9,630 research outputs found
Study of solid 4He in two dimensions. The issue of zero-point defects and study of confined crystal
Defects are believed to play a fundamental role in the supersolid state of
4He. We report on studies by exact Quantum Monte Carlo (QMC) simulations at
zero temperature of the properties of solid 4He in presence of many vacancies,
up to 30 in two dimensions (2D). In all studied cases the crystalline order is
stable at least as long as the concentration of vacancies is below 2.5%. In the
2D system for a small number, n_v, of vacancies such defects can be identified
in the crystalline lattice and are strongly correlated with an attractive
interaction. On the contrary when n_v~10 vacancies in the relaxed system
disappear and in their place one finds dislocations and a revival of the
Bose-Einstein condensation. Thus, should zero-point motion defects be present
in solid 4He, such defects would be dislocations and not vacancies, at least in
2D. In order to avoid using periodic boundary conditions we have studied the
exact ground state of solid 4He confined in a circular region by an external
potential. We find that defects tend to be localized in an interfacial region
of width of about 15 A. Our computation allows to put as upper bound limit to
zero--point defects the concentration 0.003 in the 2D system close to melting
density.Comment: 17 pages, accepted for publication in J. Low Temp. Phys., Special
Issue on Supersolid
First-Principles Study of Electronic and Vibrational Properties of BaHfN
The transition metal nitride BaHfN, which consists of weakly bonded
neutral slabs of closed shell ions, has structural and chemical similarities to
other layered nitrides which have impressive superconducting T when
electron doped: AHfNCl, AZrNCl, ATiNCl, with ,
and K, respectively for appropriate donor (A) concentrations . These
similarities suggest the possibility of BaHfN being another relatively high
T nitride upon doping, with effects of structure and the role of specific
transition metal ions yet to be understood. We report first-principles
electronic structure calculations for stoichiometric BaHfN using density
functional theory with plane-wave basis sets and separable dual-space Gaussian
pseudopotentials. An indirect band gap of 0.8 eV was obtained and the lowest
conduction band is primarily of Hf 5 character, similar to
-ZrNCl and -TiNCl. The two N sites, one in the Hf layer and
another one in the Ba layer, were found to have very anisotropic Born effective
charges (BEC):deviations from the formal charge (-3) are opposite for the two
sites, and opposite for the two orientations (in-plane, out of plane). LO-TO
splittings and comparison of BECs and dielectric constant tensors to those of
related compounds are discussed, and the effect of electron doping on the
zone-center phonons is reported.Comment: 11 pages, 5 figure
The power spectrum of systematics in cosmic shear tomography and the bias on cosmological parameters
Cosmic shear tomography has emerged as one of the most promising tools to
both investigate the nature of dark energy and discriminate between General
Relativity and modified gravity theories. In order to successfully achieve
these goals, systematics in shear measurements have to be taken into account;
their impact on the weak lensing power spectrum has to be carefully
investigated in order to estimate the bias induced on the inferred cosmological
parameters. To this end, we develop here an efficient tool to compute the power
spectrum of systematics by propagating, in a realistic way, shear measurement,
source properties and survey setup uncertainties. Starting from analytical
results for unweighted moments and general assumptions on the relation between
measured and actual shear, we derive analytical expressions for the
multiplicative and additive bias, showing how these terms depend not only on
the shape measurement errors, but also on the properties of the source galaxies
(namely, size, magnitude and spectral energy distribution). We are then able to
compute the amplitude of the systematics power spectrum and its scaling with
redshift, while we propose a multigaussian expansion to model in a
non-parametric way its angular scale dependence. Our method allows to
self-consistently propagate the systematics uncertainties to the finally
observed shear power spectrum, thus allowing us to quantify the departures from
the actual spectrum. We show that even a modest level of systematics can induce
non-negligible deviations, thus leading to a significant bias on the recovered
cosmological parameters.Comment: 19 pages, 5 tables, 4 figure
Order-N Density-Matrix Electronic-Structure Method for General Potentials
A new order-N method for calculating the electronic structure of general
(non-tight-binding) potentials is presented. The method uses a combination of
the ``purification''-based approaches used by Li, Nunes and Vanderbilt, and
Daw, and a representation of the density matrix based on ``travelling basis
orbitals''. The method is applied to several one-dimensional examples,
including the free electron gas, the ``Morse'' bound-state potential, a
discontinuous potential that mimics an interface, and an oscillatory potential
that mimics a semiconductor. The method is found to contain Friedel
oscillations, quantization of charge in bound states, and band gap formation.
Quantitatively accurate agreement with exact results is found in most cases.
Possible advantages with regard to treating electron-electron interactions and
arbitrary boundary conditions are discussed.Comment: 13 pages, REVTEX, 7 postscript figures (not quite perfect
Quantized vortices in two dimensional solid 4He
Diagonal and off-diagonal properties of 2D solid 4He systems doped with a
quantized vortex have been investigated via the Shadow Path Integral Ground
State method using the fixed-phase approach. The chosen approximate phase
induces the standard Onsager-Feynman flow field. In this approximation the
vortex acts as a static external potential and the resulting Hamiltonian can be
treated exactly with Quantum Monte Carlo methods. The vortex core is found to
sit in an interstitial site and a very weak relaxation of the lattice positions
away from the vortex core position has been observed. Also other properties
like Bragg peaks in the static structure factor or the behavior of vacancies
are very little affected by the presence of the vortex. We have computed also
the one-body density matrix in perfect and defected 4He crystals finding that
the vortex has no sensible effect on the off-diagonal long range tail of the
density matrix. Within the assumed Onsager Feynman phase, we find that a
quantized vortex cannot auto-sustain itself unless a condensate is already
present like when dislocations are present. It remains to be investigated if
backflow can change this conclusion.Comment: 4 pages, 3 figures, LT26 proceedings, accepted for publication in
Journal of Physics: Conference Serie
Optimizing Observational Strategy for Future Fgas Constraints
The Planck cluster catalog is expected to contain of order a thousand galaxy
clusters, both newly discovered and previously known, detected through the
Sunyaev-Zeldovich effect over the redshift range 0 < z < 1. Follow-up X-ray
observations of a dynamically relaxed sub-sample of newly discovered Planck
clusters will improve constraints on the dark energy equation-of-state found
through measurement of the cluster gas mass fraction fgas. In view of follow-up
campaigns with XMM-Newton and Chandra, we determine the optimal redshift
distribution of a cluster sample to most tightly constrain the dark energy
equation of state. The distribution is non-trivial even for the standard w0-wa
parameterization. We then determine how much the combination of expected data
from the Planck satellite and fgas data will be able to constrain the dark
energy equation-of-state. Our analysis employs a Markov Chain Monte Carlo
method as well as a Fisher Matrix analysis. We find that these upcoming data
will be able to improve the figure-of-merit by at least a factor two.Comment: 11 pages, 8 figure
Mixing Effects in the Crystallization of Supercooled Quantum Binary Liquids
By means of Raman spectroscopy of liquid microjets we have investigated the
crystallization process of supercooled quantum liquid mixtures composed of
parahydrogen (pH) diluted with small amounts of up to 5\% of either neon or
orthodeuterium (oD), and of oD diluted with either Ne or pH. We
show that the introduction of Ne impurities affects the crystallization
kinetics in both the pH-Ne and oD-Ne mixtures in terms of a significant
reduction of the crystal growth rate, similarly to what found in our previous
work on supercooled pH-oD liquid mixtures [M. K\"uhnel et {\it al.},
Phys. Rev. B \textbf{89}, 180506(R) (2014)]. Our experimental results, in
combination with path-integral simulations of the supercooled liquid mixtures,
suggest in particular a correlation between the measured growth rates and the
ratio of the effective particle sizes originating from quantum delocalization
effects. We further show that the crystalline structure of the mixture is also
affected to a large extent by the presence of the Ne impurities, which likely
initiate the freezing process through the formation of Ne crystallites.Comment: 19 pages, 7 figures, submitted to J. Chem. Phy
BeppoSAX observations of the black hole candidates LMC X-1 and LMC X-3
We describe BeppoSAX observations of the black hole candidates LMC X--1 and
LMC X--3 performed in Oct. 1997. Both sources can be modelled by a multicolor
accretion disk spectrum, with temperature keV. However, there is some
evidence that a thin emitting component coexists with the thick disk at these
temperatures. In the direction of LMC X--1, we detected a significant emission
above 10 keV, which we suspect originates from the nearby source PSR 0540-69.
For LMC X--1, we estimate an absorbing column density of cm, which is almost ten times larger than that found for LMC
X--3. In both sources, we find no indication of emission or absorption features
whatsoever.Comment: 4 pages, 2 figures. Accepted for pubblication in the Proc. of 32nd
Cospar scientific assembly, Nagoya, 13-15 July 199
Bose-Einstein Condensation at a Helium Surface
Path Integral Monte Carlo was used to calculate the Bose-Einstein condensate
fraction at the surface of a helium film at , as a function of
density. Moving from the center of the slab to the surface, the condensate
fraction was found to initially increase with decreasing density to a maximum
value of 0.9 before decreasing. Long wavelength density correlations were
observed in the static structure factor at the surface of the slab. Finally, a
surface dispersion relation was calculated from imaginary-time density-density
correlations.Comment: 8 pages, 5 figure
- …