1,691 research outputs found
Zeptonewton force sensing with nanospheres in an optical lattice
Optically trapped nanospheres in high-vaccum experience little friction and
hence are promising for ultra-sensitive force detection. Here we demonstrate
measurement times exceeding seconds and zeptonewton force sensitivity
with laser-cooled silica nanospheres trapped in an optical lattice. The
sensitivity achieved exceeds that of conventional room-temperature solid-state
force sensors, and enables a variety of applications including electric field
sensing, inertial sensing, and gravimetry. The optical potential allows the
particle to be confined in a number of possible trapping sites, with precise
localization at the anti-nodes of the optical standing wave. By studying the
motion of a particle which has been moved to an adjacent trapping site, the
known spacing of the lattice anti-nodes can be used to calibrate the
displacement spectrum of the particle. Finally, we study the dependence of the
trap stability and lifetime on the laser intensity and gas pressure, and
examine the heating rate of the particle in high vacuum in the absence of
optical feedback cooling.Comment: 5 pages, 4 figures, minor changes, typos corrected, references adde
Observation of a classical cheshire cat in an optical interferometer
A recent neutron interferometry experiment claims to demonstrate a
paradoxical phenomena dubbed the "quantum Cheshire Cat" \cite{Denkmayr2014}. We
have reproduced and extended these results with an equivalent optical
interferometer. The results suggest that the photon travels through one arm of
the interferometer, while its polarization travels through the other. However,
we show that these experimental results belong to the domain where quantum and
classical wave theories coincide; there is nothing uniquely quantum about the
illusion of this cheshire cat.Comment: 4 pages, 4 figure
Microscopic Description of Super Heavy Nuclei
The results of extensive microscopic Relativistic Mean Field (RMF)
calculations for the nuclei appearing in the alpha - decay chains of recently
discovered superheavy elements with Z = 109 to 118 are presented and discussed.
The calculated ground state properties like total binding energies, Q values,
deformations, radii and densities closely agree with the corresponding
experimental data, where available. The double folding (t-rho-rho)
approximation is used to calculate the interaction potential between the
daughter and the alpha, using RMF densities along with the density dependent
nucleon - nucleon interaction (M3Y). This in turn, is employed within the WKB
approximation to estimate the half lives without any additional parameter for
alpha - decay. The half lives are highly sensitive to the Q values used and
qualitatively agree with the corresponding experimental values. The use of
experimental Q values in the WKB approximation improves the agreement with the
experiment, indicating that the resulting interaction potential is reliable and
can be used with confidence as the real part of the optical potential in other
scattering and reaction processes.Comment: Accepted for publication in Annals of Physics (NY
Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum
We describe the implementation of laser-cooled silica microspheres as force
sensors in a dual-beam optical dipole trap in high vacuum. Using this system we
have demonstrated trap lifetimes exceeding several days, attonewton force
detection capability, and wide tunability in trapping and cooling parameters.
Measurements have been performed with charged and neutral beads to calibrate
the sensitivity of the detector. This work establishes the suitability of dual
beam optical dipole traps for precision force measurement in high vacuum with
long averaging times, and enables future applications including the study of
gravitational inverse square law violations at short range, Casimir forces,
acceleration sensing, and quantum opto-mechanics.Comment: 6 pages, 5 figures, references added, minor changes, fig 4 replace
Pairing and alpha-like quartet condensation in N=Z nuclei
We discuss the treatment of isovector pairing by an alpha-like quartet
condensate which conserves exactly the particle number, the spin and the
isospin. The results show that the quartet condensate describes accurately the
isovector pairing correlations in the ground state of systems with an equal
number of protons and neutronsComment: 4 pages, to appear in Journal of Physics: Conference Serie
Information entropy as a measure of the quality of a nuclear density distribution
The information entropy of a nuclear density distribution is calculated for a
number of nuclei. Various phenomenological models for the density distribution
using different geometry are employed. Nuclear densities calculated within
various microscopic mean field approaches are also employed. It turns out that
the entropy increases on going from crude phenomenological models to more
sophisticated (microscopic) ones. It is concluded that the larger the
information entropy, the better the quality of the nuclear density
distribution. An alternative approach is also examined: the net information
content i.e. the sum of information entropies in position and momentum space
. It is indicated that is a maximum, when the best
fit to experimental data of the density and momentum distributions is attained.Comment: 12 pages, LaTex, no figures, Int. J. of Mod. Phys. E in pres
Relativistic Mean Field Approach and the Pseudo-Spin Symmetry
Based on the Relativistic Mean Field (RMF) approach the existence of the
broken pseudo-spin symmetry is investigated. Both spherical RMF and constrained
deformed RMF calculations are carried out employing realistic Lagrangian
parameters for spherical and for deformed sample nuclei. The quasi - degenerate
pseudo-spin doublets are confirmed to exist near the fermi surface for both
spherical and deformed nuclei.Comment: 9 pages RevTex, 4 p.s figures, to appear in Phys. Rev. C as R.
- …
