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Abstract. We discuss the treatment of isovector pairing by an alpha-like quartet condensate  which 

conserves exactly the  particle number, the  spin  and  the isospin.  The  results show that the quartet 

condensate  describes  accurately the isovector pairing correlations in the ground state of  systems with 

an equal number of protons and neutrons.  

 

   One of the most debated topic in nuclear physics  is the competition between the isoscalar (T=0) and 

the isovector (T=1) proton-neutron pairing  in  nuclei with neutrons and protons in the same open 

shell. The most common formalism to treat both T=1 and T=0 pairing is the generalized Hartree-Fock-

Bogoliubov (HFB) approach [1]. The great advantage of this approach is that it can be applied  to 

practically all nuclei, irrespective of their masses and deformations. The drawback is that HFB does 

not conserve exactly the particle number, the total spin and the total isospin of the nucleus. 

   A simple alternative to restore the particle number, the spin and the isospin is to work not with pairs 

but with alpha-like 4-body clusters composed by two neutrons and two protons coupled to total isospin 

T=0 and total spin J=0 [2]. The existence  of alpha-like  structures in nuclei, usually related to  low-

energy alpha emission threshold,  regularities in the masses of light nuclei  and to specific features of 

low-energy excitation spectra of N=Z nuclei  [3-6],  is one of the  oldest issue  in nuclear structure (for 

a recent review see [3]) . 

    Various studies rose the question of whether  a superfluid condensate of alpha-like quartets could 

exist in the ground state or in some excited states of self-conjugate nuclei [7-11]. Here some clarifying 

remarks are in order. In the ground state of nuclei the quartets are not expected to be tight clusters as 

the alpha particles (nuclei of 
4
He) but  rather 4-body structures correlated in angular momentum and 

isospin space. Thus, in the ground state of heavy nuclei a superfluid condensate of alpha-like quartets 

is expected to have a small fraction of extended correlated quartets rather than to be a Bose condensate 

of alpha-like bound quartets. However, according to several calculations, in some specific excited 

states such as the Hoyle state of 
12

C, the quartets could become bound alpha particles and they might 

do form a boson condensate [12]. A boson condensate of alpha particles has been also predicted in 

dilute nuclear matter [13].        

    One of the first microscopic models of quartet condensation in nuclei, proposed by Flowers et al. 

[7], it is  based on a BCS-type function written in terms of quartets . Recently this model was extended 

by including in the BCS function both Cooper pairs and  quartets [11]. A theory of quartet 

condensation based on a BCS-type function has the advantage  of simplicity but its applicability to real 

nuclei is hindered by the fact that it does not conserve exactly the particle number. 

    The scope of this paper is to show  how the isovector  pairing can be described by an alpha-like 

quartet condensate  which conserves exactly the particle number,  the spin and the isospin and which  

is simple enough for performing realistic calculations.  
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     The isovector pairing Hamiltonian is taken in the standard form 

                      

     (1) 

 

where the first term is the single-particle Hamiltonian and the second term is the  isovector pairing 

interaction of constant strength. The interaction is expressed by the  operators                                                          

where                                               denotes the  projections of the isospin corresponding to  nn, pp and 

pn pairs respectively. The Hamiltonian (1) has a local SO(5) symmetry and it can be solved exactly for 

any distribution of single-particle levels [14]. The most common approximation is the generalized 

HFB approach [5], which has the drawback that it does not conserve exactly the particle number  and 

the total isospin. An alternative to restore the total isospin is to introduce the quartet operators  

 

 

 With these operators we construct a collective quartet operator   

                               (2) 

  

Because the operator (2) is formed by two neutrons and two protons with  the same quantum numbers 

as in an alpha particle, it will be called an alpha-like quartet. Since the calculations with the collective 

quartet operator  (2) are difficult to perform,  we assume that the mixing amplitudes are separable in 

the indices i and j,  i.e., we take . With this ansatz the quartet operator can be written as                  

                                                                                                                                       (3) 

 

where                          are the collective pair operators for the isovector nn, pp and pn pairs.  

   The quartet operator (3) is used to construct a quartet condensate  

 

                                                                                                                                       (4) 

 

It can be seen that the function (4) is a particular  superposition of condensates of collective nn, pp and 

pn pairs which combine so as to give a total isospin equal to T=0.  

    The  quartet condensate  (4) is used as a trial eigenstate for describing the isovector pairing 

correlations in the ground state of even-even self-conjugate (N=Z) nuclei. Its structure depends on the  

mixing parameters  ix  .  They are determined by  minimizing  the average of the Hamiltonian (1) on 

the quartet condensate (4) and by imposing the normalization condition 1|  . 

    How accurate is the quartet condensate (4) for the description of the ground state of the Hamiltonian 

(1) can be seen from Table 1 below. Table 1 shows the correlation energies (the differences between 

the total energies and the HF energies) for a system of 8 proton-neutron pairs distributed in 16 four-

fold degenerate single-particle states with the energies 2/)1(  ii . In the third column are shown 

the results corresponding to the quartet condensate (4) while in the second column are given the exact 

results [15].  In the last column are shown the results corresponding to the PBCS approximation [15] 

                                            | ( ) | 0 .qn
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                                       (5) 

It can be seen that the quartet condensate (4) describes accurately the correlations energies. Thus, for 

intermediate and strong coupling the errors do not exceed  1%. These errors are comparable with the 

errors of the PBCS approximation for pairing between like particles [16]. On the other hand, as seen in 

Table I, the errors corresponding to the quartet condensate are of about one order of magnitude lower 

than in the case of the PBCS approximation (5) for the isovector pairing Hamiltonian.           
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        Table 1.  Correlations energies, in units of the single-particle level spacing,  for N=Z=8. 
         In brackets are given the errors relative to the exact results (second column). The third 

         column corresponds to the condensate (4) wile the last to the  PBCS approximation (5). 

 

       g                   Exact                      Quartet    (errors)                 PBCS  (errors)    

                 0.2                    1.755                      1.674    (4.6%)                 1.239    (29.4%) 

                 0.4                    9.917                      9.820    (0.9%)                 8.643    (12.8%) 

                 0.6                  23.431                    23.388    (0.12%)             21.571    (7.9%) 

                 0.8            39.414                   39.394    (0.05%)             36.968     (6.2%) 

                 1.0                  56.586                   56.574    (0.02 %)            53.546     (5.3%) 

 

   Now we shall discuss the quartet correlations for systems with N=Z=odd. In these systems there is a 

pn pair which is not included in the quartet condensate. These systems can be described by  

                                             (6)  

 

where                             describes the residual isovector  pn pair. It can be noticed that the odd 

collective pair has different mixing amplitudes as compared with the pairs which are a part of the 

quartet condensate. It is expected that the structure of the odd pn pair is quite different to the structure 

of the pairs belonging to the quartet condensate in the weak coupling limit, and that they tend to be 

rather similar in the strong coupling regime.  In order to examine this feature we show in Table 2  the 

correlations energies calculated for a system with 7 proton-neutron pairs distributed in 14 double 

degenerate and equidistant levels. The second column shows the exact results while in the last column 

are given the results corresponding to the PBCS approximation [15]                                                                                                                                                                                              
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                                                   (7)                                 

which for N=Z=odd  gives a lower energy compared to (5).  In the third column are shown the results 

corresponding to the quartet condensate (6) assuming that the odd pair has the same structure as the 

pairs belonging to the quartet condensate. As seen from Table 2, this assumption is unrealistic for the 

weak pairing but it works very well in the intermediate and strong coupling regimes. 

 

        Table 2.  Correlations energies, in units of the single-particle level spacing for N=Z=7. 

        The third column corresponds to the quartet condensate (6); it is supposed that the odd 

         pn pair has the same structure as the pairs in the condensate. The second column gives 

         the exact results while the last corresponds to the results of PBCS approximation (7). 

 

      g                           Exact                 Quartet (errors)                 PBCS   (errors) 

             0.2                           1.35                    0.430     (68.1%)                     0.585    (56.7%) 

             0.4                           7.59                    7.496     (1.2 %)                      3.749    (54.2%) 

             0.6                         17.87                  17.85       (0.11%)                   10.73      (39.9%) 

             0.8                         30.99                  30.99       (0.002%)                 19.71      (36.4%) 

             1.0                         43.06                  43.06     (<0.002%)                 29.65     (31.1%) 

  

   In conclusion, the present study indicates that an alpha-like quartet condensate describes accurately 

the isovector pairing correlations in the ground state of the Hamiltonian (1). Preliminary results show 

that this conclusion is also valid for N=Z nuclei calculated with realistic pairing interactions and 

single-particle levels [17]. 
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