicología y relacionando los resultados con medidas de enfoques de aprendizaje (cuestionarios ASSIST y RSPQ-2F) y autorregulación en una muestra de 87 sujetos. Los resultados muestran rendimiento académico diferencial según tipos “cognitivos” de preguntas y diferencias en enfoques de aprendizaje y autorregulación. Se subraya la conveniencia de tener en cuenta estos factores de exigencia cognitiva a la hora de elaborar preguntas de opción múltiple
    corecore