436 research outputs found
Isospin diffusion in semi-peripheral + collisions at intermediate energies (I): Experimental results
Isospin diffusion in semi-peripheral collisions is probed as a function of
the dissipated energy by studying two systems + and
+ , over the incident energy range 52-74\AM. A close
examination of the multiplicities of light products in the forward part of
phase space clearly shows an influence of the isospin of the target on the
neutron richness of these products. A progressive isospin diffusion is observed
when collisions become more central, in connection with the interaction time
Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems
We report experimental signals of Bose-Einstein condensation in the decay of
hot Ca projectile-like sources produced in mid-peripheral collisions at
sub-Fermi energies. The experimental setup, constituted by the coupling of the
INDRA 4 detector array to the forward angle VAMOS magnetic spectrometer,
allowed us to reconstruct the mass, charge and excitation energy of the
decaying hot projectile-like sources. Furthermore, by means of quantum
fluctuation analysis techniques, temperatures and mean volumes per particle "as
seen by" bosons and fermions separately are correlated to the excitation energy
of the reconstructed system. The obtained results are consistent with the
production of dilute mixed (bosons/fermions) systems, where bosons experience a
smaller volume as compared to the surrounding fermionic gas. Our findings
recall similar phenomena observed in the study of boson condensates in atomic
traps.Comment: Submitted to Phys. Rev. Lett. (december 2014
Isospin Diffusion in Ni-Induced Reactions at Intermediate Energies
Isospin diffusion is probed as a function of the dissipated energy by
studying two systems Ni+Ni and Ni+Au, over the
incident energy range 52-74\AM. Experimental data are compared with the results
of a microscopic transport model with two different parameterizations of the
symmetry energy term. A better overall agreement between data and simulations
is obtained when using a symmetry term with a potential part linearly
increasing with nuclear density. The isospin equilibration time at 52 \AM{} is
estimated to 13010 fm/
Constrained caloric curves and phase transition for hot nuclei
Simulations based on experimental data obtained from multifragmenting
quasi-fused nuclei produced in central Xe + Sn collisions have
been used to deduce event by event freeze-out properties in the thermal
excitation energy range 4-12 AMeV [Nucl. Phys. A809 (2008) 111]. From these
properties and the temperatures deduced from proton transverse momentum
fluctuations, constrained caloric curves have been built. At constant average
volumes caloric curves exhibit a monotonic behaviour whereas for constrained
pressures a backbending is observed. Such results support the existence of a
first order phase transition for hot nuclei.Comment: 14 pages, 5 figures, accepted in Physics Letters
The prominent role of the heaviest fragment in multifragmentation and phase transition for hot nuclei
The role played by the heaviest fragment in partitions of multifragmenting
hot nuclei is emphasized. Its size/charge distribution (mean value,
fluctuations and shape) gives information on properties of fragmenting nuclei
and on the associated phase transition.Comment: 11 pages, Proceedings of IWND09, August 23-25, Shanghai (China
Coulomb chronometry to probe the decay mechanism of hot nuclei
In 129 Xe+ nat Sn central collisions from 8 to 25 MeV/A, the three-fragment
exit channel occurs with a significant cross section. We show that these
fragments arise from two successive binary splittings of a heavy composite
system. The sequence of fragment production is determined. Strong Coulomb
proximity effects are observed in the three-fragment final state. A comparison
with Coulomb trajec-tory calculations shows that the time scale between the
consecutive break-ups decreases with increasing bombarding energy, becoming
quasi-simultaneous above excitation energy E * = 4.00.5 MeV/A. This
transition from sequential to simultaneous break-up was interpreted as the
signature of the onset of multifragmentation for the three-fragment exit
channel in this system.Comment: 12 pages; 13 Figures; 4 Table; Accepted for publication in Physical
Review
Dynamical effects in multifragmentation at intermediate energies
The fragmentation of the quasi-projectile is studied with the INDRA
multidetector for different colliding systems and incident energies in the
Fermi energy range. Different experimental observations show that a large part
of the fragmentation is not compatible with the statistical fragmentation of a
fully equilibrated nucleus. The study of internal correlations is a powerful
tool, especially to evidence entrance channel effects. These effects have to be
included in the theoretical descriptions of nuclear multifragmentation.Comment: 13 pages, 26 figures, submitted to Physical Review
Multiplicity correlations of intermediate-mass fragments with pions and fast protons in 12C + 197Au
Low-energy pi+ (E < 35 MeV) from 12C+197Au collisions at incident energies
from 300 to 1800 MeV per nucleon were detected with the Si-Si(Li)-CsI(Tl)
calibration telescopes of the INDRA multidetector. The inclusive angular
distributions are approximately isotropic, consistent with multiple
rescattering in the target spectator. The multiplicity correlations of the
low-energy pions and of energetic protons (E > 150 MeV) with intermediate-mass
fragments were determined from the measured coincidence data. The deduced
correlation functions 1 + R \approx 1.3 for inclusive event samples reflect the
strong correlations evident from the common impact-parameter dependence of the
considered multiplicities. For narrow impact-parameter bins (based on
charged-particle multiplicity), the correlation functions are close to unity
and do not indicate strong additional correlations. Only for pions at high
particle multiplicities (central collisions) a weak anticorrelation is
observed, probably due to a limited competition between these emissions.
Overall, the results are consistent with the equilibrium assumption made in
statistical multifragmentation scenarios. Predictions obtained with
intranuclear cascade models coupled to the Statistical Multifragmentation Model
are in good agreement with the experimental data.Comment: 9 pages, 11 figures, subm. to EPJ
Projected Quasi-particle Perturbation theory
The BCS and/or HFB theories are extended by treating the effect of four
quasi-particle states perturbatively. The approach is tested on the pairing
hamiltonian, showing that it combines the advantage of standard perturbation
theory valid at low pairing strength and of non-perturbative approaches
breaking particle number valid at higher pairing strength. Including the
restoration of particle number, further improves the description of pairing
correlation. In the presented test, the agreement between the exact solution
and the combined perturbative + projection is almost perfect. The proposed
method scales friendly when the number of particles increases and provides a
simple alternative to other more complicated approaches
- …