3,295 research outputs found

    Gamble mode: Resonance contact mode in atomic force microscopy

    Get PDF
    Active noise reduction has been accomplished in atomic force microscopy by applying a high frequency, low amplitude vibration to the cantilever while it is in contact with a surface. The applied excitation (>~ 200 kHz; ~ 1 nm) is acoustically coupled to the tip and dampens the resonance Q factors of the system. The applied frequency is well above the bandwidth of the acquisition system (50 kHz). We call this mode "gamble mode" or "resonance contact.

    Noise reduction in atomic force microscopy: Resonance contact mode

    Get PDF
    Noise reduction has been accomplished in atomic force microscopy by applying a high frequency, low amplitude vibration to the cantilever while it is in contact with a surface. The applied excitation (>~200 kHz; ~1 nm) is acoustically coupled to the tip and dampens the resonance Q factors of the system. The applied frequency is well above the bandwidth of the acquisition system (50 kHz). We call this mode "resonance contact" mode. The nonlinear behavior of the tip–sample interaction allows the high frequency excitation to effectively broaden the frequency response of the system resonances

    Remotely controlled mirror of variable geometry for small angle x-ray diffraction with synchrotron radiation

    Get PDF
    A total-reflecting mirror of 120-cm length was designed and built to focus synchrotron radiation emanating from the electron-positron storage ring at the Stanford Linear Accelerator Center (SPEAR). The reflecting surface is of unpolished float glass. The bending and tilt mechanism allows very fine control of the curvature and selectability of the critical angle for wavelengths ranging from 0.5 to 3.0 Ã…. Elliptical curvature is used to minimize aberrations. The mirror is placed asymmetrically onto the ellipse so as to achieve a tenfold demagnification of the source. The bending mechanism reduces nonelastic deformation (flow) and minimizes strains and stresses in the glass despite its length. Special design features assure stability of the focused image. The mirror reduces the intensity of shorter wavelength harmonics by a factor of approximately 100

    A remembrance of things (best) forgotten: The 'allegorical past' and the feminist imagination

    Get PDF
    This is the author's PDF version of an article published in Feminist theology© 2012. The definitive version is available at http://fth.sagepub.com/This article discusses the US TV series Mad Men, which is set in an advertising agency in 1960s New York, in relation to two key elements which seem significant for a consideration of the current state of feminism in church and academy, both of which centre around what it means to remember or (not) to forget

    Transport Properties of Carbon Nanotube C60_{60} Peapods

    Full text link
    We measure the conductance of carbon nanotube peapods from room temperature down to 250mK. Our devices show both metallic and semiconducting behavior at room temperature. At the lowest temperatures, we observe single electron effects. Our results suggest that the encapsulated C60_{60} molecules do not introduce substantial backscattering for electrons near the Fermi level. This is remarkable given that previous tunneling spectroscopy measurements show that encapsulated C60_{60} strongly modifies the electronic structure of a nanotube away from the Fermi level.Comment: 9 pages, 4 figures. This is one of two manuscripts replacing the one orginally submitted as arXiv:cond-mat/0606258. The other one is arXiv:0704.3641 [cond-mat

    Tunable singlet-triplet splitting in a few-electron Si/SiGe quantum dot

    Full text link
    We measure the excited-state spectrum of a Si/SiGe quantum dot as a function of in-plane magnetic field, and we identify the spin of the lowest three eigenstates in an effective two-electron regime. The singlet-triplet splitting is an essential parameter describing spin qubits, and we extract this splitting from the data. We find it to be tunable by lateral displacement of the dot, which is realized by changing two gate voltages on opposite sides of the device. We present calculations showing the data are consistent with a spectrum in which the first excited state of the dot is a valley-orbit state.Comment: 4 pages with 3 figure

    Micro-Raman Study of Stress Distribution Generated in Silicon During Proximity Rapid Thermal Diffusion

    Get PDF
    proximity rapid thermal diffusion (RTD). A compressive stress was found on the whole silicon wafer after 15 s RTD. After 165 s RTD, the distribution of the stress across the wafer was found to be different: compressive at the edge and tensile at the middle. Thermal stress was relieved in the RTD wafers via slip dislocations. These slip dislocations were observed in the product wafers using optical microscopy. Slip lines propagated from the wafer edge to the wafer centre in eight preferred positions of maximum induced stress. The thermally induced stress and the slip dislocation density increased with time spent at the RTD peak temperature

    Arctic air pollution: Challenges and opportunities for the next decade

    Get PDF
    The Arctic is a sentinel of global change. This region is influenced by multiple physical and socio-economic drivers and feedbacks, impacting both the natural and human environment. Air pollution is one such driver that impacts Arctic climate change, ecosystems and health but significant uncertainties still surround quantification of these effects. Arctic air pollution includes harmful trace gases (e.g. tropospheric ozone) and particles (e.g. black carbon, sulphate) and toxic substances (e.g. polycyclic aromatic hydrocarbons) that can be transported to the Arctic from emission sources located far outside the region, or emitted within the Arctic from activities including shipping, power production, and other industrial activities. This paper qualitatively summarizes the complex science issues motivating the creation of a new international initiative, PACES (air Pollution in the Arctic: Climate, Environment and Societies). Approaches for coordinated, international and interdisciplinary research on this topic are described with the goal to improve predictive capability via new understanding about sources, processes, feedbacks and impacts of Arctic air pollution. Overarching research actions are outlined, in which we describe our recommendations for 1) the development of trans-disciplinary approaches combining social and economic research with investigation of the chemical and physical aspects of Arctic air pollution; 2) increasing the quality and quantity of observations in the Arctic using long-term monitoring and intensive field studies, both at the surface and throughout the troposphere; and 3) developing improved predictive capability across a range of spatial and temporal scales
    • …
    corecore