19 research outputs found

    The Interplay between Entamoeba and Enteropathogenic Bacteria Modulates Epithelial Cell Damage

    Get PDF
    In amoebiasis, a human disease that is a serious health problem in many developing countries, efforts have been made to identify responsible factors for the tissue damage inflicted by the parasite Entamoeba histolytica. This amoeba lives in the lumen of the colon without causing damage to the intestinal mucosa, but under unknown circumstances becomes invasive, destroying the intestinal tissue. Bacteria in the intestinal flora have been proposed as inducers of higher amoebic virulence, but the causes or mechanisms responsible for the induction are still undetermined. Mixed intestinal infections with Entamoeba histolytica and enteropathogenic bacteria, showing exacerbated manifestations of disease, are common in endemic countries. We implemented an experimental system to study amoebic virulence in the presence of pathogenic bacteria and its consequences on epithelial cells. Results showed that amoebae that ingested enteropathogenic bacteria became more virulent, causing more damage to epithelial cells. Bacteria induced release of inflammatory proteins by the epithelial cells that attracted amoebae, facilitating amoebic contact to the epithelial cells and higher damage. Our results, although a first approach to this complex problem, provide insights into amoebic infections, as interplay with other pathogens apparently influences the intestinal environment, the behavior of cells involved and the manifestations of the disease

    Human Amebiasis: Breaking the Paradigm?

    Get PDF
    For over 30 years it has been established that the Entamoeba histolytica protozoan included two biologically and genetically different species, one with a pathogenic phenotype called E. histolytica and the other with a non-pathogenic phenotype called Entamoeba dispar. Both of these amoebae species can infect humans. E. histolytica has been considered as a potential pathogen that can cause serious damage to the large intestine (colitis, dysentery) and other extraintestinal organs, mainly the liver (amebic liver abscess), whereas E. dispar is a species that interacts with humans in a commensal relationship, causing no symptoms or any tissue damage. This paradigm, however, should be reconsidered or re-evaluated. In the present work, we report the detection and genotyping of E. dispar sequences of DNA obtained from patients with amebic liver abscesses, including the genotyping of an isolate obtained from a Brazilian patient with a clinical diagnosis of intestinal amebiasis that was previously characterized as an E. dispar species. The genetic diversity and phylogenetic analysis performed by our group has shown the existence of several different genotypes of E. dispar that can be associated to, or be potentiality responsible for intestinal or liver tissue damage, similar to that observed with E. histolytica
    corecore