491 research outputs found
Abundance patterns in early-type galaxies: is there a 'knee' in the [Fe/H] vs. [alpha/Fe] relation?
Early-type galaxies (ETGs) are known to be enhanced in alpha elements, in
accordance with their old ages and short formation timescales. In this
contribution we aim to resolve the enrichment histories of ETGs. This means we
study the abundance of Fe ([Fe/H]) and the alpha-element groups ([alpha/Fe])
separately for stars older than 9.5 Gyr ([Fe/H]o, [alpha/Fe]o) and for stars
between 1.5 and 9.5 Gyr ([Fe/H]i, [alpha/Fe]i). Through extensive simulation we
show that we can indeed recover the enrichment history per galaxy. We then
analyze a spectroscopic sample of 2286 early-type galaxies from the SDSS
selected to be ETGs. We separate out those galaxies for which the abundance of
iron in stars grows throughout the lifetime of the galaxy, i.e. in which
[Fe/H]o < [Fe/H]i. We confirm earlier work where the [Fe/H] and [alpha/Fe]
parameters are correlated with the mass and velocity dispersion of ETGs. We
emphasize that the strongest relation is between [alpha/Fe] and age. This
relation falls into two regimes, one with a steep slope for old galaxies and
one with a shallow slope for younger ETGs. The vast majority of ETGs in our
sample do not show the 'knee' in the plot of [Fe/H] vs. [alpha/Fe] commonly
observed in local group galaxies. This implies that for the vast majority of
ETGs, the stars younger than 9.5 Gyrs are likely to have been accreted or
formed from accreted gas. The properties of the intermediate-age stars in
accretion-dominated ETGs indicate that mass growth through late (minor) mergers
in ETGs is dominated by galaxies with low [Fe/H] and low [alpha/Fe]. The method
of reconstructing the stellar enrichment histories of ETGs introduced in this
paper promises to constrain the star formation and mass assembly histories of
large samples of galaxies in a unique way.Comment: 22 pages, 25 figures, accepted for publication by A&
Stellar Ages and Metallicities of Central and Satellite Galaxies: Implications for Galaxy Formation and Evolution
Using a large SDSS galaxy group catalogue, we study how the stellar ages and
metallicities of central and satellite galaxies depend on stellar mass and halo
mass. We find that satellites are older and metal-richer than centrals of the
same stellar mass. In addition, the slopes of the age-stellar mass and
metallicity-stellar mass relations are found to become shallower in denser
environments. This is due to the fact that the average age and metallicity of
low mass satellite galaxies increase with the mass of the halo in which they
reside. A comparison with the semi-analytical model of Wang et al. (2008) shows
that it succesfully reproduces the fact that satellites are older than centrals
of the same stellar mass and that the age difference increases with the halo
mass of the satellite. This is a consequence of strangulation, which leaves the
stellar populations of satellites to evolve passively, while the prolonged star
formation activity of centrals keeps their average ages younger. The resulting
age offset is larger in more massive environments because their satellites were
accreted earlier. The model fails, however, in reproducing the halo mass
dependence of the metallicities of low mass satellites, yields
metallicity-stellar mass and age-stellar mass relations that are too shallow,
and predicts that satellite galaxies have the same metallicities as centrals of
the same stellar mass, in disagreement with the data. We argue that these
discrepancies are likely to indicate the need to (i) modify the recipes of both
supernova feedback and AGN feedback, (ii) use a more realistic description of
strangulation, and (iii) include a proper treatment of the tidal stripping,
heating and destruction of satellite galaxies. [Abridged]Comment: 20 pages, 12 figures, submitted for publication in MNRA
Differential stellar population models: how to reliably measure [Fe/H] and [alpha/Fe] in galaxies
We present differential stellar population models, which allow improved
determinations of the ages, iron and alpha-element abundances of old stellar
populations from spectral fitting. These new models are calibrated at solar
abundances using the predictions from classical, semi-empirical stellar
population models. We then use the predictive power of fully synthetic models
to compute predictions for different [Fe/H] and [alpha/Fe]. We show that these
new differential models provide remarkably accurate fits to the integrated
optical spectra of the bulge globular clusters NGC6528 and NGC6553, and that
the inferred [Fe/H] and [alpha/Fe] agree with values derived elsewhere from
stellar photometry and spectroscopy. The analysis of a small sample of SDSS
early-type galaxies further confirms that our alpha-enhanced models provide a
better fit to the spectra of massive ellipticals than the solar-scaled ones.
Our approach opens new opportunities for precision measurements of abundance
ratios in galaxies.Comment: 5 pages, 5 figures, MNRAS in pres
A new population of recently quenched elliptical galaxies in the SDSS
We use the Sloan Digital Sky Survey to investigate the properties of massive
elliptical galaxies in the local Universe (z\leq0.08) that have unusually blue
optical colors. Through careful inspection, we distinguish elliptical from
non-elliptical morphologies among a large sample of similarly blue galaxies
with high central light concentrations (c_r\geq2.6). These blue ellipticals
comprise 3.7 per cent of all c_r\geq2.6 galaxies with stellar masses between
10^10 and 10^11 h^{-2} {\rm M}_{\sun}. Using published fiber spectra
diagnostics, we identify a unique subset of 172 non-star-forming ellipticals
with distinctly blue urz colors and young (< 3 Gyr) light-weighted stellar
ages. These recently quenched ellipticals (RQEs) have a number density of
2.7-4.7\times 10^{-5}\,h^3\,{\rm Mpc}^{-3} and sufficient numbers above
2.5\times10^{10} h^{-2} {\rm M}_{\sun} to account for more than half of the
expected quiescent growth at late cosmic time assuming this phase lasts 0.5
Gyr. RQEs have properties that are consistent with a recent merger origin
(i.e., they are strong `first-generation' elliptical candidates), yet few
involved a starburst strong enough to produce an E+A signature. The preferred
environment of RQEs (90 per cent reside at the centers of < 3\times
10^{12}\,h^{-1}{\rm M}_{\sun} groups) agrees well with the `small group scale'
predicted for maximally efficient spiral merging onto their halo center and
rules out satellite-specific quenching processes. The high incidence of Seyfert
and LINER activity in RQEs and their plausible descendents may heat the
atmospheres of small host halos sufficiently to maintain quenching.Comment: 26 pages, 9 figures. Revised version; accepted for publication in
MNRA
Continuous central venous saturation monitoring in critically ill patients
Table 1 (abstract P39). Patients\u2019 variables according to ScvO2 range
ScvO2 75
Patients 15/37 36/37 36/37
SpO2 (%) 95.8 \ub1 3.0 95.0 \ub1 3.3 96.4 \ub1 2.3
HR (bpm) 90.6 \ub1 16.1 90.5 \ub1 18.1 90.7 \ub1 16.5
MAP (mmHg) 82.5 \ub1 10.6 83.4 \ub1 12.7 82.2 \ub1 11.7
CVP (mmHg) 18.3 \ub1 4.6 20.2 \ub1 8.2 19.2 \ub1 5.
The cosmic evolution of the spatially-resolved star formation rate and stellar mass of the CALIFA survey
We investigate the cosmic evolution of the absolute and specific star
formation rate (SFR, sSFR) of galaxies as derived from a spatially-resolved
study of the stellar populations in a set of 366 nearby galaxies from the
CALIFA survey. The analysis combines GALEX and SDSS images with the 4000 break,
H_beta, and [MgFe] indices measured from the datacubes, to constrain parametric
models for the SFH, which are then used to study the cosmic evolution of the
star formation rate density (SFRD), the sSFR, the main sequence of star
formation (MSSF), and the stellar mass density (SMD). A delayed-tau model,
provides the best results, in good agreement with those obtained from
cosmological surveys. Our main results from this model are: a) The time since
the onset of the star formation is larger in the inner regions than in the
outer ones, while tau is similar or smaller in the inner than in the outer
regions. b) The sSFR declines rapidly as the Universe evolves, and faster for
early than for late type galaxies, and for the inner than for the outer regions
of galaxies. c) SFRD and SMD agree well with results from cosmological surveys.
At z< 0.5, most star formation takes place in the outer regions of late spiral
galaxies, while at z>2 the inner regions of the progenitors of the current E
and S0 are the major contributors to SFRD. d) The inner regions of galaxies are
the major contributor to SMD at z> 0.5, growing their mass faster than the
outer regions, with a lookback time at 50% SMD of 9 and 6 Gyr for the inner and
outer regions. e) The MSSF follows a power-law at high redshift, with the slope
evolving with time, but always being sub-linear. f) In agreement with galaxy
surveys at different redshifts, the average SFH of CALIFA galaxies indicates
that galaxies grow their mass mainly in a mode that is well represented by a
delayed-tau model, with the peak at z~2 and an e-folding time of 3.9 Gyr.Comment: 23 pages, 16 figures, 6 tables, accepted for publication in Astronomy
& Astrophysics. *Abridged abstract
Resolving the age bimodality of galaxy stellar populations on kpc scales
Galaxies in the local Universe are known to follow bimodal distributions in
the global stellar populations properties. We analyze the distribution of the
local average stellar-population ages of 654,053 sub-galactic regions resolved
on ~1-kpc scales in a volume-corrected sample of 394 galaxies, drawn from the
CALIFA-DR3 integral-field-spectroscopy survey and complemented by SDSS imaging.
We find a bimodal local-age distribution, with an old and a young peak
primarily due to regions in early-type galaxies and star-forming regions of
spirals, respectively. Within spiral galaxies, the older ages of bulges and
inter-arm regions relative to spiral arms support an internal age bimodality.
Although regions of higher stellar-mass surface-density, mu*, are typically
older, mu* alone does not determine the stellar population age and a bimodal
distribution is found at any fixed mu*. We identify an "old ridge" of regions
of age ~9 Gyr, independent of mu*, and a "young sequence" of regions with age
increasing with mu* from 1-1.5 Gyr to 4-5 Gyr. We interpret the former as
regions containing only old stars, and the latter as regions where the relative
contamination of old stellar populations by young stars decreases as mu*
increases. The reason why this bimodal age distribution is not inconsistent
with the unimodal shape of the cosmic-averaged star-formation history is that
i) the dominating contribution by young stars biases the age low with respect
to the average epoch of star formation, and ii) the use of a single average age
per region is unable to represent the full time-extent of the star-formation
history of "young-sequence" regions.Comment: 17 pages, 11 figures, MNRAS accepte
- …