844 research outputs found
On the 3D steady flow of a second grade fluid past an obstacle
We study steady flow of a second grade fluid past an obstacle in three space
dimensions. We prove existence of solution in weighted Lebesgue spaces with
anisotropic weights and thus existence of the wake region behind the obstacle.
We use properties of the fundamental Oseen tensor together with results
achieved in \cite{Koch} and properties of solutions to steady transport
equation to get up to arbitrarily small \ep the same decay as the Oseen
fundamental solution
Architectural self-fabrication
The paper will focus on the role of computational design and digital fabrication in the processes of urban and architectural self-regeneration of existing infrastructures and buildings. The Architectural Fabrication research agenda takes inspiration from some of the concepts mentioned in Christopher Alexander’s essay ‘Systems generating systems’ (1968). It aims at introducing ways in which systems thinking and computer aided manufacturing can be most directly applied to the built environment. Hacking architectural spaces, by evolving their genetic spatial and structural codes, is developing the idea of optimizing resources involving inhabitants rather than generating other top down architectural solutions. During the last decades (starting from the book of Mario Carpo, ‘The Digital Turn in Architecture’) the digital shift in architectural design has generated a new discipline with the aim to define an innovative way to bridge the notion of nature with the one of teknè. From such a cultural milieu many research agenda were focusing on the concepts of morphogenesis and evolutionary thinking inspired by the work of French philosophers Gilles Deleuze and Felix Guattari based on the theory of complex systems. Despite this interest in bridging an evolutionary approach with the notion of emergent technologies in architecture (well described in the book ‘The Architecture of Emergence’ of Michael Weinstock) only a very few researchers have investigated on the potential of computational design as a driver for the ecological rehabilitation of existing infrastructures. As a matter of fact, the computational designers were so worried to claim for a new aesthetical identity of their discipline while a new opportunity was emerging for applying this evolutionary approach in order to hack existing structures. The idea of living infrastructures is related to the possibility of developing contextual algorithms in order to customize standard solutions with a post-human process that creates diversified spatial configurations out of very rigid organizational systems. Therefore, the paper will also talk about the Hacking Gomorra project as a possible paradigm of experimenting a 3D printing protocol for the environmental rehabilitation of a mega-structural housing building in Naples (Italy)
Asymptotic expansion of the solution of the steady Stokes equation with variable viscosity in a two-dimensional tube structure
The Stokes equation with the varying viscosity is considered in a thin tube
structure, i.e. in a connected union of thin rectangles with heights of order
and with bases of order 1 with smoothened boundary. An
asymptotic expansion of the solution is constructed: it contains some
Poiseuille type flows in the channels (rectangles) with some boundary layers
correctors in the neighborhoods of the bifurcations of the channels. The
estimates for the difference of the exact solution and its asymptotic
approximation are proved.Comment: 22 pages, 20 figure
A goal programming methodology for multiobjective optimization of distributed energy hubs operation
This paper addresses the problem of optimal energy flow management in multicarrier energy networks
in the presence of interconnected energy hubs. The overall problem is here formalized by a nonlinear
constrained multiobjective optimization problem and solved by a goal attainment based methodology.
The application of this solution approach allows the analyst to identify the optimal operation state of the
distributed energy hubs which ensures an effective and reliable operation of the multicarrier energy
network in spite of large variations of load demands and energy prices. Simulation results obtained on
the 30 bus IEEE test network are presented and discussed in order to demonstrate the significance and
the validity of the proposed method
Mode Confinement in Photonic Quasi-Crystal Point-Defect Cavities for Particle Accelerators
In this Letter, we present a study of the confinement properties of
point-defect resonators in finite-size photonic-bandgap structures composed of
aperiodic arrangements of dielectric rods, with special emphasis on their use
for the design of cavities for particle accelerators. Specifically, for
representative geometries, we study the properties of the fundamental mode (as
a function of the filling fraction, structure size, and losses) via 2-D and 3-D
full-wave numerical simulations, as well as microwave measurements at room
temperature. Results indicate that, for reduced-size structures, aperiodic
geometries exhibit superior confinement properties by comparison with periodic
ones.Comment: 4 pages, 4 figures, accepted for publication in Applied Physics
Letter
Evaluation of fiber-optic phase-gradient meta-tips for sensing applications
Recently, within the emerging framework of "lab-on-fiber" technologies, we successfully demonstrated the integration of phase-gradient plasmonic metasurfaces on the tip of an optical fiber. The res..
Analytical Study of Sub-Wavelength Imaging by Uniaxial Epsilon-Near-Zero Metamaterial Slabs
We discuss the imaging properties of uniaxial epsilon-near-zero metamaterial
slabs with possibly tilted optical axis, analyzing their sub-wavelength
focusing properties as a function of the design parameters. We derive in closed
analytical form the associated two-dimensional Green's function in terms of
special cylindrical functions. For the near-field parameter ranges of interest,
we are also able to derive a small-argument approximation in terms of simpler
analytical functions. Our results, validated and calibrated against a full-wave
reference solution, expand the analytical tools available for
computationally-efficient and physically-incisive modeling and design of
metamaterial-based sub-wavelength imaging systems.Comment: 25 pages, 9 figures (modifications in the text; two figures and
several references added
Maladaptation in an unequal world: an evolutionary model with heterogeneous agents
Maladaptation is steadily increasing its presence in agenda and debates about climate change and its impacts. The term denotes actions undertaken, at the individual or collective level, to defend against the adverse effects of climate change or environmental degradation, but that ultimately exacerbate the underlying risk factors. In this paper, we investigate the effects of maladaptation in terms of well-being and inequality in a two-population (North-South) evolutionary model. While agents in the South often face higher vulnerability to environmental degradation and limited defense mechanisms compared to their Northern counterparts, the latter stand to endure greater economic losses, in absolute terms. Our model demonstrates that the diffusion of maladaptive choices could result in a Pareto-dominated steady state, influencing inequality levels positively or negatively based on the scale of maladaptation impacts relative to the existing environmental degradation. These findings stress the imperative of integrating environmental risk studies with maladaptive effects and dynamics. Additionally, they advocate for international discourse not only on climate change mitigation but also on adaptive measures among countries
Charge density waves enhance the electronic noise of manganites
The transport and noise properties of Pr_{0.7}Ca_{0.3}MnO_{3} epitaxial thin
films in the temperature range from room temperature to 160 K are reported. It
is shown that both the broadband 1/f noise properties and the dependence of
resistance on electric field are consistent with the idea of a collective
electrical transport, as in the classical model of sliding charge density
waves. On the other hand, the observations cannot be reconciled with standard
models of charge ordering and charge melting. Methodologically, it is proposed
to consider noise-spectra analysis as a unique tool for the identification of
the transport mechanism in such highly correlated systems. On the basis of the
results, the electrical transport is envisaged as one of the most effective
ways to understand the nature of the insulating, charge-modulated ground states
in manganites.Comment: 6 two-column pages, 5 figure
Multiple double-exchange mechanism by Mn-doping in manganite compounds
Double-exchange mechanisms in REAEMnO manganites (where
RE is a trivalent rare-earth ion and AE is a divalent alkali-earth ion) relies
on the strong exchange interaction between two Mn and Mn ions
through interfiling oxygen 2p states. Nevertheless, the role of RE and AE ions
has ever been considered "silent" with respect to the DE conducting mechanisms.
Here we show that a new path for DE-mechanism is indeed possible by partially
replacing the RE-AE elements by Mn-ions, in La-deficient
LaMnO thin films. X-ray absorption spectroscopy demonstrated
the relevant presence of Mn ions, which is unambiguously proved to be
substituted at La-site by Resonant Inelastic X-ray Scattering. Mn is
proved to be directly correlated to the enhanced magneto-transport properties
because of an additional hopping mechanism trough interfiling Mn-ions,
theoretically confirmed by calculations within the effective single band model.
The very idea to use Mn both as a doping element and an ions
electronically involved in the conduction mechanism, has never been foreseen,
revealing a new phenomena in transport properties of manganites. More
important, such a strategy might be also pursed in other strongly correlated
materials.Comment: 6 pages, 5 figure
- …