4,234 research outputs found

    The power spectrum of systematics in cosmic shear tomography and the bias on cosmological parameters

    Get PDF
    Cosmic shear tomography has emerged as one of the most promising tools to both investigate the nature of dark energy and discriminate between General Relativity and modified gravity theories. In order to successfully achieve these goals, systematics in shear measurements have to be taken into account; their impact on the weak lensing power spectrum has to be carefully investigated in order to estimate the bias induced on the inferred cosmological parameters. To this end, we develop here an efficient tool to compute the power spectrum of systematics by propagating, in a realistic way, shear measurement, source properties and survey setup uncertainties. Starting from analytical results for unweighted moments and general assumptions on the relation between measured and actual shear, we derive analytical expressions for the multiplicative and additive bias, showing how these terms depend not only on the shape measurement errors, but also on the properties of the source galaxies (namely, size, magnitude and spectral energy distribution). We are then able to compute the amplitude of the systematics power spectrum and its scaling with redshift, while we propose a multigaussian expansion to model in a non-parametric way its angular scale dependence. Our method allows to self-consistently propagate the systematics uncertainties to the finally observed shear power spectrum, thus allowing us to quantify the departures from the actual spectrum. We show that even a modest level of systematics can induce non-negligible deviations, thus leading to a significant bias on the recovered cosmological parameters.Comment: 19 pages, 5 tables, 4 figure

    CrY2H-seq: a massively multiplexed assay for deep-coverage interactome mapping.

    Get PDF
    Broad-scale protein-protein interaction mapping is a major challenge given the cost, time, and sensitivity constraints of existing technologies. Here, we present a massively multiplexed yeast two-hybrid method, CrY2H-seq, which uses a Cre recombinase interaction reporter to intracellularly fuse the coding sequences of two interacting proteins and next-generation DNA sequencing to identify these interactions en masse. We applied CrY2H-seq to investigate sparsely annotated Arabidopsis thaliana transcription factors interactions. By performing ten independent screens testing a total of 36 million binary interaction combinations, and uncovering a network of 8,577 interactions among 1,453 transcription factors, we demonstrate CrY2H-seq's improved screening capacity, efficiency, and sensitivity over those of existing technologies. The deep-coverage network resource we call AtTFIN-1 recapitulates one-third of previously reported interactions derived from diverse methods, expands the number of known plant transcription factor interactions by three-fold, and reveals previously unknown family-specific interaction module associations with plant reproductive development, root architecture, and circadian coordination

    The Parkinson-related E193K LRRK2 variant impacts neuronal vesicles dynamics through perturbed protein interactions

    Get PDF
    The Leucine-Rich Repeat Kinase 2 (LRRK2) is a complex protein, expressed in neurons and implicated in Parkinson disease (PD). LRRK2 contains a dual enzymatic activity and several structural domains that constitute a versatile platform for multiple protein interactions at the synapses. In this study, we characterize the functional role of the N-terminal Armadillo repeats domain of LRRK2 and the impact on synaptic vesicle (SV) dynamics of a novel variant, E193K, harboured within this domain and identified in an Italian family affected by PD. Using a genetically encoded sensor of recycling, synaptopHluorine, and total internal reflection fluorescence microscopy, we visualized SV trafficking in the N2A neuroblastoma cells expressing the wild type LRRK2 protein, a mutant lacking the Armadillo domain (\u394N LRRK2) or the E193K variant. We found that expression of the \u394N construct increased the frequency and the amplitude of spontaneous synaptic events. A similar phenotype was detected in the presence of the E193K variant, suggesting that this mutation behaves as a loss-of-function mutation. A domain-based pulldown approach demonstrated that the LRRK2 N-terminus binds to cytoskeletal (\u3b2-actin and \u3b1-tubulin) and SV (synapsin I) proteins and the E193K substitution alters strength and quality of LRRK2 interactions. The results support a role of the Armadillo domain in interaction with synaptic proteins and suggest that the E193K mutation affects LRRK2 function via perturbation of its physiological network of interactors, resulting in impaired vesicular trafficking. These findings may have important implications for understanding the role of LRRK2 at the synapses and the pathophysiological mechanism for LRRK2-linked disease

    Star formation in disk galaxies driven by primordial H_2

    Full text link
    We show that gaseous \HI disks of primordial composition irradiated by an external radiation field can develop a multiphase medium with temperatures between 10^2 and 10^4 K due to the formation of molecular hydrogen. For a given \HI column density there is a critical value of the radiation field below which only the cold \HI phase can exist. Due to a time decreasing quasar background, the gas starts cooling slowly after recombination until the lowest stable temperature in the warm phase is reached at a critical redshift z=zcrz=z_{cr}. Below this redshift the formation of molecular hydrogen promotes a rapid transition towards the cold \HI phase. We find that disks of protogalaxies with 10^{20}\simlt N_{HI}\simlt 10^{21} cm^{-2} are gravitationally stable at T∌104T\sim 10^4 K and can start their star formation history only at z \simlt z_{cr}\sim 2, after the gas in the central portion of the disk has cooled to temperatures T\simlt 300 K. Such a delayed starbust phase in galaxies of low gas surface density and low dynamical mass can disrupt the disks and cause them to fade away. These objects could contribute significantly to the faint blue galaxy population.Comment: 16 pages (LaTeX), 2 Figures to be published in Astrophysical Journal Letter

    Identification of grapevine cultivars using microsatellite-based DNA barcodes

    Get PDF
    Microsatellite allele sizes were determined at twelve loci in 115 grape genotypes, including 88 ancient Vitis vinifera L. cultivars indigenous to the Carpathian Basin. Pairwise comparison of the microsatellite data led to the identification of ambiguous nomenclature and established differences between two grapevine cultivars, LeĂĄnyka and LeĂĄnyszƑlƑ, previously thought of as identical. The data also disproved erroneous assumptions about the parentage of two additional cultivars, one of which was 'Csabagyöngye' ('Pearl of Csaba'), an economically important grapevine and a renowned genetic resource for grape breeding. The results also pointed to several possible parent-progeny relationships which will be subject to further pedigree studies. The DNA typing information was used to construct a barcode system which was incorporated into the Hungarian Vitis Microsatellite Database for efficient and unambiguous identification of grape genotypes, thereby increasing the precision with which genetic resources are managed in Hungary.

    The dopamine transporter gene SLC6A3: multidisease risks

    Get PDF
    The human dopamine transporter gene SLC6A3 has been consistently implicated in several neuropsychiatric diseases but the disease mechanism remains elusive. In this risk synthesis, we have concluded that SLC6A3 represents an increasingly recognized risk with a growing number of familial mutants associated with neuropsychiatric and neurological disorders. At least five loci were related to common and severe diseases including alcohol use disorder (high activity variant), attention-deficit/hyperactivity disorder (low activity variant), autism (familial proteins with mutated networking) and movement disorders (both regulatory variants and familial mutations). Association signals depended on genetic markers used as well as ethnicity examined. Strong haplotype selection and gene-wide epistases support multimarker assessment of functional variations and phenotype associations. Inclusion of its promoter region’s functional markers such as DNPi (rs67175440) and 5’VNTR (rs70957367) may help delineate condensate-based risk action, testing a locus-pathway-phenotype hypothesis for one gene-multidisease etiology

    Microsatellite fingerprinting of grapevine (Vitis vinifera L.) varieties of the Carpathian Basin

    Get PDF
    Altogether 101 Vitis vinifera L. genotypes were analysed at 6 microsatellite loci (Scu8vv, Scu10vv, VVMD21, VVMD36, ssrVRZAG64, ssrVRZAG79). Ninety-seven were autochthonous accessions of the Carpathian Basin and 4 were international cultivars. The allele composition and sizes obtained with the 6 microsatellite primer pairs were appropriate for discrimination of 95 cultivars. Berry colour-variants of cvs GohĂ©r (GohĂ©r fehĂ©r-white and GohĂ©r piros-red), Lisztes (Lisztes fehĂ©r and Lisztes piros) as well as the cvs Bakator (Bakator piros and Bakator tĂŒdƑszĂ­n - light red) were exceptions.

    Suppression of HD-cooling in protogalactic gas clouds by Lyman-Werner radiation

    Full text link
    It has been shown that HD molecules can form efficiently in metal-free gas collapsing into massive protogalactic halos at high redshift. The resulting radiative cooling by HD can lower the gas temperature to that of the cosmic microwave background, T_CMB=2.7(1+z)K, significantly below the temperature of a few 100 K achievable via H_2-cooling alone, and thus reduce the masses of the first generation of stars. Here we consider the suppression of HD-cooling by UV irradiation in the Lyman-Werner (LW) bands. We include photo-dissociation of both H_2 and HD, and explicitly compute the self-shielding and shielding of both molecules by neutral hydrogen as well as the shielding of HD by H_2. We use a simplified dynamical collapse model, and follow the chemical and thermal evolution of the gas, in the presence of a UV background. We find that a LW flux of J_crit = 1e-22 erg/cm^2/sr/s/Hz is able to suppress HD cooling and thus prevent collapsing primordial gas from reaching temperatures below 100 K. The main reason for the lack of HD cooling for J>J_crit is the partial photo-dissociation of H_2, which prevents the gas from reaching sufficiently low temperatures (T<150K) for HD to become the dominant coolant; direct HD photo-dissociation is unimportant except for a narrow range of fluxes and column densities. Since the prevention of HD-cooling requires only partial H_2 photo-dissociation, the critical flux J_crit is modest, and is below the UV background required to reionize the universe at redshift z=10-20. We conclude that HD-cooling can reduce the masses of typical stars only in rare halos forming well before the epoch of reionization.Comment: 14 pages with 9 figures, submitted to MNRA
    • 

    corecore