26 research outputs found

    Cardioprotective effect of the short-acting beta-blocker esmolol in experimental ischemia/reperfusion.

    Get PDF
    This study was funded by a grant from the Spanish Society of Cardiology “Investigación Traslacional 2017”. J.N. is a recipient of a predoctoral grant “Jordi Soler Soler” from the CIBERCV. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence.S

    Fast T2 gradient-spin-echo (T2-GraSE) mapping for myocardial edema quantification: first in vivo validation in a porcine model of ischemia/reperfusion

    Get PDF
    Background: Several T2-mapping sequences have been recently proposed to quantify myocardial edema by providing T2 relaxation time values. However, no T2-mapping sequence has ever been validated against actual myocardial water content for edema detection. In addition, these T2-mapping sequences are either time-consuming or require specialized software for data acquisition and/or post-processing, factors impeding their routine clinical use. Our objective was to obtain in vivo validation of a sequence for fast and accurate myocardial T2-mapping (T2 gradient-spin-echo [GraSE]) that can be easily integrated in routine protocols. Methods: The study population comprised 25 pigs. Closed-chest 40 min ischemia/reperfusion was performed in 20 pigs. Pigs were sacrificed at 120 min (n = 5), 24 h (n = 5), 4 days (n = 5) and 7 days (n = 5) after reperfusion, and heart tissue extracted for quantification of myocardial water content. For the evaluation of T2 relaxation time, cardiovascular magnetic resonance (CMR) scans, including T2 turbo-spin-echo (T2-TSE, reference standard) mapping and T2-GraSE mapping, were performed at baseline and at every follow-up until sacrifice. Five additional pigs were sacrificed after baseline CMR study and served as controls. Results: Acquisition of T2-GraSE mapping was significantly (3-fold) faster than conventional T2-TSE mapping. Myocardial T2 relaxation measurements performed by T2-TSE and T2-GraSE mapping demonstrated an almost perfect correlation (R-2 = 0.99) and agreement with no systematic error between techniques. The two T2-mapping sequences showed similarly good correlations with myocardial water content: R-2 = 0.75 and R-2 = 0.73 for T2-TSE and T2-GraSE mapping, respectively. Conclusions: We present the first in vivo validation of T2-mapping to assess myocardial edema. Given its shorter acquisition time and no requirement for specific software for data acquisition or post-processing, fast T2-GraSE mapping of the myocardium offers an attractive alternative to current CMR sequences for T2 quantification.This work was supported by a competitive grant from the Ministry of Economy and Competitiveness (MINECO) through the Carlos III Institute of Health -Fondo de Investigacion Sanitaria (PI13/01979)-, the Fondo Europeo de Desarrollo Regional (FEDER, RD: SAF2013-49663-EXP), and in part by the FP7-PEOPLE-2013-ITN Next generation training in cardiovascular research and innovation-Cardionext. Rodrigo Fernandez-Jimenez is recipient of a Rio Hortega fellowship from the Ministry of Economy and Competitiveness through the Instituto de Salud Carlos III, and a FICNIC fellowship from the Fundacio Jesus Serra, the Fundacion Interhospitalaria de Investigacion Cardiovascular (FIC) and the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC). Javier Sanchez-Gonzalez is an employee of Philips Healthcare. Jaume Aguero is a FP7-PEOPLE-2013-ITN-Cardionext fellow. Carlos Galan-Arriola is recipient of a ``Contrato Predoctoral de Formacion en Investigacion en Salud (PFIS), FI14/00356´´. This study forms part of a Master Research Agreement (MRA) between CNIC and Philips Healthcare. Borja Ibanez is supported by the Red de Investigacion Cardiovascular (RIC) of the Spanish Ministry of Health (RD 12/0042/0054). The CNIC is supported by the Spanish Ministry of Economy and Competitiveness and the Pro-CNIC Foundation.S

    Single breath-hold saturation recovery 3D cardiac T1 mapping via compressed SENSE at 3T.

    Get PDF
    To propose and validate a novel imaging sequence that uses a single breath-hold whole-heart 3D T1 saturation recovery compressed SENSE rapid acquisition (SACORA) at 3T. The proposed sequence combines flexible saturation time sampling, compressed SENSE, and sharing of saturation pulses between two readouts acquired at different RR intervals. The sequence was compared with a 3D saturation recovery single-shot acquisition (SASHA) implementation with phantom and in vivo experiments (pre and post contrast; 7 pigs) and was validated against the reference inversion recovery spin echo (IR-SE) sequence in phantom experiments. Phantom experiments showed that the T1 maps acquired by 3D SACORA and 3D SASHA agree well with IR-SE. In vivo experiments showed that the pre-contrast and post-contrast T1 maps acquired by 3D SACORA are comparable to the corresponding 3D SASHA maps, despite the shorter acquisition time (15s vs. 188s, for a heart rate of 60 bpm). Mean septal pre-contrast T1 was 1453 ± 44 ms with 3D SACORA and 1460 ± 60 ms with 3D SASHA. Mean septal post-contrast T1 was 824 ± 66 ms and 824 ± 60 ms. 3D SACORA acquires 3D T1 maps in 15 heart beats (heart rate, 60 bpm) at 3T. In addition to its short acquisition time, the sequence achieves good T1 estimation precision and accuracy.TFdS has received funding from the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement N722427. CGA is a P-FIS fellow (Instituto deSalud Carlos III). This study was partially supported by the Comunidad de Madrid (S2017/BMD-3867 RENIM-CM) and cofunded with European structural and investment funds. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia, Innovación y Universidades (MCNU) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models

    Get PDF
    AIMS: Cardiac optical mapping is the gold standard for measuring complex electrophysiology in ex vivo heart preparations. However, new methods for optical mapping in vivo have been elusive. We aimed at developing and validating an experimental method for performing in vivo cardiac optical mapping in pig models. METHODS AND RESULTS: First, we characterized ex vivo the excitation-ratiometric properties during pacing and ventricular fibrillation (VF) of two near-infrared voltage-sensitive dyes (di-4-ANBDQBS/di-4-ANEQ(F)PTEA) optimized for imaging blood-perfused tissue (n = 7). Then, optical-fibre recordings in Langendorff-perfused hearts demonstrated that ratiometry permits the recording of optical action potentials (APs) with minimal motion artefacts during contraction (n = 7). Ratiometric optical mapping ex vivo also showed that optical AP duration (APD) and conduction velocity (CV) measurements can be accurately obtained to test drug effects. Secondly, we developed a percutaneous dye-loading protocol in vivo to perform high-resolution ratiometric optical mapping of VF dynamics (motion minimal) using a high-speed camera system positioned above the epicardial surface of the exposed heart (n = 11). During pacing (motion substantial) we recorded ratiometric optical signals and activation via a 2D fibre array in contact with the epicardial surface (n = 7). Optical APs in vivo under general anaesthesia showed significantly faster CV [120 (63-138) cm/s vs. 51 (41-64) cm/s; P = 0.032] and a statistical trend to longer APD90 [242 (217-254) ms vs. 192 (182-233) ms; P = 0.095] compared with ex vivo measurements in the contracting heart. The average rate of signal-to-noise ratio (SNR) decay of di-4-ANEQ(F)PTEA in vivo was 0.0671 ± 0.0090 min-1. However, reloading with di-4-ANEQ(F)PTEA fully recovered the initial SNR. Finally, toxicity studies (n = 12) showed that coronary dye injection did not generate systemic nor cardiac damage, although di-4-ANBDQBS injection induced transient hypotension, which was not observed with di-4-ANEQ(F)PTEA. CONCLUSIONS: In vivo optical mapping using voltage ratiometry of near-infrared dyes enables high-resolution cardiac electrophysiology in translational pig models.The CNIC is supported by the Ministry of Science, Innovation and Universities and the Pro CNIC Foundation. The CNIC is a Severo Ochoa Center of Excellence (SEV-2015-0505). This study was supported by grants from Fondo Europeo de Desarrollo Regional (CB16/11/00458), the Spanish Ministry of Science, Innovation and Universities (SAF2016-80324-R, PI16/02110, and DTS17/00136), and by the European Commission (ERA-CVD Joint Call [JTC2016/APCIN-ISCIII-2016], grant#AC16/00021). The study was also partially supported by the Fundacio´n Interhospitalaria para la Investigacio´n Cardiovascular (FIC) and the Heart Rhythm section of the Spanish Society of Cardiology. The work at the University of Connecticut was supported by grant EB001963 from the National Institutes of Health.S

    R2 prime (R2') magnetic resonance imaging for post-myocardial infarction intramyocardial haemorrhage quantification.

    Get PDF
    To assess whether R2* is more accurate than T2* for the detection of intramyocardial haemorrhage (IMH) and to evaluate whether T2' (or R2') is less affected by oedema than T2* (R2*), and thus more suitable for the accurate identification of post-myocardial infarction (MI) IMH. Reperfused anterior MI was performed in 20 pigs, which were sacrificed at 120 min, 24 h, 4 days, and 7 days. At each time point, cardiac magnetic resonance (CMR) T2- and T2*-mapping scans were recorded, and myocardial tissue samples were collected to quantify IMH and myocardial water content. After normalization by the number of red blood cells in remote tissue, histological IMH increased 5.2-fold, 10.7-fold, and 4.1-fold at Days 1, 4, and 7, respectively. The presence of IMH was correlated more strongly with R2* (r = 0.69; P = 0.013) than with T2* (r = -0.50; P = 0.085). The correlation with IMH was even stronger for R2' (r = 0.72; P = 0.008). For myocardial oedema, the correlation was stronger for R2* (r = -0.63; P = 0.029) than for R2' (r = -0.50; P = 0.100). Multivariate linear regressions confirmed that R2* values were significantly explained by both IMH and oedema, whereas R2' values were mostly explained by histological IMH (P = 0.024) and were little influenced by myocardial oedema (P = 0.262). Using CMR mapping with histological validation in a pig model of reperfused MI, R2'more accurately detected IMH and was less influenced by oedema than R2* (and T2*). Further studies are needed to elucidate whether R2' is also better suited for the characterization of post-MI IMH in the clinical setting.This study was partially supported by a competitive grant from the Carlos III Institute of Health-Fondo de Investigacion Sanitaria and the European Regional Development Fund (ERDF/FEDER) (PI16/02110), the Spanish Ministry of Science, Innovation and Universities (MICIU), ERDF/FEDER SAF2013-49663-EXP, by the Comunidad de Madrid (S2017/BMD-3867 RENIM-CM) and cofunded with European structural and investment funds. This study forms part of a Master Research Agreement between the CNIC and Philips Healthcare. This research program is part of an institutional agreement between FIIS Fundacion Jimenez Diaz and the CNIC. The CNIC is supported by the Ministry of Science, Innovation and Universities MICIU the Instituto de Salud Carlos III (ISCiii), and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (award SEV-2015-0505). X.R. has received support from the DYSEC-CNIC CARDIOJOVEN fellowship program. R.F.-J. is a recipient of funding from the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie (Agreement No. 707642).S

    Metoprolol blunts the time-dependent progression of infarct size.

    Get PDF
    Early metoprolol administration protects against myocardial ischemia-reperfusion injury, but its effect on infarct size progression (ischemic injury) is unknown. Eight groups of pigs (total n = 122) underwent coronary artery occlusion of varying duration (20, 25, 30, 35, 40, 45, 50, or 60 min) followed by reperfusion. In each group, pigs were randomized to i.v. metoprolol (0.75 mg/kg) or vehicle (saline) 20 min after ischemia onset. The primary outcome measure was infarct size (IS) on day7 cardiac magnetic resonance (CMR) normalized to area at risk (AAR, measured by perfusion computed tomography [CT] during ischemia). Metoprolol treatment reduced overall mortality (10% vs 26%, p = 0.03) and the incidence and number of primary ventricular fibrillations during infarct induction. In controls, IS after 20-min ischemia was ≈ 5% of the area AAR. Thereafter, IS progressed exponentially, occupying almost all the AAR after 35 min of ischemia. Metoprolol injection significantly reduced the slope of IS progression (p = 0.004 for final IS). Head-to-head comparison (metoprolol treated vs vehicle treated) showed statistically significant reductions in IS at 30, 35, 40, and 50-min reperfusion. At 60-min reperfusion, IS was 100% of AAR in both groups. Despite more prolonged ischemia, metoprolol-treated pigs reperfused at 50 min had smaller infarcts than control pigs undergoing ischemia for 40 or 45 min and similar-sized infarcts to those undergoing 35-min ischemia. Day-45 LVEF was higher in metoprolol-treated vs vehicle-treated pigs (41.6% vs 36.5%, p = 0.008). In summary, metoprolol administration early during ischemia attenuates IS progression and reduces the incidence of primary ventricular fibrillation. These data identify metoprolol as an intervention ideally suited to the treatment of STEMI patients identified early in the course of infarction and requiring long transport times before primary angioplasty.This study received funding from the Ministry of Science and Innovation (“RETOS 2019” Grant no. PID2019-107332RB-I00), from the Instituto de Salud Carlos III (ISCIII; PI16/02110) and the European Regional Development Fund (ERDF) “A way of making Europe” (# AC16/00021), and from the Spanish Society of Cardiology through a 2017 Translational Research grant. BI has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC-Consolidator Grant agreement no. 819775). M.L received support from a 2015 Severo Ochoa CNIC intramural grant. X.R. received support from the SEC-CNIC CARDIOJOVEN fellowship program. R.F-J is a recipient of funding from the Carlos III Institute of Health-Fondo de Investigacion Sanitaria (PI19/01704) and has received funding from the European Union Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No 707642. EO is recipient of funds from Programa de Atracción de Talento (2017-T1/BMD-5185) of Comunidad de Madrid. The CNIC is supported by the ISCIII, the Ministerio de Ciencia e Innovación (MICINN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    Dynamic Edematous Response of the Human Heart to Myocardial Infarction Implications for Assessing Myocardial Area at Risk and Salvage

    Get PDF
    BACKGROUND: Clinical protocols aimed to characterize the post-myocardial infarction (MI) heart by cardiac magnetic resonance (CMR) need to be standardized to take account of dynamic biological phenomena evolving early after the index ischemic event. Here, we evaluated the time course of edema reaction in patients with ST-segment-elevation MI by CMR and assessed its implications for myocardium-at-risk (MaR) quantification both in patients and in a large-animal model. METHODS: A total of 16 patients with anterior ST-segment-elevation MI successfully treated by primary angioplasty and 16 matched controls were prospectively recruited. In total, 94 clinical CMR examinations were performed: patients with ST-segment-elevation MI were serially scanned (within the first 3 hours after reperfusion and at 1, 4, 7, and 40 days), and controls were scanned only once. T2 relaxation time in the myocardium (T2 mapping) and the extent of edema on T2-weighted short-tau triple inversion-recovery (ie, CMR-MaR) were evaluated at all time points. In the experimental study, 20 pigs underwent 40-minute ischemia/reperfusion followed by serial CMR examinations at 120 minutes and 1, 4, and 7 days after reperfusion. Reference MaR was assessed by contrast-multidetector computed tomography during the index coronary occlusion. Generalized linear mixed models were used to take account of repeated measurements. RESULTS: In humans, T2 relaxation time in the ischemic myocardium declines significantly from early after reperfusion to 24 hours, and then increases up to day 4, reaching a plateau from which it decreases from day 7. Consequently, edema extent measured by T2-weighted short-tau triple inversion-recovery (CMR-MaR) varied with the timing of the CMR examination. These findings were confirmed in the experimental model by showing that only CMR-MaR values for day 4 and day 7 postreperfusion, coinciding with the deferred edema wave, were similar to values measured by reference contrast-multidetector computed tomography. CONCLUSIONS: Post-MI edema in patients follows a bimodal pattern that affects CMR estimates of MaR. Dynamic changes in post-ST-segment-elevation MI edema highlight the need for standardization of CMR timing to retrospectively delineate MaR and quantify myocardial salvage. According to the present clinical and experimental data, a time window between days 4 and 7 post-MI seems a good compromise solution for standardization. Further studies are needed to study the effect of other factors on these variables.This study was partially supported by a competitive grant from the Spanish Society of Cardiology (Proyectos de Investigacion Traslacional en Cardiologia de la Sociedad Espanola de Cardiologia 2015, for the project Caracterizacion tiSUlar miocaRdica con resonancia magnetica en pacientes tras inFarto agudo de mioCardio con elevacioN de ST sometidos a angloplastia Coronaria primaria. Estudio SURF-CNIC), by a competitive grant from the Carlos III Institute of Health-Fondo de Investigacion Sanitaria- and the European Regional Development Fund (ERDF/FEDER) (PI10/02268 and PI13/01979), the Spanish Ministry of economy, industry, and competitiveness (MEIC) and ERDF/FEDER SAF2013-49663-EXP. Dr Fernandez-Jimenez holds a FICNIC fellowship from the Fundacio Jesus Serra, the Fundacion Interhospitalaria de Investigacion Cardiovascular, and the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), and Dr Aguero is a FP7-PEOPLE-2013-ITN-Cardionext fellow. This study forms part of a Master Research Agreement between the CNIC and Philips Healthcare, and is part of a bilateral research program between Hospital de Salamanca Cardiology Department and the CNIC. This research program is part of an institutional agreement between FIIS-Fundacion Jimenez Diaz and CNIC. The CNIC is supported by the MEIC and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MEIC award SEV-2015-0505).S

    Intracoronary Administration of Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cells Improves Myocardial Perfusion But Not Left Ventricle Function, in a Translational Model of Acute Myocardial Infarction

    Get PDF
    Background-Autologous adipose tissue-derived mesenchymal stem cells (ATMSCs) therapy is a promising strategy to improve post-myocardial infarction outcomes. In a porcine model of acute myocardial infarction, we studied the long-term effects and the mechanisms involved in allogeneic ATMSCs administration on myocardial performance. Methods and Results-Thirty-eight pigs underwent 50 minutes of coronary occlusion; the study was completed in 33 pigs. After reperfusion, allogeneic ATMSCs or culture medium (vehicle) were intracoronarily administered. Follow-ups were performed at short (2 days after acute myocardial infarction vehicle-treated, n=10; ATMSCs-treated, n=9) or long term (60 days after acute myocardial infarction vehicle-treated, n=7; ATMSCs-treated, n=7). At short term, infarcted myocardium analysis showed reduced apoptosis in the ATMSCs-treated animals (48.6 +/- 6\% versus 55.9 +/- 5.7\% in vehicle; P=0.017); enhancement of the reparative process with up-regulated vascular endothelial growth factor, granulocyte macrophage colony-stimulating factor, and stromal-derived factor-1 alpha gene expression; and increased M2 macrophages (67.2 +/- 10\% versus 54.7 +/- 10.2\% in vehicle; P=0.016). In long-term groups, increase in myocardial perfusion at the anterior infarct border was observed both on day-7 and day-60 cardiac magnetic resonance studies in ATMSCs-treated animals, compared to vehicle (87.9 +/- 28.7 versus 57.4 +/- 17.7 mL/min per gram at 7 days; P=0.034 and 99 +/- 22.6 versus 43.3 +/- 14.7 22.6 mL/min per gram at 60 days; P=0.0001, respectively). At day 60, higher vascular density was detected at the border zone in the ATMSCs-treated animals (118 +/- 18 versus 92.4 +/- 24.3 vessels/mm(2) in vehicle; P=0.045). Cardiac magnetic resonance-measured left ventricular ejection fraction of left ventricular volumes was not different between groups at any time point. Conclusions-In this porcine acute myocardial infarction model, allogeneic ATMSCs-based therapy was associated with increased cardioprotective and reparative mechanisms and with better cardiac magnetic resonance-measured perfusion. No effect on left ventricular volumes or ejection fraction was observed.This work was supported by grants from Fundacion la Marato de TV3 (122230); Fondo de Investigacion Sanitaria Instituto de Salud Carlos III and Fondo Europeo de Desarrollo Regional (FIS PI14/01682), (RD12/0042/0006), (RD12/0042/0047), (RD12/0019/0029) (TerCel RD16/0011/0006), CIBER Cardiovascular (CB16/11/00403) projects and Ministerio de Educacion y Ciencia (SAF2011-30067-C02-01) (SAF2014-59892). Fernaandez-Jimenez was the recipient of nonoverlapping grants from the Ministerio de Economia, Industria, y Competitividad through the Instituto de Salud Carlos III (Rio Hortega fellowship); and the Fundacion Jesus Serra, the Fundacion Interhospitalaria de Investigacion Cardiovascular (FIC), and the CNIC (FICNIC fellowship). The use of QMass software was partly supported by a scientific collaboration between the CNIC and Medis Medical Imaging Systems BV. The CNIC is supported by the Ministerio de Economia, Industria, y Competitividad (MINECO) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505). This work was also funded by ``la Caixa Banking Foundation, and the Generalitat de Catalunya (SGR 2014, CERCA Programme). This work has been developed in the context of AdvanceCat with the support of ACCIO (Catalonia Trade \& Investment; Generalitat de Catalunya) under the Catalonian ERDF operational program (European Regional Development Fund) 2014-2020.S

    Three-dimensional cardiac fibre disorganization as a novel parameter for ventricular arrhythmia stratification after myocardial infarction

    Get PDF
    Aims: Myocardial infarction (MI) alters cardiac fibre organization with unknown consequences on ventricular arrhythmia. We used diffusion tensor imaging (DTI) of three-dimensional (3D) cardiac fibres and scar reconstructions to identify the main parameters associated with ventricular arrhythmia inducibility and ventricular tachycardia (VT) features after MI. Methods and results: Twelve pigs with established MI and three controls underwent invasive electrophysiological characterization of ventricular arrhythmia inducibility and VT features. Animal-specific 3D scar and myocardial fibre distribution were obtained from ex vivo high-resolution contrast-enhanced T1 mapping and DTI sequences. Diffusion tensor imaging-derived parameters significantly different between healthy and scarring myocardium, scar volumes, and left ventricular ejection fraction (LVEF) were included for arrhythmia risk stratification and correlation analyses with VT features. Ventricular fibrillation (VF) was the only inducible arrhythmia in 4 out of 12 infarcted pigs and all controls. Ventricular tachycardia was also inducible in the remaining eight pigs during programmed ventricular stimulation. A DTI-based 3D fibre disorganization index (FDI) showed higher disorganization within dense scar regions of VF-only inducible pigs compared with VT inducible animals (FDI: 0.36; 0.36-0.37 vs. 0.32; 0.26-0.33, respectively, P = 0.0485). Ventricular fibrillation induction required lower programmed stimulation aggressiveness in VF-only inducible pigs than VT inducible and control animals. Neither LVEF nor scar volumes differentiated between VF and VT inducible animals. Re-entrant VT circuits were localized within areas of highly disorganized fibres. Moreover, the FDI within heterogeneous scar regions was associated with the median VT cycle length per animal (R2 = 0.5320). Conclusion: The amount of scar-related cardiac fibre disorganization in DTI sequences is a promising approach for ventricular arrhythmia stratification after MI.The CNIC (Madrid, Spain) is supported by the Ministry of Science, Innovation and Universities and the Pro CNIC Foundation. The CNIC and the BSC (Barcelona, Spain) are Severo Ochoa Centers of Excellence (SEV-2015-0505 and SEV-2011-0067, respectively). This study was supported by grants from Instituto de Salud Carlos III, Fondo Europeo de Desarrollo Regional (RD12/0042/0036, CB16/11/00458), Spanish Ministry of Science, Innovation and Universities (SAF2016-80324-R, PI16/02110, and DTS17/00136), and by the European Commission [ERA-CVD Joint Call (JTC2016/APCIN-ISCIII-2016), grant#AC16/00021]. The study was also partially supported by the Fundacion Interhospitalaria para la Investigacion Cardiovascular (FIC, Madrid, Spain), the Spanish Society of Cardiology (Dr. Pedro Zarco award) and the Heart Rhythm section of the Spanish Society of Cardiology (DFR). J.J. is supported by R01 Grant HL122352 from the National Heart Lung and Blood Institute, USA National Institutes of Health. J.A.S. is funded by the CompBioMed project, H2020-EU.1.4.1.3 European Union's Horizon 2020 research and innovation programme, grant#675451. D.G.L. has received financial support through the 'la Caixa' Fellowship Grant for Doctoral Studies, 'la Caixa' Banking Foundation, Barcelona, Spain.S

    Generation and characterization of a novel knockin minipig model of Hutchinson-Gilford progeria syndrome

    Get PDF
    Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder for which no cure exists. The disease is characterized by premature aging and inevitable death in adolescence due to cardiovascular complications. Most HGPS patients carry a heterozygous de novo LMNA c.1824C > T mutation, which provokes the expression of a dominant-negative mutant protein called progerin. Therapies proven effective in HGPS-like mouse models have yielded only modest benefit in HGPS clinical trials. To overcome the gap between HGPS mouse models and patients, we have generated by CRISPR-Cas9 gene editing the first large animal model for HGPS, a knockin heterozygous LMNA c.1824C > T Yucatan minipig. Like HGPS patients, HGPS minipigs endogenously co-express progerin and normal lamin A/C, and exhibit severe growth retardation, lipodystrophy, skin and bone alterations, cardiovascular disease, and die around puberty. Remarkably, the HGPS minipigs recapitulate critical cardiovascular alterations seen in patients, such as left ventricular diastolic dysfunction, altered cardiac electrical activity, and loss of vascular smooth muscle cells. Our analysis also revealed reduced myocardial perfusion due to microvascular damage and myocardial interstitial fibrosis, previously undescribed readouts potentially useful for monitoring disease progression in patients. The HGPS minipigs provide an appropriate preclinical model in which to test human-size interventional devices and optimize candidate therapies before advancing to clinical trials, thus accelerating the development of effective applications for HGPS patients.This project was mainly supported by an Established Investigator Award from the Progeria Research Foundation (2014-52), and from the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU), and the European Regional Development Fund (FEDER, “A way to build Europe”) (SAF2016-79490-R, CB16/11/00405). Ana Barettino has a predoctoral contract from MCIU (BES-2017-079705). Work at Universidad de Murcia is supported by Fundación Seneca-Agencia de Ciencia y Tecnología de la Región de Murcia (20040/GERM/16). The CNIC is supported by the MCIU and the Pro-CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S
    corecore