28 research outputs found

    Bioengineering and Semisynthesis of an Optimized Cyclophilin Inhibitor for Treatment of Chronic Viral Infection.

    Get PDF
    Inhibition of host-encoded targets, such as the cyclophilins, provides an opportunity to generate potent high barrier to resistance antivirals for the treatment of a broad range of viral diseases. However, many host-targeted agents are natural products, which can be difficult to optimize using synthetic chemistry alone. We describe the orthogonal combination of bioengineering and semisynthetic chemistry to optimize the drug-like properties of sanglifehrin A, a known cyclophilin inhibitor of mixed nonribosomal peptide/polyketide origin, to generate the drug candidate NVP018 (formerly BC556). NVP018 is a potent inhibitor of hepatitis B virus, hepatitis C virus (HCV), and HIV-1 replication, shows minimal inhibition of major drug transporters, and has a high barrier to generation of both HCV and HIV-1 resistance

    Novel Cyclophilin Inhibitor Decreases Cell Proliferation and Tumor Growth in Models of Hepatocellular Carcinoma

    No full text
    Hepatocellular carcinoma (HCC), the most common primary liver cancer, is usually diagnosed in its late state. Tyrosine kinase inhibitors such as sorafenib and regorafenib are one of the few treatment options approved for advanced HCC and only prolong the patient's life expectancy by a few months. Therefore, there is a need for novel effective treatments. Cyclophilins are intracellular proteins that catalyze the cis/trans isomerization of peptide bonds at proline residues. Cyclophilins are known to be overexpressed in HCC, affecting therapy resistance and cell proliferation. In the present study, we explored the potential of cyclophilin inhibitors as new therapeutic options for HCC in vitro and in vivo. Our results showed that the novel cyclophilin inhibitor, NV651, was able to significantly decrease proliferation in a diverse set of HCC cell lines. The exposure of HCC cells to NV651 caused an accumulation of cells during mitosis and consequent accumulation in the G2/M phase of the cell cycle. NV651 reduced tumor growth in vivo using an HCC xenograft model without affecting the body weights of the animals. The safety aspects of NV651 were also confirmed in primary human hepatocytes without any cytotoxic effects. Based on the results obtained in this study, we propose NV651 as a potential treatment strategy for HCC

    Atomic resolution structure of moloney murine leukemia virus matrix protein and its relationship to other retroviral matrix proteins

    No full text
    Matrix proteins associated with the viral membrane are important in the formation of the viral particle and in virus maturation. The 1.0 A crystal structure of the ecotropic Gammaretrovirus Moloney murine leukemia virus (M-MuLV) matrix protein reveals the conserved topology of other retroviral matrix proteins, despite undetectable sequence similarity. The N terminus (normally myristylated) is exposed and adjacent to a basic surface patch, features likely to contribute to membrane binding. The four proteins in the asymmetric unit make varied contacts. The M-MuLV matrix structure is intermediate, between those of the lentiviruses and other retroviruses. The protein fold appears to be maintained, in part, by the conservation of side chain packing, which may provide a useful tool for searching for weak distant similarities in proteins

    CcrZ is a pneumococcal spatiotemporal cell cycle regulator that interacts with FtsZ and controls DNA replication by modulating the activity of DnaA

    No full text
    AbstractMost bacteria replicate and segregate their DNA concomitantly while growing, before cell division takes place. How bacteria synchronize these different cell cycle events to ensure faithful chromosome inheritance by daughter cells is poorly understood. Here, we identify Cell Cycle Regulator protein interacting with FtsZ (CcrZ) as a conserved and essential protein in pneumococci and related Firmicutes such as Bacillus subtilis and Staphylococcus aureus. CcrZ couples cell division with DNA replication by controlling the activity of the master initiator of DNA replication, DnaA. The absence of CcrZ causes mis-timed and reduced initiation of DNA replication, which subsequently results in aberrant cell division. We show that CcrZ from Streptococcus pneumoniae interacts directly with the cytoskeleton protein FtsZ, which places CcrZ in the middle of the newborn cell where the DnaA-bound origin is positioned. This work uncovers a mechanism for control of the bacterial cell cycle in which CcrZ controls DnaA activity to ensure that the chromosome is replicated at the right time during the cell cycle.</jats:p

    Bioengineering and semisynthesis of an optimized cyclophilin inhibitor for treatment of chronic viral infection

    No full text
    Inhibition of host-encoded targets, such as the cyclophilins, provides an opportunity to generate potent high barrier to resistance antivirals for the treatment of a broad range of viral diseases. However, many host-targeted agents are natural products, which can be difficult to optimize using synthetic chemistry alone. We describe the orthogonal combination of bioengineering and semisynthetic chemistry to optimize the drug-like properties of sanglifehrin A, a known cyclophilin inhibitor of mixed nonribosomal peptide/polyketide origin, to generate the drug candidate NVP018 (formerly BC556). NVP018 is a potent inhibitor of hepatitis B virus, hepatitis C virus (HCV), and HIV-1 replication, shows minimal inhibition of major drug transporters, and has a high barrier to generation of both HCV and HIV-1 resistance.publisher: Elsevier articletitle: Bioengineering and Semisynthesis of an Optimized Cyclophilin Inhibitor for Treatment of Chronic Viral Infection journaltitle: Chemistry & Biology articlelink: http://dx.doi.org/10.1016/j.chembiol.2014.10.023 content_type: article copyright: Copyright © 2015 Elsevier Ltd. All rights reserved.status: publishe

    'The Indians of every denomination were free, and independent of us’: White Southern Explorations of Indigenous Slavery, Freedom, and Society, 1772-1830

    No full text
    In arguing against Indian slavery, plaintiff’s attorneys in the 1772 Virginia General Court case Robin v Hardaway faced a dilemma: how could they condemn enslavement while mollifying public conviction that Indigenous “savagery” made them dangerous to community stability? Their solution, rooted in a nearly two-century discourse of slavery and freedom, was to insist that Indians derived from independent polities (unlike other enslaved communities). As such, they were both inherently free and outside the evolving Anglo-American body politic, and whites could legitimately deprive them of property, happiness, and safety. Subsequent Virginia freedom cases contributed to the discourse employed in Robin, as did early-nineteenth-century US Supreme Court decisions. It came to underpin civilization policies as well as removal, once older understandings of Anglo-American “civility” became untenable to Southern whites
    corecore