84 research outputs found

    Sustained MAPK/ERK activation in adult Schwann cells impairs nerve repair

    Get PDF
    The MAPK/ERK pathway has a critical role in PNS development. It is required for Schwann cell (SC) differentiation and myelination; sustained embryonic MAPK/ERK activation in SCs enhances myelin growth overcoming signals that normally end myelination. Excess activation of this pathway can be maladaptive as in adulthood acute strong activation of MAPK/ERK has been shown to cause SC dedifferentiation and demyelination. We used a mouse model (including male and female animals) in which gain of function Mek1DD allele produces sustained MAPK/ERK activation in adult SCs and we determined the impact of such activation on nerve repair. In the uninjured nerve, MAPK/ERK activation neither impaired myelin nor did it re-activate myelination. However, in the injured nerve it was detrimental and resulted in delayed repair and functional recovery. In the early phase of injury the rate of myelin clearance was faster. Four weeks following injury, when nerve repair is normally advanced, myelinated axons of Mek1DD mutants demonstrated higher rates of myelin decompaction, a reduced number of Cajal bands and decreased internodal length. We noted the presence of abnormal Remak bundles with long SCs processes and reduced numbers of C-fibres/Remak bundle. Both the total number of regenerating axons and the intra-epidermal nerve fibres density in the skin were reduced. Sustained activation of MAPK/ERK in adult SCs is therefore deleterious to successful nerve repair, emphasising the differences in the signalling processes coordinating nerve development and repair. Our results also underline the key role of SCs in axon regeneration and successful target einnervation.SIGNIFICANCE STATEMENTThe MAPK/ERK pathway promotes developmental myelination and its sustained activation in SCs induced continuous myelin growth, compensating for the absence of essential myelination signals. However, the strength of activation is fundamental because acute strong induction of MAPK/ERK in adulthood induces demyelination. What has been unknown is the effect of a mild but sustained MAPK/ERK activation in SCs on nerve repair in adulthood. This promoted myelin clearance but led to abnormalities in non-myelinating and myelinating SCs in the later phases of nerve repair, resulting in slowed axon regeneration, cutaneous reinnervation and functional recovery. Our results emphasise the distinct role of the MAPK/ERK pathway in developmental myelination versus remyelination and the importance of signalling between SCs and axons for successful axon regeneration

    Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy

    Full text link
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Human Molecular Genetics following peer review. The version of record Human Molecular Genetics 22.16 (2013): 3296-3305 is available online at http://hmg.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=23604518X-linked adrenoleukodystrophy (X-ALD) is an inherited metabolic disorder of the nervous system characterized by axonopathy in spinal cords and/or cerebral demyelination, adrenal insufficiency and accumulation of very long-chain fatty acids (VLCFAs) in plasma and tissues. The disease is caused by malfunction of the ABCD1 gene, which encodes a peroxisomal transporter of VLCFAs or VLCFA-CoA. In the mouse, Abcd1 loss causes late onset axonal degeneration in the spinal cord, associated with locomotor disability resembling the most common phenotype in patients, adrenomyeloneuropathy. We have formerly shown that an excess of the VLCFA C26:0 induces oxidative damage, which underlies the axonal degeneration exhibited by the Abcd1(-) mice. In the present study, we sought to investigate the noxious effects of C26:0 on mitochondria function. Our data indicate that in X-ALD patients' fibroblasts, excess of C26:0 generates mtDNA oxidation and specifically impairs oxidative phosphorylation (OXPHOS) triggering mitochondrial ROS production from electron transport chain complexes. This correlates with impaired complex V phosphorylative activity, as visualized by high-resolution respirometry on spinal cord slices of Abcd1(-) mice. Further, we identified a marked oxidation of key OXPHOS system subunits in Abcd1(-) mouse spinal cords at presymptomatic stages. Altogether, our results illustrate some of the mechanistic intricacies by which the excess of a fatty acid targeted to peroxisomes activates a deleterious process of oxidative damage to mitochondria, leading to a multifaceted dysfunction of this organelle. These findings may be of relevance for patient management while unveiling novel therapeutic targets for X-ALDThis study was supported by grants from the European Commission (FP7-241622), the European Leukodystrophy Association (ELA2009-036C5; ELA2008-040C4), the Spanish Institute for Health Carlos III (FIS PI080991 and FIS PI11/01043), the Autonomous Government of Catalonia (2009SGR85) to A.P. and the Spanish Institute for Health Carlos III (Miguel Servet program CP11/00080) to S.F. The CIBER on Rare Diseases (CIBERER) is an initiative of the ISCIII. The study was developed under the COST action BM0604 (to A.P.). J.L.-E. was a fellow of the Department of Education, Universities and Research of the Basque Country Government (BFI07.126). S.F. was a fellow of the European Leukodystrophy Association (ELA 2010-020F1). The studies conducted at the Department of Experimental Medicine were supported in part by R&D grants from the Spanish Ministry of Science and Innovation (BFU2009-11879/BFI), the Spanish Ministry of Health (PI11/1532), the Autonomous Government of Catalonia (2009SGR735), the ‘La Caixa’ Foundation and COST B35 Action of the European Union. D.C. is a fellow from the Spanish Ministry of Health (FI08-00707). The studies conducted at the Department of Biochemistry and Molecular Biology, University of Barcelona, were supported by grants SAF2008-01896 and SAF2011-23636 from the Spanish Ministry of Science and Innovatio

    Immune or genetic-mediated disruption of CASPR2 causes pain hypersensitivity due to enhanced primary afferent excitability

    Get PDF
    Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2 ) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2 mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability

    Immune or Genetic-Mediated Disruption of CASPR2 Causes Pain Hypersensitivity Due to Enhanced Primary Afferent Excitability

    Get PDF
    Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2-/-) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2-/-mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability

    Immune or genetic-mediated disruption of CASPR2 causes pain hypersensitivity due to enhanced primary afferent excitability

    Get PDF
    Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2(-/-)) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2(-/-) mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability

    Serratus plane block: a novel ultrasound-guided thoracic wall nerve block

    No full text
    We present a novel ultrasound-guided regional anaesthetic technique that may achieve complete paraesthesia of the hemithorax. This technique may be a viable alternative to current regional anaesthetic techniques such as thoracic paravertebral and central neuraxial blockade, which can be technically more challenging and have a higher potential side-effect profile. We performed the serratus block at two different levels in the midaxillary line on four female volunteers. We recorded the degree of paraesthesia obtained and performed fat-suppression magnetic resonance imaging and three-dimensional reconstructions of the spread of local anaesthetic in the serratus plane. All volunteers reported an effective block that provided long-lasting paraesthesia (750-840min). There were no side-effects noted in this initial descriptive study. While these are preliminary findings, and must be confirmed in a clinical trial, they highlight the potential for the serratus plane block to provide analgesia following surgery on the thoracic wall. We suggest that this novel approach appears to be safe, effective, and easy to perform, and is associated with a low risk of side-effects

    Membrane metallo‐endopeptidase is dispensable for repair after nerve injury

    No full text
    Membrane metallo‐endopeptidase (MME), also known as neprilysin (NEP), has been of interest for its role in neurodegeneration and pain due to its ability to degrade ÎČ‐amyloid and substance‐P, respectively. In addition to its role in the central nervous system, MME has been reported to be expressed in the peripheral system, specifically in the inner and outer border of myelinating fibers, in the Schmidt‐Lantermann cleft and in the paranodes. Recently, mutations of this gene have been associated with Charcot‐Marie‐Tooth Type 2 (CMT2). Peripheral nerve morphometry in mice lacking MME previously showed minor abnormalities in aged animals in comparison to CMT2 patients. We found that MME expression was dysregulated after nerve injury in a Neuregulin‐1 dependent fashion. We therefore explored the hypothesis that MME may have a role in remyelination. In the naĂŻve state in adulthood we did not find any impairment in myelination in MME KO mice. After nerve injury the morphological outcome in MME KO mice was indistinguishable from WT littermates in terms of axon regeneration and remyelination. We did not find any difference in functional motor recovery. There was a significant difference in sensory function, with MME KO mice starting to recover response to mechanical stimuli earlier than WT. The epidermal reinnnervation, however, was unchanged and this altered sensitivity may relate to its known function in cleaving the peptide substance‐P, known to sensitise nociceptors. In conclusion, although MME expression is dysregulated after nerve injury in a NRG1‐dependent manner this gene is dispensable for axon regeneration and remyelination after injury

    ErbB receptor signaling directly controls oligodendrocyte progenitor cell transformation and spontaneous remyelination after spinal cord injury

    No full text
    We recently discovered a novel role for neuregulin‐1 (Nrg1) signaling in mediating spontaneous regenerative processes and functional repair after spinal cord injury (SCI). We revealed that Nrg1 is the molecular signal responsible for spontaneous functional remyelination of dorsal column axons by peripheral nervous system (PNS)‐like Schwann cells after SCI. Here, we investigate whether Nrg1/ErbB signaling controls the unusual transformation of centrally derived progenitor cells into these functional myelinating Schwann cells after SCI using a fate‐mapping/lineage tracing approach. Specific ablation of Nrg1‐ErbB receptors in central platelet‐derived growth factor receptor alpha (PDGFRα)‐derived lineage cells (using PDGFRαCreERT2/Tomato‐red reporter mice crossed with ErbB3fl/fl/ErbB4fl/fl mice) led to a dramatic reduction in P0‐positive remyelination in the dorsal columns following spinal contusion injury. Central myelination, assessed by Olig2 and proteolipid protein expression, was unchanged. Loss of ErbB signaling in PDGFRα lineage cells also significantly impacted the degree of spontaneous locomotor recovery after SCI, particularly in tests dependent on proprioception. These data have important implications, namely (a) cells from the PDGFRα‐expressing progenitor lineage (which are presumably oligodendrocyte progenitor cells, OPCs) can differentiate into remyelinating PNS‐like Schwann cells after traumatic SCI, (b) this process is controlled by ErbB tyrosine kinase signaling, and (c) this endogenous repair mechanism has significant consequences for functional recovery after SCI. Thus, ErbB tyrosine kinase receptor signaling directly controls the transformation of OPCs from the PDGFRα‐expressing lineage into PNS‐like functional remyelinating Schwann cells after SCI

    Sustained MAPK/ERK activation in adult Schwann cells impairs nerve repair

    No full text
    The MAPK/ERK pathway has a critical role in PNS development. It is required for Schwann cell (SC) differentiation and myelination; sustained embryonic MAPK/ERK activation in SCs enhances myelin growth overcoming signals that normally end myelination. Excess activation of this pathway can be maladaptive as in adulthood acute strong activation of MAPK/ERK has been shown to cause SC dedifferentiation and demyelination. We used a mouse model (including male and female animals) in which gain of function Mek1DD allele produces sustained MAPK/ERK activation in adult SCs and we determined the impact of such activation on nerve repair. In the uninjured nerve, MAPK/ERK activation neither impaired myelin nor did it re-activate myelination. However, in the injured nerve it was detrimental and resulted in delayed repair and functional recovery. In the early phase of injury the rate of myelin clearance was faster. Four weeks following injury, when nerve repair is normally advanced, myelinated axons of Mek1DD mutants demonstrated higher rates of myelin decompaction, a reduced number of Cajal bands and decreased internodal length. We noted the presence of abnormal Remak bundles with long SCs processes and reduced numbers of C-fibres/Remak bundle. Both the total number of regenerating axons and the intra-epidermal nerve fibres density in the skin were reduced. Sustained activation of MAPK/ERK in adult SCs is therefore deleterious to successful nerve repair, emphasising the differences in the signalling processes coordinating nerve development and repair. Our results also underline the key role of SCs in axon regeneration and successful target reinnervation
    • 

    corecore