28 research outputs found

    New Cementitious System : the case of Glass Frit

    Get PDF
    Canada ranks as the world's third largest aluminium producer, and more than 80% of its aluminum industry is concentrated in Quebec. However, the spent pot-liner waste produced by the aluminium smelters accumulates with time into a considerable amount threatening the Canadian environment, especially that of Quebec. A new-engineered material, known as glass fit (GF) has been developed through the chemical treatment of such waste. GF shows potential hydraulic and pozzolanic properties. GF has been studied as a binder itself and as a supplementary cementitious material (SCM). The activation of industrial by-products into clinkerless binders is a novel trend that has attracted the attention of many researchers. The activation of GF into binder to produce paste, mortar and concrete was the first aim of this study. Potential activation of GF using different types and combinations of inorganic activators and temperatures of activation was successfully achieved and high strength concretes were obtained. Moreover, mortars with high compressive strength were obtained with well-formulated activators at ambient temperature. On the other hand, the utilization of industrial by-products as a partial replacement for cement in concrete is a widespread practice. As GF contains a high concentration of sodium in its structure, there is a concern as to the effect of sodium content on the development of alkali-silica reaction (ASR) expansion of concrete. Therefore, this study also aimed to investigate the effect of GF sodium content in the enhancement of ASR expansion and to find new synergistic mixtures that can effectively mitigate ASR expansion in the long term. We observed that ASR expansion decreases with the replacement level of GF. Different synergistic diagrams containing known SCM (silica fume, fly ash, and slag) were achieved from which different effective mixtures can effectively alleviate ASR expansion. In conclusion, the use of GF in the manufacture of concrete has great benefits. Economically, it could save millions of Canadian dollars needed for the treatment and landfilling of spent pot-liner waste. Ecologically, it could reduce GHG emissions associated with the production of cement clinkers. In this study, most of the well-known by-products are used according to the sustainability theory

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    New Cementitious System : the case of Glass Frit

    No full text
    Canada ranks as the world's third largest aluminium producer, and more than 80% of its aluminum industry is concentrated in Quebec. However, the spent pot-liner waste produced by the aluminium smelters accumulates with time into a considerable amount threatening the Canadian environment, especially that of Quebec. A new-engineered material, known as glass fit (GF) has been developed through the chemical treatment of such waste. GF shows potential hydraulic and pozzolanic properties. GF has been studied as a binder itself and as a supplementary cementitious material (SCM). The activation of industrial by-products into clinkerless binders is a novel trend that has attracted the attention of many researchers. The activation of GF into binder to produce paste, mortar and concrete was the first aim of this study. Potential activation of GF using different types and combinations of inorganic activators and temperatures of activation was successfully achieved and high strength concretes were obtained. Moreover, mortars with high compressive strength were obtained with well-formulated activators at ambient temperature. On the other hand, the utilization of industrial by-products as a partial replacement for cement in concrete is a widespread practice. As GF contains a high concentration of sodium in its structure, there is a concern as to the effect of sodium content on the development of alkali-silica reaction (ASR) expansion of concrete. Therefore, this study also aimed to investigate the effect of GF sodium content in the enhancement of ASR expansion and to find new synergistic mixtures that can effectively mitigate ASR expansion in the long term. We observed that ASR expansion decreases with the replacement level of GF. Different synergistic diagrams containing known SCM (silica fume, fly ash, and slag) were achieved from which different effective mixtures can effectively alleviate ASR expansion. In conclusion, the use of GF in the manufacture of concrete has great benefits. Economically, it could save millions of Canadian dollars needed for the treatment and landfilling of spent pot-liner waste. Ecologically, it could reduce GHG emissions associated with the production of cement clinkers. In this study, most of the well-known by-products are used according to the sustainability theory

    Enhancing Cementitious Concrete Durability and Mechanical Properties through Silica Fume and Micro-Quartz

    No full text
    The existing body of literature has witnessed extensive research efforts dedicated to exploring the impact of supplementary cementitious materials (SCMs) possessing pozzolanic characteristics on concrete. Nevertheless, the holistic concept of micro-scale fillers has frequently been a subject that remains insufficiently explored. This study endeavors to formulate binary cementitious systems that incorporate silica fume (SF) and micro-quartz filler (MQF) to enhance the durability and mechanical properties of cementitious concrete. We systematically investigate the effects of varying replacement levels of SF and MQF, alongside changes in the water-to-binder (w/b) ratio. With w/b ratios spanning 0.25 to 0.40, we explored replacement levels of 8, 10, and 12% (wt.) for SF, and 5, 8, 10, 15, 25, and 35% (wt.) for MQF. The findings revealed a consistent decrease in porosity and permeability as the replacement levels increase. Notably, a marked increase in compressive strength is observed with SF replacement, reaching its peak at an 8% MQF replacement level. Even as MQF replaces 15% of SF, concrete mixtures with 12% SF consistently exhibit superior strength. Importantly, MQF’s ultrafine particle size mirrors SF’s impact on enhancing compressive strength, porosity reduction, and permeability, despite its high crystalline structure. The study employs an analysis of variance (ANOVA) to rigorously assess the influence of each variable on the studied responses

    Simplex-Lattice Hydration Prediction and Microstructure Verification of Cementitious Systems

    No full text
    In this investigation, the age-dependent hydration development of blended pastes containing Portland cement (PC), pulverized fuel ash (PFA) and silica fume (SF) was assessed by quantifying the amount of CH and non-evaporable water using thermo-gravimetric analysis (TGA). Microstructure was investigated using scanning electron microscope (SEM). It was observed that the amount of liberated CH increases up to three-days in PC-PFA binary blended pastes, after which it progressively decreases and this reduction was proportional to the PFA dosage. The introduction of SF to PC-PFA binary mixtures to form ternary blended pastes has caused an early reduction of CH at one day where the majority of SF has been consumed during the first seven-days. The incorporation of 10% SF to PC-PFA pastes altered the low rate of hydration at early age. In addition, the presence of PFA showed insignificant influence on the non-evaporable water content until three-days then its effect became significant after seven-days. On the other hand, SF increased the non-evaporable water content from early ages up to seven-days. However, beyond 28 days, the presence of SF did not exhibit further pozzolanic activity. Furthermore, the ternary blended systems significantly increased the non-evaporable water content within three to seven days compared to the reference paste. Moreover, prediction nonlinear models of these hydration parameters were developed using the simplex-lattice design and validated against the experimental results. The latter have been further supported with SEM microstructural analysis showing good agreement between the predicted and realistic hydration

    Behavior of Non-Shear-Strengthened UHPC Beams under Flexural Loading: Influence of Reinforcement Depth

    No full text
    This study was carried out in order to study the flexural behavior of fiber-reinforced ultra-high-performance concrete (UHPC) containing hybrid microsteel straight fibers and natural fine aggregates under four-point flexural loading. The experimental results revealed that the fiber pullout mechanism had a progressive pullout (collapse) mode. A highly flexural crack developed when the fiber pulling mechanism was explicitly triggered, leading to the failure of most beams. The maximum load in beams reinforced by 1.2, 1.6, and 2.0% exceeded that in beams without longitudinal reinforcement by 56, 73, and 94%, respectively. Further, bar reinforcements at 125, 115, 95, 85, and 75 mm depths led to increases of 56, 55, 73, 96, and 94% in beam load capacity, respectively. In addition, bar reinforcement at 115, 95, 85, and 75 mm depths reduced the beams’ ductility by 40, 23, 35, and 39% compared to those with 125 mm depth. All studied UHPC beams had an uncracked phase that extended to a curvature of about 7.5 × 10−6 rad, which occurred at about 10 kNm. The use of the design of experiments was exploited in this investigation to develop a prediction model for the ultimate moment capacity of UHPC beams. This prediction model took into account the sectional and material properties of UHPC beams. To carry out this analysis, a database of 25 beams, developed by other investigators, as well as the present authors, was utilized. With a mean prediction-to-test ratio of 0.92, this prediction model had a reasonable performance capacity. In turn, this model was used to generate isoresponsive surface contours that could be used for UHPC beam design

    Behavior of Non-Shear-Strengthened UHPC Beams under Flexural Loading: Influence of Reinforcement Percentage

    No full text
    In the present work, the structural responses of 12 UHPC beams to four-point loading conditions were experimentally and analytically studied. The inclusion of a fibrous system in the UHPC material increased its compressive and flexural strengths by 31.5% and 237.8%, respectively. Improved safety could be obtained by optimizing the tensile reinforcement ratio (ρ) for a UHPC beam. The slope of the moment–curvature before and after steel yielding was almost typical for all beams due to the inclusion of a hybrid fibrous system in the UHPC. Moreover, we concluded that as ρ increases, the deflection ductility exponentially increases. The cracking response of the UHPC beams demonstrated that increasing ρ notably decreases the crack opening width of the UHPC beams at the same service loading. The cracking pattern the beams showed that increasing the bar reinforcement percentages notably enhanced their initial stiffness and deformability. Moreover, the flexural cracks were the main cause of failure for all beams; however, flexure shear cracks were observed in moderately reinforced beams. The prediction efficiency of the proposed analytical model was established by performing a comparative study on the experimental and analytical ultimate moment capacity of the UHPC beams. For all beams, the percentage of the mean calculated moment capacity to the experimentally observed capacity approached 100%
    corecore