559 research outputs found
Cryogenic micro-calorimeters for mass spectrometric identification of neutral molecules and molecular fragments
We have systematically investigated the energy resolution of a magnetic
micro-calorimeter (MMC) for atomic and molecular projectiles at impact energies
ranging from to 150 keV. For atoms we obtained absolute energy
resolutions down to eV and relative energy resolutions
down to . We also studied in detail the MMC
energy-response function to molecular projectiles of up to mass 56 u. We have
demonstrated the capability of identifying neutral fragmentation products of
these molecules by calorimetric mass spectrometry. We have modeled the MMC
energy-response function for molecular projectiles and conclude that
backscattering is the dominant source of the energy spread at the impact
energies investigated. We have successfully demonstrated the use of a detector
absorber coating to suppress such spreads. We briefly outline the use of MMC
detectors in experiments on gas-phase collision reactions with neutral
products. Our findings are of general interest for mass spectrometric
techniques, particularly for those desiring to make neutral-particle mass
measurements
A Bacillus megaterium plasmid system for the production, export, and one-step purification of affinity-tagged heterologous levansucrase from growth medium
A multiple vector system for the production and export of recombinant affinity-tagged proteins in Bacillus megaterium was developed. Up to 1 mg/liter of a His(6)-tagged or Strep-tagged Lactobacillus reuteri levansucrase was directed into the growth medium, using the B. megaterium esterase LipA signal peptide, and recovered by one-step affinity chromatography
Absolute identification by relative judgment
In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative relative judgment model (RJM) in which the elemental perceptual units are representations of the differences between current and previous stimuli. These differences are used, together with the previous feedback, to respond. Without using long-term representations of absolute magnitudes, the RJM accounts for (a) information transmission limits, (b) bowed serial position effects, and (c) sequential effects, where responses are biased toward immediately preceding stimuli but away from more distant stimuli (assimilation and contrast)
Molecular diversity of anthracnose pathogen populations associated with UK strawberry production suggests multiple introductions of three different Colletotrichum species.
Fragaria Ă ananassa (common name: strawberry) is a globally cultivated hybrid species belonging to Rosaceae family. Colletotrichum acutatum sensu lato (s.l.) is considered to be the second most economically important pathogen worldwide affecting strawberries. A collection of 148 Colletotrichum spp. isolates including 67 C. acutatum s.l. isolates associated with the phytosanitary history of UK strawberry production were used to characterize multi-locus genetic variation of this pathogen in the UK, relative to additional reference isolates that represent a worldwide sampling of the diversity of the fungus. The evidence indicates that three different species C. nymphaeae, C. godetiae and C. fioriniae are associated with strawberry production in the UK, which correspond to previously designated genetic groups A2, A4 and A3, respectively. Among these species, 12 distinct haplotypes were identified suggesting multiple introductions into the country. A subset of isolates was also used to compare aggressiveness in causing disease on strawberry plants and fruits. Isolates belonging to C. nymphaeae, C. godetiae and C. fioriniae representative of the UK anthracnose pathogen populations showed variation in their aggressiveness. Among the three species, C. nymphaeae and C. fioriniae appeared to be more aggressive compared to C. godetiae. This study highlights the genetic and pathogenic heterogeneity of the C. acutatum s.l. populations introduced into the UK linked to strawberry production
Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae)
Background: Introgressive events (e.g., hybridization, gene flow, horizontal gene transfer) and incomplete lineage sorting of ancestral polymorphisms are a challenge for phylogenetic analyses since different genes may exhibit conflicting genealogical histories. Grasses of the Triticeae tribe provide a particularly striking example of incongruence among gene trees. Previous phylogenies, mostly inferred with one gene, are in conflict for several taxon positions. Therefore, obtaining a resolved picture of relationships among genera and species of this tribe has been a challenging task. Here, we obtain the most comprehensive molecular dataset to date in Triticeae, including one chloroplastic and 26 nuclear genes. We aim to test whether it is possible to infer phylogenetic relationships in the face of (potentially) large-scale introgressive events and/or incomplete lineage sorting; to identify parts of the evolutionary history that have not evolved in a tree-like manner; and to decipher the biological causes of genetree conflicts in this tribe. Results: We obtain resolved phylogenetic hypotheses using the supermatrix and Bayesian Concordance Factors (BCF) approaches despite numerous incongruences among gene trees. These phylogenies suggest the existence of 4-5 major clades within Triticeae, with Psathyrostachys and Hordeum being the deepest genera. In addition, we construct a multigenic network that highlights parts of the Triticeae history that have not evolved in a tree-lik
Kâ{[Fe(Tp)(CN)][Co(Tp)][Co(Tp)]}: a neutral soluble model complex of photomagnetic Prussian blue analogues
Straightforward access to a new cyanide-bridged {FeCo} âmolecular boxâ containing a potassium ion, namely Kâ{[Fe(Tp)(CN)][Co(Tp)][Co(Tp)]} (1) (with Tp and Tp = tris- and tetrakis(pyrazolyl)borate, respectively), is provided, alongside its full characterisation. A detailed analysis of the molecular structure (X-ray diffraction, mass spectrometry, NMR spectroscopy) and electronic properties (EPR spectroscopy, SQUID magnetometry, UV/Vis spectroscopy, cyclic voltammetry) reveals that 1 shows slow magnetic relaxation and a remarkable photomagnetic effect at low temperature which is reminiscent of some FeCo Prussian Blue Analogues (PBAs), and is ascribed to a photo-induced electron transfer. However, in contrast with these inorganic polymers, the overall neutral compound 1 is soluble and remarkably stable in organic solvents such as CH2Cl2. Moreover, 1 shows interesting redox versatility, with electrochemical experiments revealing the possible access to six stable redox states
Use of surface plasmon resonance for the measurement of low affinity binding interactions between HSP72 and measles virus nucleocapsid protein
The 72 kDa heat shock protein (HSP72) is a molecular chaperone that binds native protein with low affinity. These interactions can alter function of the substrate, a property known as HSP-mediated activity control. In the present work, BIAcore instrumentation was used to monitor binding reactions between HSP72 and naturally occurring sequence variants of the measles virus (MV) nucleocapsid protein (N), a structural protein regulating transcription/replication of the viral genome. Binding reactions employed synthetic peptides mimicking a putative HSP72 binding motif of N. Sequences were identified that bound HSP72 with affinities comparable to well-characterized activity control reactions. These sequences, but not those binding with lesser affinity, supported HSP72 activity control of MV transcription/replication. BIAcore instrumentation thus provides an effective way to measure biologically relevant low affinity interactions with structural variants of viral proteins
- âŠ