37 research outputs found

    Experimental and Theoretical Study of B2X3 Sesquichalcogenides under Extreme Conditions

    Full text link
    Tesis por compendio[ES] Los sesquicalcogenuros con estequiometria B2X3, con A = Al, Ga e In y X = S, Se y Te, han recibido gran atención a lo largo de los últimos años, en particular en como modificarlos para obtener nuevas estructuras con propiedades inéditas, permitiendo su uso en una amplia variedad de aplicaciones. Si bien vías como el uso de altas/bajas temperaturas o modificar la composición química han sido bastante explotadas para modificar y obtener nuevas estructuras, las altas presiones están ganando auge como una tercera vía para obtener nuevos materiales. El uso de altas presiones implica emplear celdas de yunques de diamantes, preparadas para alcanzar altas presiones, además de altas temperaturas. A estos dispositivos se acoplan multitud de técnicas experimentales, como espectroscópicas (Raman e IR), difracción y absorción de rayos X, medidas de absorción óptica, de resistividad, etc., con el fin de estudiar como la materia evoluciona en dichas condiciones extremas. Adicionalmente, los cálculos teóricos son empleados como apoyo a los resultados experimentales. Dentro de los trabajos existentes a altas presiones de esta familia de compuestos, estos han llegado a conclusiones incluso contradictorias, arrojando más dudas acerca su comportamiento bajo presión. De todos los integrantes de estos sesquicalcogenuros, Ga2S3, In2S3 y In2Se3, han sido los más estudiados bajo presión. En esta tesis se han evaluado los efectos de la alta presión en estos tres sesquicalcogenuros, haciendo uso de espectroscopia Raman y difracción de rayos X, siempre con el soporte de los cálculos teóricos, con el fin de aclarar los resultados publicados anteriormente. Fruto de estos trabajos, la presente tesis recoge los cuatro artículos publicados en revistas indexadas. Dichos artículos han dado luz al comportamiento bajo presión de estos compuestos, como caracterización de propiedades vibracionales y estructurales bajo presión, mecanismos de transición, transiciones de fase inducidas bajo presión, así como caracterizar dichas fases de alta presión. Con todo ello, estos trabajos pretenden no solo conocer fehacientemente el comportamiento bajo presión de estos tres sesquicalcogenuros, sino impulsar futuros trabajos en el resto de los compuestos de esta familia y en otros similares, como en compuestos ternario AB2X4 con estructura tipo espinela y vacantes ordenadas.[CA] Els sesquicalcogenurs amb estequiometria B2X3, amb B = Al, Ga, i In i X = S, Se, i Te, han rebut una gran atenció al llarg dels darrers anys, en particular sobre com modificar-los per tal d'obtindre noves estructures amb propietats inédites, permetent el seu ús en una àmplia varietat d'aplicacions. Si bé l'ùs d'altes/baixes temperatures o modificar la composició química han segut prou explotades per a modificar i obtindre noves estructures, les altes pressions estan guanyant importància com una tercera via per a obtindrer nous materials. L'ús d'altes presions implica emprar cel·les d'encluses de diamants, preparades per a assolir altes presions, a més a més d'altes temperatures. A aquestos dispositius s'acoblen multitud de tècniques experimentals, com ara espectroscòpiques (Raman i IR), difracció i absorció de raigs X, mesures òptiques, de resistivitat, etc, amb la finalitat d'estudiar com la matèria evoluciona en aquestes condicions extremes. Adicionalment, els càlculs teòrics son emprats com a recolçament dels resultats experimentals. Dins dels treballs existents a altes presions a aquesta familia de compostos s'ha arribat a determinades conclusions algunes de les quals son contradictòries, el que ha sembrat moltes dubtes al voltant del seu comportament sota pressió. De tots els integrants d'aquestos sesquicalcogenurs, Ga2S3, In2S3 i In2Se3 han sigut els més estudiats sota pressió. En aquesta tesi doctoral s'han evaluat els efectes de les altes pressions a aquestos tres sesquicalcogenurs, fent ús de l'espectroscopia Raman i la difracció de raigs X, sempre amb el suport dels càlculs teòrics, amb el fi d'aclarir els resultats previament publicats. Fruit d'aquestos treballs, la present tesi doctoral recull els quatre articles publicats a revistes indexades. Aquestos articles han vessat llum sobre el comportament sota pressió d'aquestos compostos, com ara la caracterització de les seues propietats vibracionals i estructurals sota pressió, les transicions de fase induides sota pressió i els mecanismes d'eixes transicions, així com la caracterització de les seues fases d'alta pressió. Amb tot, aquestos treballs pretenen no només conèixer el comportament sota pressió d'aquestos tres sesquicalcogenurs, sino també impulsar futurs treballs a la resta de compostos d'aquesta familia i altres compostos rel·lacionats, com ara els compostos ternaris AB2X4 de tipus espinela i de vacants ordenades.[EN] B2X3 sesquichalcogenides (A = Al, Ga and In, X = S, Se y Te) have received special attention along last years, with great emphasis in tailor them to attain new structures to novel properties, driving them in a huge number of applications. Although high/low temperature or varying chemical composition have been extensively used to modify and obtain new structures, high pressure is gaining relevance as an alternative way to synthetised new materials. To reach such pressures and additionally high/low temperatures, diamond anvil cells are used. Many experimental techniques can be coupled to these tools to study matter under extreme conditions (Raman and IR spectroscopy, X-ray diffraction and absorption, optical absorption, and resistivity measurements, among others). Additionally, computational simulations are used to give further support to the experimental results. Despite the several existing works devoted to the behaviour under pressure of this family, controversial results have been reported. The most studied of these sesquichalcogenides have been Ga2S3, In2S3 and In2Se3. The aim of this thesis is to revisit the pressure effects by means of Raman spectroscopy and X-ray diffraction, with the help of computational simulations, for the purpose of clarify the results published earlier. The current thesis contains the four articles published in indexed journals, resulting from the study of these three sesquichalcogenides. Such articles shed light to the pressure behavior of these compounds, their vibrational and structural properties under pressure, pressure-induced phase transitions and the mechanisms behind them and characterize such high-pressure phases. With these works, we pursue not only a depth understanding of the pressure behavior of these sesquichalcogenides, but boost future high-pressure works on the rest of the family and other similar compounds, as AB2X4 with spinel structure and ordered vacancies.The authors thank the financial support from Spanish Research Agency (AEI) under projects MALTA Consolider Team network (RED2018-102612-T) and projects MAT2015- 710, MAT2016-75586-C4-2/3-P, FIS2017-83295-P, PID2019-106383GB-41/42/43, and PGC2018-097520-A-100, as well as from Generalitat Valenciana under Project PROMETEO/2018/123 (EFIMAT).Gallego Parra, S. (2022). Experimental and Theoretical Study of B2X3 Sesquichalcogenides under Extreme Conditions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/191502Compendi

    Caracterización estructural y vibracional del compuesto In2Se3 y sus aplicaciones

    Full text link
    In this project, a structural and vibrational characterization under high-pressure of the In2Se3 compound will be carried out using the techniques of X-ray diffraction and Raman spectroscopy, respectively. It will be addressed some open issues related to its characterization under pressure. A literature review of all studies conducted to date using temperature and high pressure will be held in order to show all its polytypes, applications and technological interest.En este proyecto, el compuesto In2Se3 será caracterizado bajo alta presión tanto desde el punto de vista estructural como vibracional utilizando las técnicas de difracción de rayos X y la espectroscopia Raman, respectivamente. Serán abordadas algunas cuestiones abiertas relacionadas con su caracterización bajo presión. Una revisión bibliográfica de todos los estudios realizados hasta la fecha usando la temperatura como la alta presión será llevado a cabo con el fin de mostrar todos los sus posibles politipos, aplicaciones y su interés tecnológico.Gallego Parra, S. (2017). Caracterización estructural y vibracional del compuesto In2Se3 y sus aplicaciones. http://hdl.handle.net/10251/93472TFG

    Trigonal to cubic structural transition in possibly N-doped LuH3 measured by Raman and X-ray diffraction

    Full text link
    After the reported discovery of room-temperature superconductivity at only 1 GPa in nitrogendoped lutetium trihydride and the resulting heated discussions, there is an urgent need to reproduce the results and synthesis of this compound. Here, we report the synthesis of (potentially N-doped) cubic LuH3 starting from pure Lu to produce very stable trigonal LuH3 which was subsequently pressurised to 2 GPa with a dilute N2/He rich pressure medium. Raman spectroscopy and X-ray diffraction were used to characterise the structure throughout the synthesis process.Comment: 8 pages, 5 figure

    Pressure-induced band anticrossing in two adamantine ordered-vacancy compounds: CdGa2S4 and HgGa2S4

    Full text link
    [EN] This paper reports a joint experimental and theoretical study of the electronic band structure of two ordered-vacancy compounds with defect-chalcopyrite structure: CdGa2S4 and HgGa2S4. High-pressure optical-absorption experiments (up to around 17 GPa) combined with first-principles electronic band-structure calculations provide compelling evidence of strong nonlinear pressure dependence of the bandgap in both compounds. The nonlinear pressure dependence is well accounted for by the band anticrossing model that was previously established mostly for selenides with defect chalcopyrite structure. Therefore, our results on two sulfides with defect chalcopyrite structure under compression provide definitive evidence that the nonlinear pressure dependence of the direct bandgap is a common feature of adamantine ordered-vacancy compounds and does not depend on the type of anion.This work was supported by the Spanish Ministry of Science, Innovation and Universities, the Spanish Research Agency (AEI), the European Fund for Regional Development (ERDF, FEDER) under grants PID2019-106383GB-C41/42 and RED2018-102612-T (MALTA Consolider-Team Network), and the Generalitat Valenciana under grant Prometeo/2018/123 (EFIMAT). This work also has received partial funding from the Horizon-2020 Spreading Excellence and Widening Participation research and innovation programme of the European Union under the grant #810652 (NanoMedTwin project). A.L. and D.E. would like to thank the Generalitat Valenciana for the Ph.D. fellowship GRISOLIAP/2019/025).Liang, A.; Shi, L.; Gallego-Parra, S.; Gomis, O.; Errandonea, D.; Tiginyanu, I.; Ursaki, V.... (2021). Pressure-induced band anticrossing in two adamantine ordered-vacancy compounds: CdGa2S4 and HgGa2S4. Journal of Alloys and Compounds. 886:1-8. https://doi.org/10.1016/j.jallcom.2021.1612261888

    Experimental and Theoretical Studies on alfa-In2Se3 at High Pressure

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/acs.inorgchem.8b00778[EN] alpha(R)-In2Se3 has been experimentally and theoretically studied under compression at room temperature by means of X-ray diffraction and Raman scattering measurements as well as by ab initio total-energy and lattice-dynamics calculations. Our study has confirmed the alpha (R3m) -> beta' (C2/m) ? beta (R (3) over barm) sequence of pressure-induced phase transitions and has allowed us to understand the mechanism of the monoclinic C2/m to rhombohedral R (3) over barm phase transition. The monoclinic C2/m phase enhances its symmetry gradually until a complete transformation to the rhombohedral R (3) over barm structure is attained above 10-12 GPa. The second-order character of this transition is the reason for the discordance in previous measurements. The comparison of Raman measurements and lattice-dynamics calculations has allowed us to tentatively assign most of the Raman-active modes of the three phases. The comparison of experimental results and simulations has helped to distinguish between the different phases of In2Se3 and resolve current controversies.The authors acknowledge financial support from Spanish government MINECO, the Spanish Agencia Estatal de Investigacion (AEI), and Fondo Europeo de Desarrollo Regional (FEDER) under Grants No. MAT2016-75586-C4-1/2/3-P and MAT2015-71070-REDC.Vilaplana Cerda, RI.; Gallego-Parra, S.; Jorge-Montero, A.; Rodríguez-Hernández, P.; Muñoz, A.; Errandonea, D.; Segura, A.... (2018). Experimental and Theoretical Studies on alfa-In2Se3 at High Pressure. Inorganic Chemistry. 57:8241-8252. https://doi.org/10.1021/acs.inorgchem.8b00778S824182525

    Layered topological semimetal GaGeTe: New polytype with non-centrosymmetric structure

    Full text link
    [EN] GaGeTe is a layered van der Waals material composed of germanene and GaTe sublayers that has been recently predicted to be a basic Z2 topological semimetal. To date, only one polytype of GaGeTe is known with trigonal centrosymmetric structure (a phase, space group R-3m, No. 166). Here we show that asgrown samples of GaGeTe show traces of at least another polytype with hexagonal noncentrosymmetric structure (f3 phase, space group P63mc, No. 186). Moreover, we suggest that another bulk hexagonal polytype (g phase, space group P-3m1, No. 164) could also be found near room conditions. Both a and f3 polytypes have been identified and characterized by means of X-ray diffraction and Raman scattering measurements with the support of ab initio calculations. We provide the vibrational properties of both polytypes and show that the Raman spectrum reported for GaGeTe almost forty years ago and attributed to the a phase, was, in fact, that of the secondary f3 phase. Additionally, we show that a Fermi resonance occurs in a-GaGeTe under non-resonant excitation conditions, but not under resonant excitation conditions. Theoretical calculations show that bulk f3-GaGeTe is a non-centrosymmetric weak topological semimetal with even smaller lattice thermal conductivity than centrosymmetric bulk aGaGeTe. In perspective, our work paves the way for the control and engineering of GaGeTe polytypes to design and implement complex van der Waals heterostructures formed by a combination of centrosymmetric and non-centrosymmetric layers of up to three different polytypes in a single material, suitable for a number of fundamental studies and technological applications.This publication is part of the project MALTA Consolider Team network (RED2018-102612-T) , financed by MINECO/AEI/10.13039/501100003329; by I ? D ? i projects PID2019-106383 GB -41/42/43 financed by MCIN/AEI/10.13039/501100011033; and by project PROMETEO/2018/123 (EFIMAT) financed by Generalitat Valenciana. E.B. would like to thank the Universitat Politecnica de Valencia for his postdoctoral contract (Ref. PAID -10-21) . AHR was supported by the U.S. Department of Energy (DOE) , Office of Science, Basic Energy Sciences under award DE-SC0021375. We also acknowledge the computational resources awarded by XSEDE, a project supported by National Science Foundation grant number ACI-1053575. The authors also acknowledge the support from the Texas Advances Computer Center (with the Stampede2 and Bridges supercom- puters) . E.L.d.S would like to acknowledge the Network of Extreme Conditions Laboratories (NECL) , financed by FCT and co -financed by NORTE 2020, through the program Portugal 2020 and FEDER; the High Performance Computing Chair-a R & D infrastructure (based at the University of ? Evora; PI: M. Avillez) ; and for the computational support provided by the HPC center OBLIVION -U. ? Evora to perform the lattice thermal conductivity calculations. A.L. and D.E. would like to thank the Generalitat Valenciana for the Ph.D. Fellowship no. GRISOLIAP/2019/025.Gallego-Parra, S.; Bandiello, E.; Liang, A.; Da Silva, EL.; Rodriguez-Hernandez, P.; Muñoz, A.; Radescu, S.... (2022). Layered topological semimetal GaGeTe: New polytype with non-centrosymmetric structure. Materials Today Advances. 16:1-16. https://doi.org/10.1016/j.mtadv.2022.1003091161

    Vibrational properties of CdGa2S4 at high pressure

    Full text link
    [EN] Raman scattering measurements have been performed in cadmium digallium sulphide (CdGa2S4) with defect chalcopyrite structure up to 25 GPa in order to study its pressure-induced phase transitions. These measurements have been complemented and compared with latticedynamics ab initio calculations including the TO-LO splitting at high pressures in order to provide a better assignment of experimental Raman modes. In addition, experimental and theoretical Gruneisen parameters have been reported in order to calculate the molar heat capacity and thermal expansion coefficient of CdGa2S4. Our measurements provide evidence that CdGa2S4 undergoes an irreversible phase transition above 15 GPa to a Raman-inactive phase, likely with a disordered rock salt structure. Moreover, the Raman spectrum observed on downstroke from 25 GPa to 2 GPa has been attributed to a new phase, tentatively identified as a disordered zinc blende structure, that undergoes a reversible phase transition to the Raman-inactive phase above 10 GPa. Published under license by AIP Publishing.The authors thank the financial support of the Spanish Ministerio de Economia y Competitividad (MINECO) under Grant Nos. MAT2016-75586-C4-2/3-P and MAT2015-71070-REDC (MALTA Consolider) and the Generalitat Valenciana under Project No. PROMETEO/2018/123-EFIMAT. E. P.-G., A. M., and P. R.-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster.Gallego-Parra, S.; Gomis, O.; Vilaplana Cerda, RI.; Ortiz, H.; Perez-Gonzalez, E.; Luna Molina, R.; Rodríguez-Hernández, P.... (2019). Vibrational properties of CdGa2S4 at high pressure. Journal of Applied Physics. 125(11):1-12. https://doi.org/10.1063/1.5080503S11212511Gomis, O., Santamaría-Pérez, D., Vilaplana, R., Luna, R., Sans, J. A., Manjón, F. J., … Ursaki, V. V. (2014). Structural and elastic properties of defect chalcopyrite HgGa2S4 under high pressure. Journal of Alloys and Compounds, 583, 70-78. doi:10.1016/j.jallcom.2013.08.123Cohen, M. L. (1985). Calculation of bulk moduli of diamond and zinc-blende solids. Physical Review B, 32(12), 7988-7991. doi:10.1103/physrevb.32.7988Kim, J. W., & Kim, Y. J. (2007). Optical Properties of Eu Doped M-Ga2S4 (M:Zn, Ca, Sr) Phosphors for White Light Emitting Diodes. Journal of Nanoscience and Nanotechnology, 7(11), 4065-4068. doi:10.1166/jnn.2007.066Yu, R., Noh, H. M., Moon, B. K., Choi, B. C., Jeong, J. H., Jang, K., … Jang, J. K. (2013). Photoluminescence properties of a new red-emitting Mn-activated ZnGa2S4 phosphor. Materials Research Bulletin, 48(6), 2154-2158. doi:10.1016/j.materresbull.2013.02.017Liang, F., Kang, L., Lin, Z., Wu, Y., & Chen, C. (2017). Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures. Coordination Chemistry Reviews, 333, 57-70. doi:10.1016/j.ccr.2016.11.012Sahariya, J., Kumar, P., & Soni, A. (2017). Structural and optical investigations of ZnGa2X4 (X = S, Se) compounds for solar photovoltaic applications. Materials Chemistry and Physics, 199, 257-264. doi:10.1016/j.matchemphys.2017.07.003Syrbu, N. N., Tiron, A. V., Parvan, V. I., Zalamai, V. V., & Tiginyanu, I. M. (2015). Interference of birefractive waves in CdGa2S4 crystals. Physica B: Condensed Matter, 463, 88-92. doi:10.1016/j.physb.2015.02.007Vilaplana, R., Gomis, O., Manjón, F. J., Ortiz, H. M., Pérez-González, E., López-Solano, J., … Tiginyanu, I. M. (2013). Lattice Dynamics Study of HgGa2Se4at High Pressures. The Journal of Physical Chemistry C, 117(30), 15773-15781. doi:10.1021/jp402493rGrzechnik, A., Ursaki, V. V., Syassen, K., Loa, I., Tiginyanu, I. M., & Hanfland, M. (2001). Pressure-Induced Phase Transitions in Cadmium Thiogallate CdGa2Se4. Journal of Solid State Chemistry, 160(1), 205-211. doi:10.1006/jssc.2001.9224Gomis, O., Vilaplana, R., Manjón, F. J., Ruiz-Fuertes, J., Pérez-González, E., López-Solano, J., … Tiginyanu, I. M. (2015). HgGa2 Se4 under high pressure: An optical absorption study. physica status solidi (b), 252(9), 2043-2051. doi:10.1002/pssb.201451714Rahnamaye Aliabad, H. A., Basirat, S., & Ahmad, I. (2017). Structural, electronical and thermoelectric properties of CdGa2S4 compound under high pressures by mBJ approach. Journal of Materials Science: Materials in Electronics, 28(21), 16476-16483. doi:10.1007/s10854-017-7559-1Ursaki, V. V., Burlakov, I. I., Tiginyanu, I. M., Raptis, Y. S., Anastassakis, E., & Anedda, A. (1999). Phase transitions in defect chalcopyrite compounds under hydrostatic pressure. Physical Review B, 59(1), 257-268. doi:10.1103/physrevb.59.257Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169Baroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2), 515-562. doi:10.1103/revmodphys.73.515Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406Sans, J. Á., Santamaría-Pérez, D., Popescu, C., Gomis, O., Manjón, F. J., Vilaplana, R., … Tiginyanu, I. M. (2014). Structural and Vibrational Properties of CdAl2S4under High Pressure: Experimental and Theoretical Approach. The Journal of Physical Chemistry C, 118(28), 15363-15374. doi:10.1021/jp5037926Lottici, P. P., & Razzetti, C. (1984). Raman scattering in mixed defect chalcopyrite crystals. Journal of Molecular Structure, 115, 133-136. doi:10.1016/0022-2860(84)80032-0Kerimova, T. G., Abdullaev, N. A., Mamedova, I. A., Badalova, Z. I., Guliev, R. A., Paucar, R., … Mamedov, N. T. (2013). Optical phonons in CdGa2S4x Se4(1 − x) alloys. Semiconductors, 47(6), 761-766. doi:10.1134/s1063782613060110Tiginyanu, I. M., Lottici, P. P., Razzetti, C., & Gennari, S. (1993). Effects of the Cations on the Raman Spectra of Sulphur Defect Chalcopyrites. Japanese Journal of Applied Physics, 32(S3), 561. doi:10.7567/jjaps.32s3.561Kerimova, T. G., Mamedova, I. A., Abdullayev, N. A., Asadullayeva, S. Q., & Badalova, Z. I. (2014). Raman scattering in ZnGa2Se4 single crystals. Semiconductors, 48(7), 868-871. doi:10.1134/s1063782614070112Razzetti, C., & Lottici, P. P. (1993). Raman Scattering in Defective AIIB2IIIX4VICompounds and Alloys. Japanese Journal of Applied Physics, 32(S3), 431. doi:10.7567/jjaps.32s3.431Syrbu, N. N., Nemerenco, L. L., & Cojocaru, O. (2002). Vibrational and Polariton Spectra of CdGa2S4 and CdAl2S4 Crystals. Crystal Research and Technology, 37(1), 101-110. doi:10.1002/1521-4079(200202)37:13.0.co;2-dGomis, O., Vilaplana, R., Manjón, F. J., Santamaría-Pérez, D., Errandonea, D., Pérez-González, E., … Ursaki, V. V. (2013). High-pressure study of the structural and elastic properties of defect-chalcopyrite HgGa2Se4. Journal of Applied Physics, 113(7), 073510. doi:10.1063/1.4792495Gomis, O., Ortiz, H. M., Sans, J. A., Manjón, F. J., Santamaría-Pérez, D., Rodríguez-Hernández, P., & Muñoz, A. (2016). InBO3 and ScBO3 at high pressures: An ab initio study of elastic and thermodynamic properties. Journal of Physics and Chemistry of Solids, 98, 198-208. doi:10.1016/j.jpcs.2016.07.002K. R. Allakhverdiev, Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials (Springer, 2001), p. 99.Lottici, P. P., & Razzetti, C. (1983). A comparison of the raman spectra of ZnGa2Se4 and other gallium defect chalcopyrites. Solid State Communications, 46(9), 681-684. doi:10.1016/0038-1098(83)90506-9Sanjuán, M. L., & Morón, M. C. (2002). Raman study of Zn1−xMnxGa2Se4 diluted magnetic semiconductors: disorder and resonance effects. Physica B: Condensed Matter, 316-317, 565-567. doi:10.1016/s0921-4526(02)00574-4Radautsan, S. I., Tiginyanu, I. M., Ursakii, V. V., Fomin, V. M., & Pokatilov, E. P. (1990). The Peculiarities of the Temperature Broadening of Raman Light Scattering Lines in Zn(Cd)Ga2Se4 Single Crystals. physica status solidi (b), 162(1), K63-K66. doi:10.1002/pssb.2221620143Bernard, J. E., & Zunger, A. (1988). Ordered-vacancy-compound semiconductors: PseudocubicCdIn2Se4. Physical Review B, 37(12), 6835-6856. doi:10.1103/physrevb.37.6835Manjón, F. J., Gomis, O., Vilaplana, R., Sans, J. A., & Ortiz, H. M. (2013). Order-disorder processes in adamantine ternary ordered-vacancy compounds. physica status solidi (b), 250(8), 1496-1504. doi:10.1002/pssb.201248596Mitani, T., Naitou, T., Matsuishi, K., Onari, S., Allakhverdiev, K., Gashimzade, F., & Kerimova, T. (2003). Raman scattering in CdGa2Se4 under pressure. physica status solidi (b), 235(2), 321-325. doi:10.1002/pssb.200301579Meenakshi, S., Vijyakumar, V., Godwal, B. K., Eifler, A., Orgzall, I., Tkachev, S., & Hochheimer, H. D. (2006). High pressure X-ray diffraction study of CdAl2Se4 and Raman study of AAl2Se4 (A=Hg, Zn) and CdAl2X4 (X=Se, S). Journal of Physics and Chemistry of Solids, 67(8), 1660-1667. doi:10.1016/j.jpcs.2006.02.015Manjón, F. J., Marí, B., Serrano, J., & Romero, A. H. (2005). Silent Raman modes in zinc oxide and related nitrides. Journal of Applied Physics, 97(5), 053516. doi:10.1063/1.1856222H. Bilz and W. Kress, Phonon Dispersion Relations in Insulators (Springer, 1979), p. 110.Cheng, Y. C., Jin, C. Q., Gao, F., Wu, X. L., Zhong, W., Li, S. H., & Chu, P. K. (2009). Raman scattering study of zinc blende and wurtzite ZnS. Journal of Applied Physics, 106(12), 123505. doi:10.1063/1.3270401(2017). Theoretical Analysis of Elastic, Mechanical and Phonon Properties of Wurtzite Zinc Sulfide under Pressure. Crystals, 7(6), 161. doi:10.3390/cryst7060161González, J., Fernández, B. J., Besson, J. M., Gauthier, M., & Polian, A. (1992). High-pressure behavior of Raman modes inCuGaS2. Physical Review B, 46(23), 15092-15101. doi:10.1103/physrevb.46.15092Talwar, D. N., Vandevyver, M., Kunc, K., & Zigone, M. (1981). Lattice dynamics of zinc chalcogenides under compression: Phonon dispersion, mode Grüneisen, and thermal expansion. Physical Review B, 24(2), 741-753. doi:10.1103/physrevb.24.741Griesinger, A., Spindler, K., & Hahne, E. (1999). Measurements and theoretical modelling of the effective thermal conductivity of zeolites. International Journal of Heat and Mass Transfer, 42(23), 4363-4374. doi:10.1016/s0017-9310(99)00096-4Hofmeister, A. M., & Mao, H. -k. (2002). Redefinition of the mode Gruneisen parameter for polyatomic substances and thermodynamic implications. Proceedings of the National Academy of Sciences, 99(2), 559-564. doi:10.1073/pnas.241631698Miller, S. A., Gorai, P., Ortiz, B. R., Goyal, A., Gao, D., Barnett, S. A., … Toberer, E. S. (2017). Capturing Anharmonicity in a Lattice Thermal Conductivity Model for High-Throughput Predictions. Chemistry of Materials, 29(6), 2494-2501. doi:10.1021/acs.chemmater.6b04179Zeier, W. G., Zevalkink, A., Gibbs, Z. M., Hautier, G., Kanatzidis, M. G., & Snyder, G. J. (2016). Thinking Like a Chemist: Intuition in Thermoelectric Materials. Angewandte Chemie International Edition, 55(24), 6826-6841. doi:10.1002/anie.201508381Barron, T. H. . (1957). Grüneisen parameters for the equation of state of solids. Annals of Physics, 1(1), 77-90. doi:10.1016/0003-4916(57)90006-4Arora, A. K. (1990). Grüneisen parameter of soft phonons and high pressure phase transitions in semiconductors. Journal of Physics and Chemistry of Solids, 51(4), 373-375. doi:10.1016/0022-3697(90)90122-vGrüneisen, E. (1912). Theorie des festen Zustandes einatomiger Elemente. Annalen der Physik, 344(12), 257-306. doi:10.1002/andp.19123441202Mishra, K. K., Bevara, S., Ravindran, T. R., Patwe, S. J., Gupta, M. K., Mittal, R., … Tyagi, A. K. (2018). High pressure behavior of complex phosphate K2Ce[PO4]2: Grüneisen parameter and anharmonicity properties. Journal of Solid State Chemistry, 258, 845-853. doi:10.1016/j.jssc.2017.12.022Manjon, F. J., Tiginyanu, I., & Ursaki, V. (Eds.). (2014). Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds. Springer Series in Materials Science. doi:10.1007/978-3-642-40367-5Allakhverdiev, K., Gashimzade, F., Kerimova, T., Mitani, T., Naitou, T., Matsuishi, K., & Onari, S. (2003). Raman scattering under pressure in ZnGa2Se4. Journal of Physics and Chemistry of Solids, 64(9-10), 1597-1601. doi:10.1016/s0022-3697(03)00077-5Parlak, C., & Eryiğit, R. (2006). Ab initiovolume-dependent elastic and lattice dynamical properties of chalcopyriteCuGaSe2. Physical Review B, 73(24). doi:10.1103/physrevb.73.245217Kern, G., Kresse, G., & Hafner, J. (1999). Ab initiocalculation of the lattice dynamics and phase diagram of boron nitride. Physical Review B, 59(13), 8551-8559. doi:10.1103/physrevb.59.8551B. A. Weinstein and R. Zallen, Light Scattering in Solids IV (Springer, 1984), p. 463.Schwer, H., & Krämer, V. (1990). The crystal structures of CdAl2S4, HgAl2S4, and HgGa2S4. Zeitschrift für Kristallographie, 190(1-2), 103-110. doi:10.1524/zkri.1990.190.1-2.103Mamedov, K. K., Aliev, M. M., Kerimov, I. G., & Kh. Nani, R. (1972). Heat capacity of AIIB2IIIC4VI-type ternary semiconducting compounds at low temperatures. Physica Status Solidi (a), 9(2), K149-K152. doi:10.1002/pssa.2210090255Quintero, M., Morocoima, M., Guerrero, E., & Ruiz, J. (1994). Temperature variation of lattice parameters and thermal expansion coefficients of the compound MnGa2Se4. Physica Status Solidi (a), 146(2), 587-593. doi:10.1002/pssa.2211460203Ravindran, T. R., Arora, A. K., & Mary, T. A. (2000). High Pressure Behavior ofZrW2O8: Grüneisen Parameter and Thermal Properties. Physical Review Letters, 84(17), 3879-3882. doi:10.1103/physrevlett.84.3879Morocoima, M., Quintero, M., Guerrero, E., Tovar, R., & Conflant, P. (1997). Temperature variation of lattice parameters and thermal expansion coefficients of the compound ZnGa2Se4. Journal of Physics and Chemistry of Solids, 58(3), 503-507. doi:10.1016/s0022-3697(96)00048-

    Pressure-induced order-disorder transitions in beta-In2S3: an experimental and theoretical study of structural and vibrational properties.

    Full text link
    [EN] This joint experimental and theoretical study of the structural and vibrational properties of beta-In2S3 upon compression shows that this tetragonal defect spinel undergoes two reversible pressure-induced order¿disorder transitions up to 20 GPa. We propose that the first high-pressure phase above 5.0 GPa has the cubic defect spinel structure of alpha-In2S3 and the second high-pressure phase (phi-In2S3) above 10.5 GPa has a defect alpha-NaFeO2-type (R-3m) structure. This phase, related to the NaCl structure, has not been previously observed in spinels under compression and is related to both the tetradymite structure of topological insulators and to the defect LiTiO2 phase observed at high pressure in other thiospinels. Structural characterization of the three phases shows that alpha-In2S3 is softer than beta-In2S3 while phi-In2S3 is harder than beta-In2S3. Vibrational characterization of the three phases is also provided, and their Raman active modes are tentatively assigned. Our work shows that the metastable a phase of In2S3 can be accessed not only by high temperature or varying composition, but also by high pressure. On top of that, the pressure-induced beta¿alpha¿phi sequence of phase transitions evidences that beta-In2S3, a BIII2XV3 compound with an intriguing structure typical of AIIBIII2XVI4 compounds (intermediate between thiospinels and ordered-vacancy compounds) undergoes: (i) a first phase transition at ambient pressure to a disordered spinel-type structure (alpha-In2S3), isostructural with those found at high pressure and high temperature in other BIII2XV3 compounds; and (ii) a second phase transition to the defect alpha-NaFeO2-type structure (phi-In2S3), a distorted NaCl-type structure that is related to the defect NaCl phase found at high pressure in AIIBIII2XVI4 ordered-vacancy compounds and to the defect LiTiO2-type phase found at high pressure in AIIBIII2XVI4 thiospinels. This result shows that In2S3 (with its intrinsic vacancies) has a similar pressure behaviour to thiospinels and ordered-vacancy compounds of the AIIBIII2XVI4 family, making beta-In2S3 the union link between such families of compounds and showing that group-13 thiospinels have more in common with ordered-vacancy compounds than with oxospinels and thiospinels with transition metals.This publication is part of the project MALTA Consolider Team network (RED2018-102612-T), financed by MINECO/AEI/10.13039/501100003329; by I+D+i projects PID2019-106383GB41/42/43, financed by MCIN/AEI/10.13039/501100011033; by project PROMETEO/2018/123 (EFIMAT), financed by Generalitat Valenciana; and by projects DMREF-NSF 1434897 and DOE DE-SC0016176, financed from US agencies. A. M., and P. R.-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster, and we also thank ALBA synchrotron light source for funded experiment 2017022088 at the MSPD-BL04 beamline. A. H. R. acknowledges the computational resources awarded by XSEDE, a project supported by National Science Foundation grant number ACI-1053575, as well as the time from the Super Computing System (Thorny Flat) at WVU, which is funded in part by the National Science Foundation (NSF) Major Research Instrumentation Program (MRI) Award #1726534, and West Virginia University. The authors also acknowledge the support from the Texas Advances Computer Center (with the Stampede2 and Bridges supercomputers). A. M. and R. A. acknowledge the support from Olle Engkvists stiftelse, Sweden, Carl Tryggers Stiftelse for Vetenskaplig Forskning (CTS) and the Swedish Research Council (Grant no. VR-2016-06014 and VR-2020-04410). SNIC and HPC2N are also acknowledged for providing computing resources.Gallego-Parra, S.; Gomis, O.; Vilaplana Cerda, RI.; Cuenca-Gotor, VP.; Martínez-García, D.; Rodríguez-Hernández, P.; Muñoz, A.... (2021). Pressure-induced order-disorder transitions in beta-In2S3: an experimental and theoretical study of structural and vibrational properties. Physical Chemistry Chemical Physics. 23(41):23625-23642. https://doi.org/10.1039/d1cp02969j2362523642234

    Structural, vibrational and electronic properties of alpha'-Ga2S3 under compression

    Full text link
    [EN] We report a joint experimental and theoretical study of the low-pressure phase of ¿¿-Ga2S3 under compression. Theoretical ab initio calculations have been compared to X-ray diffraction and Raman scattering measurements under high pressure carried out up to 17.5 and 16.1 GPa, respectively. In addition, we report Raman scattering measurements of ¿¿-Ga2S3 at high temperature that have allowed us to study its anharmonic properties. To understand better the compression of this compound, we have evaluated the topological properties of the electron density, the electron localization function, and the electronic properties as a function of pressure. As a result, we shed light on the role of the Ga¿S bonds, the van der Waals interactions inside the channels of the crystalline structure, and the single and double lone electron pairs of the sulphur atoms in the anisotropic compression of ¿¿-Ga2S3. We found that the structural channels are responsible for the anisotropic properties of ¿¿-Ga2S3 and the A¿(6) phonon, known as the breathing mode and associated with these channels, exhibits the highest anharmonic behaviour. Finally, we report calculations of the electronic band structure of ¿¿-Ga2S3 at different pressures and find a nonlinear pressure behaviour of the direct band gap and a pressure-induced direct-to-indirect band gap crossover that is similar to the behaviour previously reported in other ordered-vacancy compounds, including ß-Ga2Se3. The importance of the single and, more specially, the double lone electron pairs of sulphur in the pressure dependence of the topmost valence band of ¿¿-Ga2S3 is stressed.The authors thank the financial support from the Spanish Research Agency (AEI) under projects MALTA Consolider Team network (RED2018-102612-T) and projects MAT2016-75586-C4-2/3-P, FIS2017-83295-P, PID2019-106383GB-42/43, and PGC2018-097520-A-100, as well as from Generalitat Valenciana under Project PROMETEO/2018/123 (EFIMAT). A. M. and P. R.-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster and E. L. D. S. acknowledges Marie Sklodowska-Curie Grant No. 785789-COMEX from the European Union's Horizon 2020 research and innovation program. J. A. S. also wants to thank the Ramon y Cajal fellowship (RYC-2015-17482) for financial support. We also thank the ALBA synchrotron light source for funded experiment 2017022088 at the MSPD-BL04 beamline.Gallego-Parra, S.; Vilaplana Cerda, RI.; Gomis, O.; Lora Da Silva, E.; Otero-De-La-Roza, A.; Rodríguez-Hernández, P.; Muñoz, A.... (2021). Structural, vibrational and electronic properties of alpha'-Ga2S3 under compression. Physical Chemistry Chemical Physics. 23(11):6841-6862. https://doi.org/10.1039/d0cp06417cS68416862231

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≤ 18 years: 69, 48, 23; 85%), older adults (≥ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men
    corecore