We measure the excited-state spectrum of a Si/SiGe quantum dot as a function
of in-plane magnetic field, and we identify the spin of the lowest three
eigenstates in an effective two-electron regime. The singlet-triplet splitting
is an essential parameter describing spin qubits, and we extract this splitting
from the data. We find it to be tunable by lateral displacement of the dot,
which is realized by changing two gate voltages on opposite sides of the
device. We present calculations showing the data are consistent with a spectrum
in which the first excited state of the dot is a valley-orbit state.Comment: 4 pages with 3 figure