87 research outputs found

    Tunable asymmetric magnetoimpedance effect in ferromagnetic NiFe/Cu/Co films

    Full text link
    We investigate the magnetization dynamics through the magnetoimpedance effect in ferromagnetic NiFe/Cu/Co films. We observe that the magnetoimpedance response is dependent on the thickness of the non-magnetic Cu spacer material, a fact associated to the kind of the magnetic interaction between the ferromagnetic layers. Thus, we present an experimental study on asymmetric magnetoimpedance in ferromagnetic films with biphase magnetic behavior and explore the possibility of tuning the linear region of the magnetoimpedance curves around zero magnetic field by varying the thickness of the non-magnetic spacer material, and probe current frequency. We discuss the experimental magnetoimpedance results in terms of the different mechanisms governing the magnetization dynamics at distinct frequency ranges, quasi-static magnetic properties, thickness of the non-magnetic spacer material, and the kind of the magnetic interaction between the ferromagnetic layers. The results place ferromagnetic films with biphase magnetic behavior exhibiting asymmetric magnetoimpedance effect as a very attractive candidate for application as probe element in the development of auto-biased linear magnetic field sensors.Comment: 5 figure

    Improving the room-temperature ferromagnetism in ZnO and low-doped ZnO:Ag films using GLAD sputtering

    Get PDF
    ZnO and doped ZnO films with non-ferromagnetic metal have been widely used as biosensor elements. In these studies, the electrochemical measurements are explored, though the electrical impedance of the system. In this sense, the ferromagnetic properties of the material can be used for multifunctionalization of the sensor element using external magnetic fields during the measurements. Within this context, we investigate the room-temperature ferromagnetism in pure ZnO and Ag-doped ZnO films presenting zigzag-like columnar geometry. Specifically, we focus on the films’ structural and quasi-static magnetic properties and disclose that they evolve with the doping of low-Ag concentrations and the columnar geometry employed during the deposition. The magnetic characterization reveals ferromagnetic behavior at room temperature for all studied samples, including the pure ZnO one. By considering computational simulations, we address the origin of ferromagnetism in ZnO and Ag-doped ZnO and interpret our results in terms of the Zn vacancy dynamics, its substitution by an Ag atom in the site, and the influence of the columnar geometry on the magnetic properties of the films. Our findings bring to light an exciting way to induce/explore the room-temperature ferromagnetism of a non-ferromagnetic metal-doped semiconductor as a promising candidate for biosensor applications.This works was partially supported by the Brazilian agencies CNPq and CAPES. Furthermore, this work was also supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2019 and project PTDC/BTMMAT/28237/2017. A. Ferreira thanks FCT for the contract under the Stimulus of Scientific Employment (CTTI-31/18–CF (2) junior researcher contract). RMT thanks the Center for Computational Engineering & Sciences (CCES) at Unicamp for financial support through the FAPESP/CEPID Grant 2013/08293-7. LDM would also like to thank the support of the High-Performance Computing Center at UFRN (NPAD/UFRN). The work reported in this paper was supported by On-Surf Mobilizar Competencias Tecnologicas em Engenharia de Superficies, Project POCI-01-0247-FEDER-024521

    Fundamental inequalities in the plain-old Stoner-Wohlfarth model

    Full text link
    We report two fundamental inequalities in the Stoner-Wohlfarth model. Specifically, we investigate what is the theoretical limit for the initial magnetic susceptibility in a system described by the Stoner-Wohlfarth approach. We also find analytical solutions for the magnetization at the low-fields regime, and obtain the borderline values for saturation magnetization and uniaxial-anisotropy constant for such ideal Stoner-Wohlfarth system. We go beyond and introduce a general mean field theory for interacting Stoner-Wohlfarth-like systems, thus estimating how the initial magnetic susceptibility is affected due to the dipolar and exchange interactions inside the system. By means of a simple insight, from a fundamental inequality for the magnetic susceptibility of an ideal Stoner-Wohlfarth system, we show its violation is a signature of the existence of exchange interactions between nanoparticles in an interacting Stoner-Wohlfarth-like system.Comment: 5 figures. arXiv admin note: substantial text overlap with arXiv:2110.0413

    Magnetic Nanoparticles Hyperthermia in A Non-Adiabatic and Radiating Process

    Get PDF
    We investigate the magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process through the calorimetric method. Specifically, we propose a theoretical approach to magnetic hyperthermia from a thermodynamic point of view. To test the robustness of the approach, we perform hyperthermia experiments and analyse the thermal behavior of magnetite and magnesium ferrite magnetic nanoparticles dispersed in water submitted to an alternating magnetic field. From our findings, besides estimating the specific loss power value from a non-adiabatic and radiating process, thus enhancing the accuracy in the determination of this quantity, we provide physical meaning to a parameter found in literature that still remained not fully understood, the effective thermal conductance, and bring to light how it can be obtained from experiment. In addition, we show our approach brings a correction to the estimated experimental results for specific loss power and effective thermal conductance, thus demonstrating the importance of the heat loss rate due to the thermal radiation in magnetic hyperthermia

    From Parent to Gamete: Vertical Transmission of Symbiodinium (Dinophyceae) ITS2 Sequence Assemblages in the Reef Building Coral Montipora capitata

    Get PDF
    Parental effects are ubiquitous in nature and in many organisms play a particularly critical role in the transfer of symbionts across generations; however, their influence and relative importance in the marine environment has rarely been considered. Coral reefs are biologically diverse and productive marine ecosystems, whose success is framed by symbiosis between reef-building corals and unicellular dinoflagellates in the genus Symbiodinium. Many corals produce aposymbiotic larvae that are infected by Symbiodinium from the environment (horizontal transmission), which allows for the acquisition of new endosymbionts (different from their parents) each generation. In the remaining species, Symbiodinium are transmitted directly from parent to offspring via eggs (vertical transmission), a mechanism that perpetuates the relationship between some or all of the Symbiodinium diversity found in the parent through multiple generations. Here we examine vertical transmission in the Hawaiian coral Montipora capitata by comparing the Symbiodinium ITS2 sequence assemblages in parent colonies and the eggs they produce. Parental effects on sequence assemblages in eggs are explored in the context of the coral genotype, colony morphology, and the environment of parent colonies. Our results indicate that ITS2 sequence assemblages in eggs are generally similar to their parents, and patterns in parental assemblages are different, and reflect environmental conditions, but not colony morphology or coral genotype. We conclude that eggs released by parent colonies during mass spawning events are seeded with different ITS2 sequence assemblages, which encompass phylogenetic variability that may have profound implications for the development, settlement and survival of coral offspring

    Enhanced spin current transmissivity in Pt/ CoFe2 O4 bilayers with thermally induced interfacial magnetic modification

    Get PDF
    We report on processes of generation of spin current and conversion into charge current in CoFe2O4/Pt bilayers by means of spin Hall magnetoresistance (SMR) and spin Seebeck effect (SSE) experiments. Specifically, we explore (001) full-textured CoFe2O4 (CFO) thin films grown onto (001)-oriented SrTiO3 substrates, covered with Pt layers deposited under two different conditions: one at room temperature and another at high temperature (400°C). The x-ray absorption spectroscopy measurements indicate that the Pt layer deposited at high temperature induces an interfacial magneticlike phase (Fe,Co)-Pt alloy, which influences the magnetic behavior of the structure and is responsible for the enhancement of the spin transmission at the interface. By analyzing the SMR data, we conclude that collinear and noncollinear magnetic domains coexist at the CFO-(Fe,Co)-Pt interface. By combining the data from the SMR and SSE measurements, we obtain the ratios between the values of the spin Hall angle (θSH) and between the ones of the spin-mixing conductance (geff↑↓) in the two samples. We demonstrate that while the value of θSH decreases by one-half with the heat treatment, the value of geff↑↓ increases by more than one order of magnitude. We interpret the increase of geff↑↓ in terms of unexpected magnetic reconstructions, which produce an enhancement of the magnetic moment arisen at the interface. Since the spin-mixing conductance determines the efficiency of the spin current transmission through the interface, the spinel ferrite cobalt in contact with a normal metal with a suitable heat treatment becomes a promising material for spintronics device applications.This research was supported in Brazil by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Promoção da Ciência, Tecnologia e Inovação do Estado do Rio Grande do Norte (FAPERN), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Grant No. 2022/04496-0; and in Chile by Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grant No. 1210641 and FONDEQUIP EQM180103. Ministerio de Ciencia, Universidades e Investigación (SPAIN) (Grants No. PID2020-118479RB-I00/AEI/10.13039/501100011033 and No. TED2021-129857B-I00. The authors acknowledge support of the INCT of Spintronics and Advanced Magnetic Nanostructures (INCT-SpinNanoMag), CNPq 406836/ 2022–1.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe

    Priorities for synthesis research in ecology and environmental science

    Get PDF
    ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD

    Priorities for synthesis research in ecology and environmental science

    Get PDF
    ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD
    corecore