29 research outputs found

    Improvement of convective drying of carrot by applying power ultrasound. Influence of mass load density

    Full text link
    [EN] Power ultrasound is considered to be a novel and promising technology with which to improve heat and mass transfer phenomena in drying processes. The aim of this work was to contribute to the knowledge of ultrasound application to air drying by addressing the influence of mass load density on the ultrasonically assisted air drying of carrot. Drying kinetics of carrot cubes were carried out (in triplicate) with or without power ultrasound application (75 W, 21.7 kHz) at 40 C, 1 m/s, and several mass load densities: 12, 24, 36, 42, 48, 60, 72, 84, 96, 108, and 120 kg/m3 . The experimental results showed a significant (p < 0.05) influence of both factors, mass load density and power ultrasound application, on drying kinetics. As expected, the increase of mass load density did not affect the effective moisture diffusivity (De, m2 /s) but produced a reduction of the mass transfer coefficient (k, kg water/m2 /s). This was explained by considering perturbations in the air flow through the drying chamber thus creating preferential pathways and, as a consequence, increasing external mass transfer resistance. On the other hand, it was found that the power ultrasound application increased the mass transfer coefficient and the effective moisture diffusivity regardless of the mass load density used. However, the influence of power ultrasound was not significant at the highest mass load densities tested (108 and 120 kg/m3 ), which may be explained from the high ratio (acoustic energy/sample mass) found under those experimental conditions. Therefore, the application of ultrasound was considered as a useful technology with which to improve the convective drying, although its effects may be reduced at high mass load densities.The authors acknowledge the financial support of the Spanish Ministry of Science and Technology (DPI2009-14549-C04-04) and the Universidad Politecnica de Valencia (PAID-06-08-3180).Cárcel Carrión, JA.; García Pérez, JV.; Riera, E.; Mulet Pons, A. (2011). Improvement of convective drying of carrot by applying power ultrasound. Influence of mass load density. Drying Technology. 29(2):174-182. https://doi.org/10.1080/07373937.2010.483032S17418229

    Aglomeración acústica de partículas

    Get PDF
    PACS: 43.35, 43.25.-- Publicado en el Vol. XXXI, núm. 3-4, tercer y cuarto trimestre 2000 de la Revista de Acústica: Número especial dedicado al XXV Aniversario del Instituto de Acústica del C.S.I.C.[ES] En este trabajo se presenta una recopilación de las principales aportaciones llevadas a cabo en el campo de la aglomeración acústica de partículas desde 1972. A lo largo de este periodo de tiempo se ha consolidado esta línea de investigación. Se han estudiado y simulado numéricamente los mecanismos básicos del proceso de aglomeración. Paralelamente se han desarrollado y validado nuevos sistemas macrosónicos a escala de laboratorio y de planta piloto para la retención de partículas finas (0.1 - 2.5 μm) en efluentes industriales. Los principales logros científicos llevados a cabo en esta temática han dado lugar a más de setenta publicaciones internacionales.[EN] A summary of the most relevant R+D contributions since 1972 on the acoustic particle agglomeration is presented in this paper. Along this period the research topic has been well consolidated. The basic mechanisms involved in the agglomeration process have been studied and simulated numerically. In parallel, new macrosonic systems at laboratory and pilot plant scale have been developed and validated to reduce fine particle emissions (0.1 - 2.5 μm). The main scientific results obtained were published in more than seventy international papers.Peer reviewe

    Effect of Ultrasonic-Assisted Blanching on Size Variation, Heat Transfer, and Quality Parameters of Mushrooms

    Get PDF
    The main aim of this work was to assess the influence of the application of power ultrasound during blanching of mushrooms (60 90 °C) on the shrinkage, heat transfer, and quality parameters. Kinetics of mushroom shrinkage was modeled and coupled to a heat transfer model for conventional (CB) and ultrasonic-assisted blanching (UB). Cooking value and the integrated residual enzymatic activity were obtained through predicted temperatures and related to the hardness and color variations of mushrooms, respectively. The application of ultrasound led to an increase of shrinkage and heat transfer rates, being this increase more intense at low process temperatures. Consequently, processing time was decreased (30.7 46.0 %) and a reduction in hardness (25.2 40.8 %) and lightness (13.8 16.8 %) losses were obtained. The best retention of hardness was obtained by the UB at 60 °C, while to maintain the lightness it was the CB and UB at 90 °C. For enhancing both quality parameters simultaneously, a combined treatment (CT), which consisted of a CB 0.5 min at 90 °C and then an UB 19.9min at 60 °C, was designed. In this manner, compared with the conventional treatment at 60 °C, reductions of 39.1, 27.2, and 65.5 % for the process time, hardness and lightness losses were achieved, respectively. These results suggest that the CT could be considered as an interesting alternative to CB in order to reduce the processing time and improve the overall quality of blanched mushrooms.The authors acknowledge the financial support of Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional de La Plata from Argentina, Erasmus Mundus Action 2-Strand 1 and EuroTango II Researcher Training Program and Ministerio de Economia y Competitividad (SPAIN) and the FEDER (project DPI2012-37466-CO3-03).Lespinard, A.; Bon Corbín, J.; Cárcel Carrión, JA.; Benedito Fort, JJ.; Mascheroni, RH. (2015). Effect of Ultrasonic-Assisted Blanching on Size Variation, Heat Transfer, and Quality Parameters of Mushrooms. Food and Bioprocess Technology. 8(1):41-53. https://doi.org/10.1007/s11947-014-1373-zS415381Aguirre, L., Frias, J. M., Barry-Ryan, C., & Grogan, H. (2009). Modelling browning and brown spotting of mushrooms (Agaricus bisporus) stored in controlled environmental conditions using image analysis. Journal of Food Engineering, 91, 280–286.Anantheswaran, R. C., Sastry, S. K., Beelman, R. B., Okereke, A., & Konanayakam, M. (1986). Effect of processing on yield, color, and texture of canned mushrooms. Journal of Food Science, 51(5), 1197–1200.Biekman, E. S. A., Kroese-Hoedeman, H. I., & Schijvens, E. P. H. M. (1996). Loss of solutes during blanching of mushrooms (Agaricus bisporus) as a result of shrinkage and extraction. Journal of Food Engineering, 28(2), 139–152.Biekman, E. S. A., van Remmen, H. H. J., Kroese-Hoedeman, H. I., Ogink, J. J. M., & Schijvens, E. P. H. M. (1997). Effect of shrinkage on the temperature increase in evacuated mushrooms (Agaricus bisporus) during blanching. Journal of Food Engineering, 33(1–2), 87–99.Brennan, M., Le Port, G., & Gormley, R. (2000). Post-harvest treatment with citric acid or hydrogen peroxide to extend the shelf life of fresh sliced mushrooms. Lebensmittel Wissenschaft und Technologie, 33, 285–289.Cárcel, J. A., Benedito, J., Rosselló, C., & Mulet, A. (2007). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78, 472–479.Cárcel, J. A., Benedito, J., Bon, J., & Mulet, A. (2007). High intensity ultrasound effects on meat brining. Meat Science, 76, 611–619.Cárcel, J. A., García-Pérez, J. V., Benedito, J., & Mulet, A. (2011). Food process innovation through new technologies: Use of ultrasound. Journal of Food Engineering, 110, 200–207.Cheng, X., Zhang, M., & Adhikari, B. (2013). The inactivation kinetics of polyphenol oxidase in mushroom (Agaricus bisporus) during thermal and thermosonic treatmemts. Ultrasonics Sonochemistry, 20, 674–679.Cliffe-Byrnes, V., & O’Beirne, D. (2007). Effects of gas atmosphere and temperature on the respiration rates of whole and sliced mushrooms (Agaricus bisporus): implications for film permeability in modified atmosphere packages. Journal of Food Science, 72, 197–204.Coskuner, Y., & Ozdemir, Y. (1997). Effects of canning processes on the elements content of cultivated mushrooms (Agaricus bisporus). Food Chemistry, 60(4), 559–562.Cruz, R. M. S., Vieira, M. C., Fonseca, S. C., & Silva, C. L. M. (2011). Impact of thermal blanching and thermosonication treatments on watercress (Nasturtium officinale) quality: thermosonication process optimisation and microstructure evaluation. Food and Bioprocess Technology, 4(7), 1197–1204.De Gennaro, L., Cavella, S., Romano, R., & Masi, P. (1999). The use of ultrasound in food technology I: inactivation of peroxidase by thermosonication. Journal of Food Engineering, 39, 401–407.De la Fuente, S., Riera, E., Acosta, V. M., Blanco, A., & Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, 523–527.Delgado, A. E., Zheng, L., & Sun, D. W. (2009). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology, 2, 263–270.Devece, C., Rodríguez-López, J. N., Fenoll, J. T., Catalá, J. M., De los Reyes, E., & García-Cánovas, F. (1999). Enzyme inactivation analysis for industrial blanching applications: comparison of microwave, conventional, and combination heat treatments on mushroom polyphenoloxidase activity. Journal of Agricultural and Food Chemistry, 47(11), 4506–4511.Fernandes, F. A. N., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: dehydration of banana. Journal of Food Engineering, 82, 261–267.Gabaldón-Leyva, C. A., Quintero-Ramos, A., Barnard, J., Balandrán-Quintana, R. R., Talamás-Abbud, R., & Jiménez-Castro, J. (2007). Effect of ultrasound on the mass transfer and physical changes in brine bell pepper at different temperatures. Journal of Food Engineering, 81, 374–379.Gallego-Juárez, J. A., Riera, E., De la Fuente, S., Rodríguez-Corral, G., Acosta-Aparicio, V. M., & Blanco, A. (2007). Application of high-power ultrasound for dehydration of vegetables: processes and devices. Drying Technology, 25, 1893–1901.Gamboa-Santos, J., Montilla, A., Soria, A. C., & Villamiel, M. (2012). Effects of conventional and ultrasound blanching on enzyme inactivation and carbohydrate content of carrots. European Food Research and Technology, 234, 1071–1079.García-Pérez, J. V., Cárcel, J. A., De la Fuente, S., & Riera, E. (2006). Ultrasonic drying of foodstuff in a fluidized bed. Parametric study. Ultrasonics, 44, 539–543.García-Pérez, J. V., Cárcel, J. A., Riera, E., Rosselló, C., & Mulet, A. (2012). Intensification of low-temperature drying by using ultrasound. Drying Technology, 30, 1199–1208.Gonzáles-Fandos, E., Giménez, M., Olarte, C., Sanz, S., & Simón, A. (2000). Effect of packaging conditions on the growth of microorganisms and the quality characteristics of fresh mushrooms (Agaricus bisporus) stored at inadequate temperatures. Journal of Applied Microbiology, 89, 624–632.Gormley, T. R. (1975). Chill storage of mushrooms. Journal of the Science of Food and Agriculture, 26, 401–411.Gouzi, H., Depagne, C., & Coradin, T. (2012). Kinetics and thermodynamics of thermal inactivation of polyfenol oxidase in an aqueous extract from Agaricus bisporus. Journal of Agricultural and Food Chemistry, 60, 500–506.Holdsworth, S. D. (1997). Thermal processing of packaged foods. London: Chapman Hall.Horžić, D., Jambrak, A. R., Belščak-Cvitanović, A., Komes, D., & Lelas, V. (2012). Comparison of conventional and ultrasound assisted extraction techniques of yellow tea and bioactive composition of obtained extracts. Food and Bioprocess Technology, 5, 2858–2870.Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007a). Ultrasonic effect on pH, electric conductivity, and tissue surface of button mushrooms, brussels sprouts and cauliflower. Czech Journal of Food Science, 25, 90–99.Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007b). Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81, 88–97.Jasinski, E. M., Stemberger, B., Walsh, R., & Kilara, A. (1984). Ultra structural studies of raw and processed tissue of the major cultivated mushroom, Agaricus bisporus. Food Microstructure, 3, 191–196.Jolivet, S., Arpin, N., Wicher, H. J., & Pellon, G. (1998). Agaricus bisporus browning: a review. Mycological Research, 102, 1459–1483.Konanayakam, M., & Sastry, S. K. (1988). Kinetics of shrinkage of mushroom during blanching. Journal of Food Science, 53(5), 1406–1411.Kotwaliwale, N., Bakane, P., & Verma, A. (2007). Changes in textural and optical properties of oyster mushroom during hot air drying. Journal of Food Engineering, 78(4), 1207–1211.Leadley C. & Williams A. (2002). Power ultrasound—current and potential applications for food processing, Review No 32, Campden and Chorleywood Food Research Association.Lespinard, A. R., Goñi, S. M., Salgado, P. R., & Mascheroni, R. H. (2009). Experimental determination and modeling of size variation, heat transfer and quality indexes during mushroom blanching. Journal of Food Engineering, 92, 8–17.Lima, M., & Sastry, S. K. (1990). Influence of fluid rheological properties and particle location on ultrasound-assisted heat transfer between liquid and particles. Journal of Food Science, 55(4), 1112–1115.López, P., & Burgos, J. (1995). Peroxidase stability and reactivation after heat treatment and manothermosonication. Journal of Food Science, 60(3), 551–553.López, P., Sala, F. J., Fuente, J. L., Cardon, S., Raso, J., & Burgos, J. (1994). Inactivation of peroxidase lipoxigenase and phenol oxidase by manothermosonication. Journal of Agricultural and Food Chemistry, 42(2), 253–256.Mansfield, T. (1962). High temperature-short time sterilization. Proceedings First International Congress on Food Science and Technology, 4, 311–316.Mason T. J. (1998). Power ultrasound in food processing—the way forward. In M. J. W. Povey & T. J. Mason (Eds.), Ultrasound in Food Processing (pp 103–126). Blackie Academic & Professional, London.McArdle F. J. & Curwen D. (1962). Some factors influencing shrinkage of canned mushrooms. Mushroom Science, 5, 547–557.McArdle, F. J., Kuhn, G. D., & Beelman, R. B. (1974). Influence of vacuum soaking on yield and quality of canned mushrooms. Journal of Food Science, 39, 1026–1028.Mohapatra, D., Bira, Z. M., Kerry, J. P., Frías, J. M., & Rodrigues, F. A. (2010). Postharvest hardness and color evolution of White button mushrooms (Agaricus bisporus). Journal of Food Science, 75(3), 146–152.Ohlsson, T. (1980). Temperature dependence of sensory quality changes during thermal processing. Journal of Food Science, 45(4), 836–847.Ortuño, C., Martínez-Pastor, M., Mulet, A., & Benedito, J. (2013). Application of high power ultrasound in the supercritical carbon dioxide inactivation of Saccharomyces cerevisiae. Food Research International, 51, 474–481.Peralta-Jimenez, L., & Cañizares-Macías, M. P. (2012). Ultrasound-assisted method for extraction of theobromine and caffeine from cacao seeds and chocolate products. Food and Bioprocess Technology, 6, 3522–3529.Rodríguez-López, J. N., Fenoll, N. G., Tudela, J., Devece, C., Sánchez-Hernández, D., De los Reyes, D., et al. (1999). Thermal inactivation of mushroom polyphenoloxidase employing 2450 MHz microwave radiation. Journal of Agricultural Food Chemistry, 47, 3028–3035.Sala, F., Burgos, J., Condon, S., Lopez, P., & Raso, J. (1995). Effect of heat and ultrasound on microorganisms and enzymes. In G. W. Gould (Ed.), New methods of food preservation (1st ed., pp. 176–204). Glasgow: Blackie Academic and professional.Sanjuán, N., Hernando, I., Lluch, M. A., & Mullet, A. (2005). Effects of low temperature blanching on texture, microstructure and rehydration capacity of carrots. Journal of the Science of Food and Agriculture, 85, 2071–2076.Santos, M. V., & Lespinard, A. R. (2011). Numerical simulation of mushrooms during freezing using the FEM and an enthalpy—Kirchhoff formulation. Heat and Mass Transfer, 47, 1671–1683.Sastry, S. K., Beelman, R. B., & Speroni, J. J. (1985). A three-dimensional finite element model for thermally induced changes in foods: application to degradation of agaritine in canned mushrooms. Journal of Food Science, 50(5), 1293–1299.Sastry, S. K., Shen, G. Q., & Blaisdel, J. L. (1989). Effect of ultrasonic vibration on fluid-to-particule convective heat transfer coefficients. Journal of Food Science, 54(1), 229–230.Sensoy, I., & Sastry, S. K. (2004). Ohmic blanching of mushrooms. Journal of Food Process Engineering, 27(1), 1–15.Sheen, S., & Hayakawa, K. (1991). Finite difference simulation for heat conduction with phase change in an irregular food domain with volumetric change. International Journal of Heat and Mass Transfer, 34(6), 1337–1346.Simal, S., Benedito, J., Sanchez, E. S., & Rossello, C. (1998). Use of ultrasound to increase mass transport rates during osmotic dehydration. Journal of Food Engineering, 36, 323–336.Siró, I., Vén, C., Balla, C., Jónás, G., Zeke, I., & Friedrich, L. (2009). Application of an ultrasonic assisted curing technique for improving the diffusion of sodium chloride in porcine meat. Journal of Food Engineering, 91, 353–362.Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity in foods: a review. Trends in Food Science and Technology, 21, 323–331.Verlinden, B. E., Yuksel, D., Baheri, M., De Baerdemaeker, J., & Van Dijk, C. (2000). Low temperature blanching effect on the changes in mechanical properties during subsequent cooking of three potato cultivars. International Journal of Food Science and Technology, 35, 331–340.Wu, C. M., Wu, J. L.-P., Chen, C.-C., & Chou, C.-C. (1981). Flavor recovery from mushroom blanching water. In G. Charalambous & G. Inglett (Eds.), The quality of foods and beverages: chemistry and technology, vol. 1. New York: Academic Press.Zivanovic, S., & Buescher, R. (2004). Changes in mushroom texture and cell wall composition affected by thermal processing. Journal of Food Science, 69, 44–48

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    RICORS2040 : The need for collaborative research in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access
    corecore