869 research outputs found
Summer Sea Ice Concentration, Motion, and Thickness Near Areas of Proposed Offshore Oil and Gas Development in the Canadian Beaufort Sea – 2009
This study was motivated by the potential development of offshore oil exploration leases in the Canadian Southern Beaufort Sea, an area within the Inuvialuit Settlement Region. Sea ice concentration, extent, motion, and thickness data are vital to the success of potential oil operations in this region, and relevant data cannot be gleaned from larger-scale hemispheric studies. We therefore undertook regionally specific sea ice analyses in the southern Beaufort Sea during the summer drilling season (July, August, and September) in 2009 and over the long-term (1996 – 2010). On average, the Canadian oil lease areas contain mostly old sea ice during the drilling season and have not experienced significant decreasing trends in total or old sea ice. The average sea ice motion in the region for the period was anti-cyclonic at 20 – 25 cm·s-1, acting to transport sea ice southward toward the lease areas. Summer 2009 was used as a case study of regional ice concentration, motion, and thickness and to compare September sea ice thickness measurements to data collected in April 2009. In the summer of 2009, old sea ice was the predominant ice type in the lease areas. Sea ice motion was anti-cyclonic and faster than the long-term average, reaching 60 cm·s-1 west of Banks Island and across the north end of the lease areas. September 2009 sea ice thickness (mean = 1.03 m, σ = 0.97 m) was modal about the 0.20 – 0.29 m thickness bin. The sea ice thickness distribution was spatially variable, with the thickest ice occurring at the north end of the study area, in an area dominated by high old ice concentrations. Ice thicknesses greater than 10 m (the upper limit our instruments could measure) were encountered. Thinner sea ice predominated at the periphery of the core Beaufort Sea multi-year pack. Near the oil lease areas, the sea ice thickness distributions were shifted left on the histogram in comparison to those farther north, resulting in a greater proportion of relatively thick sea ice due to the thermodynamic loss of thinner (< 1.5 m) first-year ice during its southward movement. After enduring a summer’s melt, however, this thicker ice at the south end of the study region had thinned in comparison to the ice at the north end.La présente étude a été motivée par la mise en valeur potentielle des concessions d’exploration pétrolière au large de la mer de Beaufort, dans la partie sud canadienne, un endroit qui fait partie de la région désignée des Inuvialuit. Les données relatives à la concentration, à l’étendue, au déplacement et à l’épaisseur de la glace de mer sont essentielles à la réussite de l’exploitation éventuelle du pétrole dans cette région, et les données pertinentes ne peuvent être dépouillées à partir d’études hémisphériques réalisées à grande échelle. Par conséquent, nous avons entrepris de faire des analyses particulièrement régionales de la glace de mer du sud de la mer de Beaufort pendant la saison de forage d’été (juillet, août et septembre) en 2009 de même que sur une plus longue période (1996-2010). En moyenne, les régions visées par les concessions pétrolières canadiennes renferment principalement de la vieille glace de mer pendant la saison de forage, et elles n’enregistrent pas d’importantes tendances à la baisse sur le plan de l’ensemble de la glace de mer ou de la vieille glace de mer. Dans la région, le déplacement moyen de la glace de mer pendant la période était anticyclonique à 20 25 cm·s-1, ce qui avait pour effet de transporter la glace de mer vers le sud et vers les concessions. L’été 2009 nous a servi d’étude de cas en matière de concentration, de déplacement et d’épaisseur de la glace régionale, et nous a permis de comparer les mesures de l’épaisseur de la glace de mer de septembre aux données recueillies en avril 2009. À l’été 2009, la vieille glace de mer représentait le type de glace prédominant dans les concessions. Le déplacement de la glace de mer était anticyclonique et se faisait plus vite que la moyenne à long terme, atteignant ainsi 60 cm·s-1 à l’ouest de l’île Banks et à la hauteur du nord de la zone de concessions. En septembre 2009, l’épaisseur de la glace de mer (moyenne = 1,03 m, σ = 0,97 m) était modale à la hauteur de la classe de l’épaisseur 0,20 – 0,29 m. La répartition de l’épaisseur de la glace de mer variait en fonction de l’emplacement, la glace la plus épaisse se trouvant du côté nord de la région étudiée, dans une zone dominée par de fortes concentrations de vieille glace. La glace atteignait des épaisseurs de plus de 10 m (la limite maximale que nos instruments pouvaient mesurer) par endroits. Une glace de mer plus mince prédominait la périphérie du noyau de la banquise pluriannuelle de la mer de Beaufort. Près de la zone de concessions pétrolières, les répartitions d’épaisseurs de glace de mer se sont déplacées vers la gauche sur l’histogramme comparativement à celles plus au nord, ce qui a donné une plus grande proportion de glace de mer relativement épaisse en raison de la perte thermodynamique de la glace plus mince de première année (< 1,5 m) pendant son déplacement vers le sud. Cependant, après avoir enduré la fonte d’un été, la glace plus épaisse du côté sud de la région à l’étude s’était amincie comparativement à la glace se trouvant du côté nord
Performance, Politics and Media: How the 2010 British General Election leadership debates generated ‘talk’ amongst the electorate.
During the British General Election 2010 a major innovation was introduced in part to improve engagement: a series of three live televised leadership debates took place where the leader of each of the three main parties, Labour, Liberal Democrat and Conservative, answered questions posed by members of the public and subsequently debated issues pertinent to the questions. In this study we consider these potentially ground breaking debates as the kind of event that was likely to generate discussion. We investigate various aspects of the ‘talk’ that emerged as a result of watching the debates. As an exploratory study concerned with situated accounts of the participants experiences we take an interpretive perspective. In this paper we outline the meta-narratives (of talk) associated with the viewing of the leadership debates that were identified, concluding our analysis by suggesting that putting a live debate on television and promoting and positioning it as a major innovation is likely to mean that is how the audience will make sense of it – as a media event
Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a
Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function
Evidence of Freezing Pressure in Sea Ice Discrete Brine Inclusions and Its Impact on Aqueous-Gaseous Equilibrium
Sea ice in part controls surface water properties and the ocean-atmosphere exchange of greenhouse gases at high latitudes. In sea ice, gas exists dissolved in brine and as air bubbles contained in liquid brine inclusions or as bubbles trapped directly within the ice matrix. Current research on gas dynamics within the ocean-sea ice-atmosphere interface has been based on the premise that brine with dissolved air becomes supersaturated with respect to the atmosphere during ice growth. Based on Henry's law, gas bubbles within brine should grow when brine reaches saturation during cooling, given that the total partial pressure of atmospheric gases is above the implicit pressure in brine of 1 atm. Using high-resolution light microscopy time series imagery of gas bubble evolution inside discrete brine pockets, we observed bubbles shrinking during cooling events in response to the development of freezing pressure above 3 atm. During warming of discrete brine pockets, existing bubbles expand and new bubbles nucleate in response to depressurization. Pressure variation within these inclusions has direct impacts on aqueous-gaseous equilibrium, indicating that Henry's law at a constant pressure of 1 atm is inadequate to assess the partitioning between dissolved and gaseous fractions of gas in sea ice. This new evidence of pressure build-up in discrete brine inclusions controlling the solubility of gas and nucleation of bubbles in these inclusions has the potential to affect the transport pathways of air bubbles and dissolved gases within sea ice-ocean-atmosphere interface and modifies brine biochemical properties
Inorganic carbon dynamics of melt-pond-covered first-year sea ice in the Canadian Arctic
Melt pond formation is a common feature of spring and summer Arctic sea ice, but the role and impact of sea ice melt and pond formation on both the direction and size of CO2 fluxes between air and sea is still unknown. Here we report on the CO2-carbonate chemistry of melting sea ice, melt ponds and the underlying seawater as well as CO2 fluxes at the surface of first-year landfast sea ice in the Resolute Passage, Nunavut, in June 2012. Early in the melt season, the increase in ice temperature and the subsequent decrease in bulk ice salinity promote a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (T CO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. As sea ice melt progresses, melt ponds form, mainly from melted snow, leading to a low in situ melt pond pCO2 (36 μatm). The percolation of this low salinity and low pCO2 meltwater into the sea ice matrix decreased the brine salinity, TA and T CO2, and lowered the in situ brine pCO2 (to 20 μatm). This initial low in situ pCO2 observed in brine and melt ponds results in air-ice CO2 fluxes ranging between -0.04 and -5.4 mmolm-2 day-1 (negative sign for fluxes from the atmosphere into the ocean). As melt ponds strive to reach pCO2 equilibrium with the atmosphere, their in situ pCO2 increases (up to 380 μatm) with time and the percolation of this relatively high concentration pCO2 meltwater increases the in situ brine pCO2 within the sea ice matrix as the melt season progresses. As the melt pond pCO2 increases, the uptake of atmospheric CO2 becomes less significant. However, since melt ponds are continuously supplied by meltwater, their in situ pCO2 remains undersaturated with respect to the atmosphere, promoting a continuous but moderate uptake of CO2 (∼-1 mmolm-2 day-1) into the ocean. Considering the Arctic seasonal sea ice extent during the melt period (90 days), we estimate an uptake of atmospheric CO2 of -10.4 Tg of Cyr-1. This represents an additional uptake of CO2 associated with Arctic sea ice that needs to be further explored and considered in the estimation of the Arctic Ocean's overall CO2 budget
Sea ice <i>p</i>CO<sub>2</sub> dynamics and air-ice CO<sub>2</sub> fluxes during the Sea Ice Mass Balance in the Antarctic (SIMBA) experiment - Bellingshausen Sea, Antarctica
Temporal evolution of pCO2 profiles in sea ice in the Bellingshausen Sea, Antarctica, in October 2007 shows physical and thermodynamic processes controls the CO2 system in the ice. During the survey, cyclical warming and cooling strongly influenced the physical, chemical, and thermodynamic properties of the ice cover. Two sampling sites with contrasting characteristics of ice and snow thickness were sampled: one had little snow accumulation (from 8 to 25 cm) and larger temperature and salinity variations than the second site, where the snow cover was up to 38 cm thick and therefore better insulated the underlying sea ice. We show that each cooling/warming event was associated with an increase/decrease in the brine salinity, total alkalinity (TA), total dissolved inorganic carbon (TCO2), and in situ brine and bulk ice CO2 partial pressures (pCO2). Thicker snow covers reduced the amplitude of these changes: snow cover influences the sea ice carbonate system by modulating the temperature and therefore the salinity of the sea ice cover. Results indicate that pCO2 was undersaturated with respect to the atmosphere both in the in situ bulk ice (from 10 to 193 µatm) and brine (from 65 to 293 µatm), causing the sea ice to act as a sink for atmospheric CO2 (up to 2.9 mmol m-2 d-1), despite supersaturation of the underlying seawater (up to 462 µatm)
Witworld: A generalised probabilistic theory featuring post-quantum steering
We introduce Witworld: a generalised probabilistic theory with strong
post-quantum features, which subsumes Boxworld. Witworld is the first theory
that features post-quantum steering, and also the first that outperforms
quantum theory at the task of remote state preparation. We further show
post-quantum steering to be the source of this advantage, and hence present the
first instance where post-quantum steering is a stronger-than-quantum resource
for information processing.Comment: 9 pages, loads of diagrams. Comments welcom
- …