
NOTE TO USERS 

This reproduction is the best copy available. 

UMI 
Dissertation Publishing 





m UNIVERSITE DE 

SHERBROOKE 

Faculte de genie 
Departement de genie civil 

Nouveau systeme cimentaire : cas de la Fritte de verre 

(New Cementitious System: the case of Glass 

Frit) 

These de doctorat es sciences appliquees 

Speciality: genie civil 

Les membres du jury : 
Arezki Tagnit-Hamou 
Patrice Rivard 
Benoit Fournier 
Laila Raki 

Directeur de recherche 
Rapporteur 
Examinateur 
Examinateur 

Galal Fares 

Sherbrooke (Quebec), Canada Juillet 2008 

v H ^ 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
OttawaONK1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-52830-3 
Our file Notre reference 
ISBN: 978-0-494-52830-3 

NOTICE: AVIS: 

The author has granted a non
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, prefer, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extra its substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

1+1 



Abstract 

Canada ranks as the world's third largest aluminium producer, and more than 80% of its 

aluminum industry is concentrated in Quebec. However, the spent pot-liner waste produced by 

the aluminium smelters accumulates with time into a considerable amount threatening the 

Canadian environment, especially that of Quebec. A new-engineered material, known as glass 

frit (GF) has been developed through the chemical treatment of such waste. GF shows 

potential hydraulic and pozzolanic properties. GF has been studied as a binder itself and as a 

supplementary cementitious material (SCM). 

The activation of industrial by-products into clinkerless binders is a novel trend that has 

attracted the attention of many researchers. The activation of GF into binder to produce paste, 

mortar and concrete was the first aim of this study. Potential activation of GF using different 

types and combinations of inorganic activators and temperatures of activation was 

successfully achieved and high strength concretes were obtained. Moreover, mortars with high 

compressive strength were obtained with well-formulated activators at ambient temperature. 

On the other hand, the utilization of industrial by-products as a partial replacement for cement 

in concrete is a widespread practice. As GF contains a high concentration of sodium in its 

structure, there is a concern as to the effect of sodium content on the development of alkali-

silica reaction (ASR) expansion of concrete. Therefore, this study also aimed to investigate the 

effect of GF sodium content in the enhancement of ASR expansion and to find new 

synergistic mixtures that can effectively mitigate ASR expansion in the long term. We 

observed that ASR expansion decreases with the replacement level of GF. Different 

synergistic diagrams containing known SCM (silica fume, fly ash, and slag) were achieved 

from which different effective mixtures can effectively alleviate ASR expansion. 

In conclusion, the use of GF in the manufacture of concrete has great benefits. Economically, 

it could save millions of Canadian dollars needed for the treatment and landfilling of spent 

pot-liner waste. Ecologically, it could reduce GHG emissions associated with the production 

of cement clinkers. In this study, most of the well-known by-products are used according to 

the sustainability theory. 



Resume 

Le Canada se situe au troisieme rang mondial des pays producteurs d'aluminium, et plus de 
80% de l'industrie canadienne de 1'aluminium est concentree au Quebec. Cependant, les 
brasques usees provenant des fonderies d'aluminium s'accumulent a un rythme considerable, 
menacant ainsi l'environnement du Canada et specialement celui du Quebec. Un nouveau 
materiau con9u a partir d'un traitement chimique de ces brasques usees a ete produit. Ce 
nouveau materiau, appele Fritte de Verre (FV), montre d'excellentes proprietes hydrauliques 
dans les materiaux cimentaires. La FV a ete utilisee comme liant hydraulique et comme 
materiau cimentaire supplemental (MCS). La production de beton sans « clinker » de 
ciment, reduit ainsi les emissions de gaz a effet de serre (GES) liees a la production de 
« clinker » de ciment. 

L'activation des sous-produits industriels en Hants hydrauliques sans clinker est une nouvelle 
tendance qui a attire l'attention de beaucoup de chercheurs. L'activation de FV en Hants 
hydrauliques sans clinker pour produire des pates, des mortiers et des betons etait l'objectif 
general de cette etude. L'activation potentielle de FV en utilisant differents types et 
combinaisons d'activateurs inorganiques et differentes temperatures d'activation ont ete 
realisees avec succes. Cette realisation a permis d'obtenir differents betons a hautes 
resistances. De plus, en formulant bien les activateurs, des mortiers a hautes resistances ont ete 
obtenus a la temperature ambiante. 

Comme la FV contient une grande concentration de sodium, nous prevoyons done qu'elle aura 
un effet sur le developpement de la reaction alcalis-silice (RAS) causant une expansion du 
beton. Le but de cette partie de l'etude etait done d'etudier l'effet de la teneur en sodium de la 
FV sur le developpement de RAS et sur 1'expansion du beton. Par la suite, le deuxieme 
objectif etait de formuler de nouveaux melanges synergetiques pouvant mitiger efficacement 
les RAS a long terme. Nous avons observe que l'expansion associable a la RAS diminue 
selon le taux de remplacement de ciment par la FV. Differents diagrammes synergetiques 
contenant un apport de MCS connus (fumees de silice, cendres volantes et laitier) ont ete 
dessines desquels differents melanges synergetiques peuvent mitiger efficacement les RAS. 

En conclusion, l'utilisation de la FV dans le beton est tres benefique. Du point de vue 
economique, elle peut reduire les couts lies au traitement et a l'enfouissement des brasques 
usees. Du point de vue ecologique, elle peut reduire les emissions de GES associees a la 
production de « clinker de ciment ». Dans cette etude, la plupart des sous-produits industriels 
sont utilises selon la theorie du developpement durable. 

Mots cles : Ajouts cimentaires, caracterisation, activation, nouveau liant, reaction alcali-silice 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

The cement industry is a vital part of the national economies of most cement producing 

countries across the world. The production of Portland cement not only consumes limestone, 

clay, coal, and electric power, but also releases waste gases, such as CO2, which can 

contribute to the greenhouse effect. Hence, the development of the cement industry is closely 

bound to a sustainable development strategy. It is important to extract the benefits of using 

industrial by-products as additives to cement. The goal of sustainable development for cement 

and concrete is very important, and it can be reached through serious effort toward the 

complete utilization of cementitious and pozzolanic by-products from thermal power plants 

and metallurgical industries (silicon, ferrosilicon, iron, and aluminium industries). 

The Canadian primary aluminium industry has a total production capacity of 2.3 million 

tonnes per year. The production is concentrated in Quebec (more than 2 million metric tonnes 

annually), while British Columbia produces the remainder of the national production. Quebec 

ranks as the world's third largest producer behind the United States and Russia. The 

aluminium industry makes a permanent and growing contribution to Quebec and Canada's 

economic wealth. The aluminium industry was first established in Quebec at the turn of the 

century. Canada has no bauxite mines, the basic raw material needed to produce aluminium. 

However, both Quebec and British Columbia have competitive hydroelectric power costs, a 

qualified labour force, and modern public infrastructures that are in the vicinity of the large 

North American markets. The first aluminium smelter was established at the turn of the 

century in Quebec, more precisely in Shawinigan. 

Aluminium smelter plants produce, among other wastes, spent pot-liner (SPL) waste material 

during the electrolytic production of aluminium. SPL contains a small amount of cyanide, as 

well as considerable amounts of sodium and fluoride. SPL is basically made up of two layers: 

a conductive carbon layer and a non-conductive insulation layer. 
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Most aluminium manufacturers split these layers into the first cut (the carbon layer) and the 

second cut (refractory layer). The EPA (Environmental Protection Agency) has classified the 

first cut (but not the second cut) as a hazardous waste, assigning the waste code number K088. 

For every tonne of aluminium produced, approximately 25 to 35 kg of spent pot-liner (SPL) is 

generated. Annual worldwide generation of this waste is estimated at 637,500 tonnes per year 

(tpy) of SPL, of which 40 to 45% by weight is a hazardous waste that requires treatment 

(which could cost the United States an estimated $33 million dollars and Canada an estimated 

$20 million dollars for treatment and landfill disposal). No land fill without treatment has 

been allowed in North America since 1997. Over 100,000 tpy of SPL are generated in the 

United States, while Canada generates approximately and 60,000 tpy of SPL [PARADIS, 

1998; MINTO, 2003]. SPL contain 0.1 to 1.0% cyanides and high sodium compounds. 

Nova Frit International proposes a state-of-the-art technology, known as the CAlSiFrit 

process, which transforms SPL into a viable commercial product with a stable composition 

that guarantees unique properties. The CAlSiFrit process is not a treatment process to detoxify 

the SP leaving residues to be eliminated in one way or another; it is a recycling process 

making complete use of the fed material to elaborate new value-added commercial products 

showing completely different mechanical, physical, and chemical properties than those of the 

original material. This process is characterized by zero effluent and absolutely no residuals 

accompanied by very low atmospheric emissions. The SPL are transformed into a remarkable 

engineered commercial product, CAlSiFrit™, which is also referred to by its technical name, 

glass frit (GF). 

The CAlSiFrit process is environmentally sound as it produces no residue, neither solid nor 

liquid. This pyrometallurgical process is highly viable and sustainable as it succeeds in 

bringing solutions to two worldwide industries, namely the aluminium smelting industry and 

the concrete industry. The process also results in a credit relative to greenhouse gas emissions 

(GHG) and the Kyoto Agreement. 

After the transformation of SPL into a valuable non-hazardous engineered product, intensive 

research to explore and find different ways of recycling GF as a cement additive and as a 
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clinker-free binder was conducted. GF has a high alkali content of approximately 

10% Na20eq, which is a matter of concern with respect to alkali-aggregate reaction (AAR) 

expansion. 

1.2 Objective and originality 

The aim of the present study is to evaluate GF as a new binder and as a cementitious material. 

A trial to convert GF into a new binder (clinker-free) using a chemo-thermal activation 

process was undertaken. Different combinations of GF-slag and GF-fly ash were activated to 

investigate the beneficial effect of their presence. It is important to note that no such study has 

previously been done on GF as a clinker-free binder (hydraulic binder). Moreover, studying 

the effect of alkali content of GF on the alkali-silica reaction (ASR) in mortar and concrete, 

especially when an alkali-active constituent exists, is of great importance. Several tests related 

to alkali-silica reaction were carried out to assess and optimize GF for use in the concrete 

industry. 

The objectives of the present study are as follows: 

i - Evaluation of the pozzolanicity and chemical reactivity of GF; 

ii- Study of the hydraulic reactivity of GF and the possible ways it can be chemically 

activated; 

iii- Development of alkali-activated GF (AAGF) binder that has reasonable workability 

while achieving one-day strength surpassing that of equivalent OPC binder at elevated 

temperature; 

vi- Investigation of different activators and combinations of activators and selection of the 

most efficient ones; 

v- Optimization of the GF-to-sand ratio by conducting different mixtures using the best 

activators; 

vi- Assessment of some concrete mixtures made with AAGF binder, 

vii- Determination of the effect of alkali content of GF used as a mineral admixture by 

determining the effect of GF content on ASR; 
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viii- Investigation of the synergistic interaction between GF and other mineral admixtures as 

well as drawing the synergistic diagrams needed to determine the efficient ternary 

combinations of GF-based mineral admixtures; 

ix- Study of the effect of quaternary combinations of GF and other mineral admixtures on 

alleviating ASR; 

x- Study of the pore solution chemistry, pore system, and microstructure of different 

combinations of GF and other mineral admixtures on assessing ASR expansion. 

This study is divided into two main phases: in the first phase, GF was evaluated as a 

clinkerless binder for fabricating paste, mortar, and concrete. Therefore, different activators 

were tested to select the most efficient activators and combinations of activators. Moreover, 

the best activation temperature was selected. In the second phase, GF was assessed as a new 

cementitious material for its efficiency in mitigating ASR expansion in mortar and concrete 

using different standards and techniques. 

1.3 Methodology 

The above objectives were achieved through the two main phases mentioned previously. The 

first phase included the development of GF activators, the activation of GF into a novel 

clinkerless binder using the chemo-thermal activation method, and some applications 

involving the determination of the best GF-to-sand ratio in different GF mortar mixtures. 

Afterwards, different concrete mixtures using the best activators and the best conditions of 

activation were fabricated. At the same time, intensive microstructure development was 

monitored in all GF pastes fabricated during this part of the study. 

The first phase of the experimental program included the following studies: 

i- Study of the interaction of GF with different activators at different curing temperatures; 

ii- Study of the interaction of GF with different activators and different mineral admixtures 

at different curing temperatures; 

iii- Study of the interaction of GF with different combinations of activators including 

different single, binary, and ternary activator mixtures. 
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The second phase included intensive studies on mortar bars and concrete prisms made up of 

Portland cement-GF binder with and without other mineral admixtures to study ASR 

expansion. As well, it included examination of the pore solution chemistry of these binder-

based mixtures. All tests were performed in accordance with CSA A23.2-14A (equivalent to 

ASTM CI293), CSA A23.2-25A (equivalent to ASTM CI260), and ASTM C227 specification 

with and without certain modifications as well as different aggregates with different 

reactivities. 

This second phase of the experimental program included the following studies and 

parameters: 

i- Comparison between Portland cement-GF mortar bar mixtures and different binary mortar 

bar mixtures including slag, fly ash, and silica fume in presence of alkali-silica reactive 

aggregate (Spratt aggregate) in severe alkaline condition (IN NaOH at 80°C); 

ii- Comparison between different OPC-GF binary, ternary and quaternary mortar bar mixtures 

with different types of aggregates and curing conditions; 

iii- Comparison between different OPC-GF binary, ternary and quaternary concrete prism 

mixtures with Spratt (reactive aggregate) in presence and absence of admixed alkali, and 

at curing conditions of 100 % R.H., at 38°C; 

iv- Comparison between different OPC-GF binary, ternary and quaternary cement pastes by 

following-up the change in pH, concentration of available ions (Na+, K+, Ca2+, etc.), pore-

size distribution inside these pastes and their microstructure analysis with time; 

v- Comparison of the effect of different parameters such as curing conditions and type of 

both aggregate and mineral admixture. 

1.4 Structure of the thesis 

The structure of the thesis is summarized in Figure 1.1. 

Chapter 2 introduces a brief literature review of most of the research related to the current 

study. The materials used in fabricating paste, mortar, and concrete including cementitious 

binders, as well as different activators, fine and coarse aggregates and chemical admixtures 
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are described in Chapter 3. The most important tests needed for the characterization of 

cementitious binders used throughout this study are presented indepth in Chapter 4. 

Chapter 5 details the development of alkali activators suitable for activation of GF. The effect 

of different activators and combinations of activators needed for producing reasonable 

compressive strengths in pastes, mortar, and concrete, in addition to microstructure 

exploration during fabrication, are investigated. Optimum GF-to-sand ratio, using different 

mixtures of AAGF mortars and activators, is determined. Different concrete mixtures with 

different activator, w/b ratios, and combinations of activators were tested for compressive 

strength with time for up to more than two years. 

Chapter 6 discusses the concern related to alkali content of GF and its effect on alkali-silica 

reaction. Different testing methods related to alkali-silica reaction in mortar and concrete were 

conducted. The effect of GF content on the alkali-silica reaction in mortar and concrete was 

investigated. The synergistic interaction of GF and different mineral admixtures was assessed 

and the synergistic diagrams were drawn. Different ternary and quaternary systems in mortar 

and concrete were evaluated. Alkali-silica reaction was tested in concrete for more than two 

years. A direct correlation between accelerated mortar bar test (AMBT) and concrete prism 

test (CPT) was drawn. Pore solution chemistry, pore size distribution, and microstructural 

changes for different cementitious systems, including GF, were investigated. 

Chapter 7 presents a brief conclusion drawn from the test results found throughout the thesis 

and discusses further tests and recommendations to be conducted in the future. 
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Chapter 1 Introduction 

Chapter 2 Literature 
review 

Chapter 3 Materials 
and test procedure 

Chapter 4 Characterization of GF 
and other mineral admixtures 

Chapter 5 Alkali-activated GF 
cement (AAGFC) 

Chapter 6 Alkali-silica reaction in 
mortar and concrete containing GF 

Chapter 7 Conclusions 
and recommendations 

Figure 1. 1 Structure of the thesis 

Throughout this study, the latent properties of GF, as well as the synergistic interaction of GF 

with other mineral admixtures, were explored through: 

i- Investigation of the use of GF as a new binder using the chemo-thermal activation method 

in presence and absence of other active additives and different activators; 

ii- Evaluation of the resulting new binder and optimization of the best mixtures during 

compressive strength testing at different curing ages; 

iii- Evaluation of the chemical and physical properties and durability characteristics of mortar 

and concrete mixtures containing GF in different aggressive media to ensure successful use of 

GF as a new cementitious material; 

iv- Study of the effect of alkali content of GF on expansion due to alkali-silica reaction (ASR) 

through different tests conducted under different curing conditions. As well, the synergistic 

interaction of GF with different active additives (fly ash, slag, and silica fume) on the 

mitigation of ASR expansion was evaluated. 

v-
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CHAPTER 2 

LITERATURE REVIEW 

2.1 General 

Deposits of mineral waste by-products are growing year after year all over the world. Most of 

this waste could be reused as valuable raw materials, since they usually contain many useful 

ingredients. Based on the physico-chemical nature of mineral waste, studies have been 

undertaken to evaluate the potential of converting them into building materials. In many cases, 

the hydraulic activity of normally passive materials could be increased, so that an activated 

mineral waste would behave like a binder for concrete. The significance of the wastes stems 

from their high silicate and/or aluminium silicate components content, preferably in glassy 

form as in the case of fly ash or blast-furnace slag. For this type of waste an alkaline activator 

can be used. 

2.2 Glass frit background 

Glass frit is the industrial by-product of thermally treated SPL waste resulting from a mixture 

of the conductive carbon and refractory layers used to line the pots, in the electrolytic process 

used in aluminium production from the raw material known as alumina. SPL is actually made 

up of two layers, a conductive carbon layer and a non-conductive insulation layer. Most 

aluminium manufacturers split these layers into the first cut (the carbon layer) and the second 

cut (the refractory layer). The EPA (Environmental Protection Agency) has classified the first 

cut (but not the second cut) as a hazardous waste, assigning waste code number K088, as 

shown in Figure 2.1 [CONSTANS, 1998] 

Figure 2.1 The main layers of the spent pot-lining [KIMMERLE et al, 2003] 
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This layer, which is contaminated by cyanides and fluorides (used in aluminium manufacture 

as fluxing materials), is thermally treated to rid it of these dangerous elements by the addition 

of silicate and carbonate compounds at high temperature and with the aid of high tech filters, 

followed by sudden quenching. The resulting material, known as glass frit, has a high alkali 

content of approximately 10% (Na20eq). Glass frit is composed largely of Si02, AI2O3, CaO, 

Fe2C>3, and MgO which are also the major components of slag and other pozzolanic materials, 

in addition to high percentages of Na20 and F, as shown in Figure 2.2 and Table 2.1. Due to 

its high alkali content, glass frit requires deep investigation to explore its latent properties and 

assess the effect of its alkalis on alkali-reactive aggregates in mortar and concrete. 

Figure 2.2 Average composition of spent pot-lining [KIMMERLE et al., 2003] 

TABLE 2.1 CHEMICAL COMPOSITION OF SPL [CONSTANS, 1998] AND GLASS 
FRIT [NOVA PB] 

Oxide Weight % 

Si02 

AI2O3 
Fe203 

CaO 
MgO 

Na2Oe„ 
CaF2 

F 
C 

Typical First Cut 
K088 
1.5-8 
8-20 

0.3-1.0 
1.5-2.25 

0.05-0.25 
10-15 

-
9-12 
54-66 

Typical Second Cut 
(non hazardous) K088 

14-45 
21-50 
2-15 

1.5-4.2 
0.3-0.6 
15-24 

-
9-15 

1.3-4.5 

Glass frit 

33.8 
25.1 

3.4 
14.6 

0.76 
10.12 
12.1 

-
0.40 
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2.3 Definition of a pozzolan 

The American Society for Testing and Materials (ASTM C 125, 2000) defines a pozzolan as 

"a siliceous or siliceous and aluminous material which in itself possesses little or no 

cementitious value but which will, in finely divided form and in the presence of moisture, 

chemically react with calcium hydroxide at ordinary temperature to form compounds 

possessing cementitious properties". 

2.4 Investigation of the pozzolanicity and hydraulic reactivity of the active additives 

SHI [2001] indicated that lime-natural pozzolan mortars have been used for many years. He 

mentioned that the examination of a concrete slab discovered in southern Galilee proves that 

the invention of lime and lime-pozzolan concrete dates back to the Neolithic period (7000 BC) 

rather than Greek and Roman times [MALINOWSKI AND GARFINKEL, 1991]. Many up-

to-date Roman monuments, stand as a concrete fact to the durability of lime-pozzolan mortars 

[LEA, 1974]. Lime-Surkhi mixtures (Surkhi is pulverized fire clay or brick-earth) have 

commonly been used since Greek and Roman times and are still widely used in India [SHI, 

2001]. 

It was not until the 7th century that England started to use lime-Dutch trass mixtures. Such 

mixtures were also used extensively in Holland for construction of harbours and sea defences 

[SHI, 2001]. In Iceland, mortars made of lime and volcanic ash were used in the construction 

of many of the early stone buildings. These mortars were found to be very strong, rock-like, 

and durable, having survived for periods of 90 to 400 years [SHI, 2001]. 

In North America, a natural pozzolan was first used for the Los Angeles aqueduct in 1912. In 

this structure, 50% of the Portland cement was replaced by deeply altered Rhyolite tuff [SHI, 

2001]. About $700,000 was saved due to the use of this pozzolan [PRICE, 1975]. 

Pozzolans are widely used as cement replacement in Portland cement concrete. The use of 

pozzolans is advantageous resulting in lower cost, reduction in heat evolution, decreased 

permeability, alkali-aggregate expansion control, increased chemical resistance, reduced 
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concrete drying shrinkage, improvement of the properties of fresh concrete and better 

durability [SHI, 2001]. 

2.5 General use of pozzolans 

In modern cement and concrete technology, addition of active mineral additives (fly ash, silica 

fume, slag, natural pozzolan, etc.) is of great technical significance. It is well known that the 

clinker minerals C3S and C2S that make up about 75% of Portland cement will form high 

basic calcium hydrosilicates (C/S> 1.5) with a lime/silica ratio of 1.6-1.9 and a large amount 

of calcium hydroxide. In comparison with low basic calcium hydrosilicates (C/S < 1.5), they 

have much lower strength. In particular, the free lime has a rather low strength and poor 

stability, which leads to lower strength and durability of cement and concrete. With the 

addition of a proper amount of active mineral additives, the active SiC>2 will gradually have a 

secondary reaction with Ca(OH)2 and high basic calcium hydrosilicate in cement paste, as the 

so-called pozzolanic reaction, forming low basic calcium hydrosilicates. Thus, as a result, 

there will be an increase not only in quality of hydrates, but in the quantity as well, and the 

strength of cement paste and other properties can be improved greatly [PU, 1999]. 

This part of the literature review focuses on the use of pozzolans as ecological binders and as 

active additives (mineral admixtures) for both improving durability and alleviating the 

harmful effect of the alkali-silica reaction (ASR) in concrete. 

Supplementary cementitious materials (SCMs), also known as mineral admixtures, contribute 

to the properties of hardened concrete through hydraulic or pozzolanic activity. Typical 

examples are natural pozzolans (volcanic tuff, pumicites, metakaolin, rice husk ash, etc.), 

artificial pozzolan (such as fly ash-class F and class C, silica fume) and ground granulated 

blast-furnace slag, which can be used individually with Portland or blended cement or in 

different combinations. These materials react chemically with calcium hydroxide released 

from the hydration of Portland cement to form cement compounds. These materials are often 

added to concrete to make concrete mixtures more economical, reduce permeability, increase 

strength, or influence other concrete properties. Fly ash, the most commonly used pozzolan in 

concrete, is a very fine residue that is extracted from the combustion of pulverized coal and is 
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carried from the combustion chamber of the furnace by exhaust gases [BERRY AND 

MALHOTRA, 1980]. Fly ash is commercially available as a by-product of thermal power 

generating stations. 

Blast-furnace slag, or iron blast-furnace slag, is a non-metallic product consisting essentially 

of silicates, calcium aluminosilicates, and other compounds that are developed in a molten 

condition simultaneously with the iron in the blast-furnace [JOHN EGGERS, 2002]. Silica 

fume, also known as condensed silica fume and microsilica, is a finely divided residue 

resulting from the production of elemental silicon or ferro-silicon alloys that is carried from 

the furnace by the exhaust gases [KHEDR AND ABOU-ZEID, 1994]. Silica fume with or 

without fly ash or slag, is often used to make high-strength concrete. 

2.6 Evaluation of pozzolanic reactivity 

Many methods have been used to evaluate pozzolanic reactivity, where Vicat [LEA, 1938] 

proposed the first method, a lime absorption test for the evaluation of pozzolans reactivity. 

DAY (1992) and SHI (1992) have reviewed different evaluation test methods. All these 

methods are summarized in Table 2.2 [SHI, 2001]. The effect of curing temperature on 

strength development of lime-natural pozzolan pastes is shown in Figure 2.3 [SHI AND DAY, 

1993]. 
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TABLE 2.2 SUMMARY OF TEST METHODS FOR THE EVALUATION OF 
POZZOLANIC REACTIVITY OF POZZOLANS [SHI, 2001] 

Method Evaluation criteria 

Lime absorption 

Setting time 

Solubility In saturated Ca(OH)2 

Solution 

In alkali 

In acid 

In alkali then in acid 

Mechanical Strength 

Pozzolan +Portland cement 

Pozzolan + lime 

- Amount of absorbed lime in a pozzolan/ 

Saturated Ca(OH)2 solution at different ages 

setting time of 1:4 lime pozzolan pastes by 

Vicat test 

- Decrease of Ca2+ in solution due to addition 

of a pozzolan 

Dissolved Si02 or Si02 + R203 of pozzolan 

in alkaline solution 

- Dissolved Si02 + R203 of pozzolan in acid 

- Dissolved Si02 + R203 of pozzolan after 

treatment in acid then in alkali solution 

- Tensile strength difference of mortars cured at 

18°Cand50°C. 

Strength ratio of Portland pozzolan cement to 

pure Portland cement mortars 

- Strength of lime-pozzolan mixtures cured under 

controlled conditions at specified age 

14.0 

12.0 

10.0 

6.0 

6.0 

4.0 

2.0 

0.0' 
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• 65C 

i 
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Figure 2.3 Effect of curing temperatures on strength development of lime-natural pozzolan pastes [SHI, 
DAY, 1993] 
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The relationship between the compressive strength of lime-natural pozzolan pastes and the 

Blaine fineness of the natural pozzolan is also shown in Figure 2.4 [DAY, SHI, 1994]. 

Blaine Fineness (m2/kg) 

Figure 2.4 Relationship between the compressive strength of lime-natural pozzolan pastes and the 
Blaine fineness of the natural pozzolan [DAY, SHI, 1994] 

Various chemical formulas have been proposed for predicting the hydraulic activity of 

granulated blast-furnace slag, as shown in Table 2.3 [MANTEL, 1994]. 

MANTEL (1994) reported that he could not find a correlation between compressive strength 

and any of the commonly used hydraulic indices. None of those formulas provided generally 

valid information as to the effect of the chemical composition of slag on strength 

development. 

TABLE 2.3 FORMULAS PROPOSED FOR ASSESSMENT OF HYDRAULICITY OF 
GRANULATED BLAST-FURNACE SLAGS [MANTEL, 1994]. 

Formula 

1 
2 
3 
4 
5 

CaO/Si02 

(CaO + MgO)/Si02 
(CaO + MgO)/(Si02 + A1203) 

(CaO + 0.56Al2O3 + 1.4MgO)/Si02 
(CaO + A1203 + MgO)/Si02 

Requirement for good 
performance 

1.3-1.4 
>1.4 

1.0-1.3 
>= 1.65 
>=1 

Preference 

1 
1 
1 
2 
3 
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MALQUORI (1960) suggested that an evaluation of pozzolanic materials for purposes of 

their addition to Portland cement must be based on two factors: (1) the mechanical strength of 

mortars and concretes made with a Portland-pozzolan mixture, and (2) the reduction of free 

calcium hydroxide in the hardened pozzolanic cement. The pozzolans consume the Ca(OH)2 

to generate further cementitious hydrate materials (Gehlenite and Tobermorite), thereby 

increasing the strength and quality of the concrete concerned. 

JAMBOR (1963) studied the relation between phase composition, overall porosity, and 

strength of hardened lime-pozzolan pastes by means of X-ray analysis, differential and 

gravimetric thermal analysis, electron microscopy, and chemical analysis. The main hydration 

products of 22 pastes made from lime and various pozzolanic materials and hardened in water 

for 400 days were found to be calcium hydro-silicates of the tobermorite group and Stratling's 

compound, C2ASHn. A formula was developed giving the compressive strength of the pastes 

in terms of the volume of the hydration products produced. 

The quality of natural or artificial pozzolanic cements should be evaluated using strength tests. 

Many standards now use the compressive or tensile strength of mortars [SHI, 2001]. The 

mortars are prepared with a specified ratio of pozzolan to Portland cement or pozzolan to 

lime, and cured under closely controlled conditions. LEA (1974) has confirmed that the 

strength differences of Portland pozzolan cements, under two different curing temperatures, 

increases as the pozzolan content goes up. DAY (1988) has obtained similar results. 

SIBBICK AND NIXON (2000) have investigated the effect of metakaolin as a cement 

replacement material in ASR reactive concrete and suggested that a cement replacement rate 

of 7.5% metakaolin is adequate. They also reported on the reactivity of different pozzolans 

determined using the Chapelle test, measuring the reduction in the Ca(OH)2 in milligram per 

gram of the pozzolanic material as shown in Table 2.4. 
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TABLE 2.4 REACTIVITY OF POZZOLANS USING THE CHAPELLE TEST 
[SIBBICK AND NIXON, 2000] 

Pozzolan type 

Ground granulated blast-furnace slag 
Microsilica 

Pulverized fuel ash 
Metakaolin 

Pozzolan reactivity measured as mg of 
Ca(OH)2 consumed per g of pozzolan 

40 

427 
875 
1050 

McCARTER and EZIRIM (1998) have used electrical methods to follow the early hydration 

characteristics of pozzolanic materials activated with powdered calcium hydroxide at room 

temperature (20°C). The electrical response was measured in terms of conductance and 

capacitance. Four materials were studied: ground granulated blast-furnace slag, microsilica, 

metakaolin and pulverized fuel ash. Their work has shown that monitoring the temporal 

change in electrical parameters can be exploited as a potentially useful test for identifying the 

hydration stages and studying the rate of reaction over these stages. 

BALL and CARROL (1999) have studied autoclaved pulverized fuel ash/calcium hydroxide 

pastes (C/S ratio approximately 0.8) at 184°C for periods of up to 12 hours. The pastes were 

analyzed for loss of calcium hydroxide and ash, release of silicon, aluminium and alkalis, and 

by X-ray diffraction. Calcium hydroxide was consumed within 6 hours, which coincides with 

the most rapid periods of ash reaction. A semicrystalline C-S-H phase appears initially, which 

converts to crystalline tobermorite at later stages. Hydrogarnet formed readily and was stable 

under the conditions investigated. Differences in the behaviour of the ash samples were 

evident that seemed to be related to particle-size distribution rather than to the amount of 

glassy phase present or to other measures of reactivity. 

PAPAYIANNI (1987) has investigated the pozzolanicity and hydraulic reactivity of high-

lime fly ashes (lignite fly ashes) which often have self-cementing as well as pozzolanic 

properties, due to their high lime content. Neat lignite fly ash mortars develop strengths 60 to 

70% those of similar OPC mixtures at 28 days. Ground lignite fly ashes can therefore be used 

on their own as a binding agent in suitable product or constructions, while other fly ashes (i.e. 
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low-calcium fly ash) react only as pozzolanic materials in concrete. The hydraulic reactivity 

of ground lignite fly ashes is associated with the presence of free lime and active silica within 

the ash. Strength development is due to the interaction of these constituents and the formation 

ofC-S-Hgel. 

Finally, MEHTA (1989) has classified pozzolans according to their degree of reactivity as 

shown in Table 2.5. 

TABLE 2.5 MEHTA'S POZZOLANS CLASSIFICATION [MEHTA, 1989] 

Class 
I 
II 
III 
IV 

V 

Description 
Cementitious 

Cementitious: Pozzolanic 
High active pozzolans 

Normal pozzolans 

Weak pozzolans 

Example 
Granulated blast-furnace slag 

High-calcium fly ash 
Silica fume, rice husk ash 

Low-calcium fly ash 
Slow cooled blast-furnace slag, 

Field-burnt rice husk ash 

2.7 Activation of pozzolans into clinker-free binders 

The aim of this part of the study is to evaluate the potential to convert glass frit into a 

cementitious material. If successful, demonstration could be achieved due to the dual nature of 

the glass frit both as a mineral admixture and as a clinker-free binder (such as slag and fly 

ash). In many cases, the hydraulic activity of normally passive materials could be increased, 

so that an activated mineral waste would behave like a binder. Many methods have been used 

to activate the potential reactivity of pozzolanic material. These methods can be divided into 

three groups: chemical methods, thermal methods, and mechanical methods, some of which 

are not very efficient while others are not practical. Therefore, the literature review will focus 

on the methods used to activate slag and fly ash, including the types of activators, mix 

proportions, alkalinity, and curing temperature. 

In addition to their use as mineral admixtures for the above-mentioned reasons, pozzolans are 

also used in the manufacture of clinkerless cements. Ground granulated blast-furnace slag and 

fly ash have latent hydraulic properties giving rise to their extensive use as partial replacement 
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for Portland cement, where they are activated by alkali and lime generated by Portland cement 

hydration. They can also be activated directly with alkali salts to give a clinker-free binder. 

Slag is often used in concrete as a supplementary cementitious material and partial 

replacement of Portland cement. The major advantages of making concrete with slag 

replacement are the superior durability and lower hydration heat as compared with 100% 

Portland cement binder. It should be noted that, in the case of slag replacement, carbonation 

resistance and freeze-thaw resistance decreases with increasing slag content. In addition, the 

low early strength of these concretes is a limitation in many applications. The problem of low 

early strength can be overcome by using alkali-activated slag (AAS) concretes that can 

potentially yield high-early strength. 

Evidently, the use of slag and fly ash offers benefits with respect to the cost of concrete 

manufacturing, because these raw materials are produced as by-products or waste materials 

and can replace purpose-made Portland clinker. The same applies for the effects of cement 

and concrete products on the environment as lower primary energy and fewer raw materials 

are required in producing concrete, while durability of structures is generally improved. In 

both slag and fly ash, the amorphous glass is the active part. The glass in slag consists of 

mono-silicates like those in Portland clinker, Q° type, while fly ash glass consists of cross-

linked silica-tetrahedra, Q4 type [BIJEN, 1996]. When activated, slag dissolves, while in fly 

ash, Si-O-Si links have to be broken. Fly ash does not dissolve but decomposes. The 

activation of slag needs low pH of less than 12, while the activation of fly ash needs higher pH 

value of more than 13 [BIJEN, 1996]. 

In the last few years, the notion of ecological binder, which defines a binder obtained with 

little impact on the environment, has become used more and more frequently. Activated 

blast-furnace slag binder is part of this category of binders. Alkali-activated blast-furnace slag 

binders were first achieved by [PURDON, 1940], but their investigation and testing have 

continued to develop, leading in the last few decades to industrially produced cement with 

strengths of over 100 MPa. Blast-furnace slag used to make blended cements can be activated 

with suitable chemicals and be used as principal binding component in mortar and concrete 

-18-



that contain no ordinary Portland cement (OPC). This binder component is referred to as 

alkali-activated blast-furnace slag cement (AABFC). 

Unlike OPC, AABFC requires little energy to produce, since it is a by-product of the iron 

industry. Consequently, its use represents a considerable economic and environmental benefit 

through energy conservation and by-product utilization. AABFC technology has been used 

successfully in practice in the cement and concrete industry in Eastern Europe and China for 

many years. However, research interest has only been roused in Canada in more recent times 

[DOUGLAS AND BRANSTETR, 1990, DOUGLAS et al., 1991; SHI 1992, SHI AND DAY 

1995; GIFFORD, GILLOT 1994, 1996a, 1996b]. Plastic ABFSC mortars and concretes are of 

sticky consistency, and they stiffen rapidly when compared with OPC mixtures. These 

mixtures require the use of caustic chemicals, such as sodium silicate, while mixing. These 

characteristics probably account partly for their slow recognition. Certainly, the development 

of both effective and less caustic activators and admixtures to enhance workability would 

encourage acceptance. 

Blast-furnace slag and OPC may not be very different in chemical composition, but blast

furnace slag is mainly glassy and even the small crystalline fraction normally contains no 

tricalcium aluminate (C3A) or unstable calcium sulphoaluminate phases in its hydration 

products. Consequently, AABFS concretes are less prone to associated durability problems. 

Hydrated AABFSC contains alkaline aluminosilicate and low-basic calcium silicate hydrates 

(C-S-H) which are better crystallized than the hydration products of OPC. 

GLUKHOVSKY et al. (1980) give the solubility of C-S-H as 0.035-0.05 g/L with that of the 

alkaline aluminosilicates still lower and make a comparison with the high-basic calcium 

aluminate and silicate hydrates of OPC and free lime at 0.5-1.3 g/L. It follows that hydrated 

AABFSC is less reactive and chemically more stable than hydrated OPC. Furthermore, the 

pore structure of hardened AABFSC is finer than that of OPC paste. However, micro-cracks 

are commonly observed. Hydrated AABFSC has been shown to exhibit higher coefficients of 

capillary suction than hydrated OPC [COLLINS AND SANJAYAN, 2001]. This suggests that 

hardened AABFSC paste can be expected to exhibit greater permeability. Notwithstanding, 

air-entrained AABFSC concrete has been shown to perform as well as OPC concrete under 
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severe freezing-and-thawing test conditions [DOUGLAS et al., 1992; GILLOTT 1995]. 

Furthermore, ABFSC concrete has been shown to exhibit lower expansion due to alkali-silica 

reaction while being more prone to excessive expansion and cracking due to alkali-carbonate 

reaction [GIFFORD AND GILLOTT, 1996b]. 

Alkali-activated slag cement concretes are compounded by ground slag (granulated blast

furnace slag, phosphorus slag, etc.), and alkali components (water glass, KOH, NaOH, 

Na2C03, and even alkali-containing industrial waste material, aggregates, and water in 

particular proportions [TALLING, BRANDSTETS, 1989]. 

2.7.1 Types of Alkali activators 

Alkali activators were classified into different types according to GLUKHOWSKY et al. 

(1980), as follows: 

i) Alkali metal hydroxide, ROH; 

ii) Non-silicate salts of weak acids, R2C03, R2S03, R2S, R2P04, RF, etc; 

iii) Silicate salts, R2O.Si02 (Ms = Si02/R20 = 0.5 to 2.5); 

iv) Aluminates, R20.nAl2Oa; 

v) Aluminosilicates, R2O.Al203.nSi02 (Si/R20 = 2 to 6); 

vi) Non-silicate strong acid salts R2S04; where R represents an alkali metal ion. 

WANG (1991) has reported that the highest strength of alkali-activated slag concrete 

attainable at present using water-reducing and set-retarding admixture is about 150 MPa. 

Alkali-activated slag concretes have many other advantages over ordinary concrete, such as 

low production cost, low consumption of energy, good durability and high resistance to 

chemical attacks. However, the following problems remain to be solved [WANG, 1991]: 

a) The practical infeasibility of utilizing alkaline waste and many other types of slag instead 

of industrial alkalis and granulated blast-furnace slag. 

b) The difficulty of retarding alkali-aggregate reaction. 

c) Effective control of setting time. 

d) Mitigation of the brittleness of alkali-activated slag concrete having relatively high 

strength. 
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e) Minimizing of quality fluctuation. 

2.7.2 Alkali activation of slag 

A. Hydration of alkali-activated slag (AAS) cement 

HUANHAI et al. (1993) have reported a kinetic study of alkali-activate slag (AAS) made 

with blast-furnace slag and water glass (sodium silicate). They found that the calorimetric 

curves of AAS and OPC are similar, but the mechanism of each is different. It is proposed that 

the hydration process of AAS could also be classified into five stages: initial, induction, 

acceleration, deceleration, and decay. Meanwhile, the hypotheses developed for OPC may 

also be used to explain the hydration process of AAS. The calorimetric curve of AAS consists 

of two thermal peaks: the first peak represents the reaction of silicate ions from water glass 

with Ca ions from slag, producing C-S-H; the second peak is related to the reaction of silicate 

and aluminate ions with metal ions (Ca, Na, Mg, etc.) from the degraded slag, forming 

secondary C-S-H and other hydrates. Third, the main factor of hydration of AAS is the pH 

value of the solution, while the silicate concentration only affects early hydration. 

Various studies of cementitious material suggested that the pH of the solution plays an 

important role in the hydration process and in determining the nature of C-S-H. It was 

reported that C-S-H does not form in a solution with a pH below 9.5 [GREENBERG, 

CHANG, 1965]. The effect of pH on the structure and composition of C-S-H, however, is still 

controversial. 

SHI and LI (1989); and SHI and DAY (1996b) have found that due to the variation of 

activator, the hydration of alkali-slag cements can be described by three models: type I- one 

initial peak of hydration occurs during the first few minutes and no more peaks appear 

thereafter; type II- one initial peak appears before the induction period and one accelerated 

hydration peak appears after the induction period; type III- two peaks (one initial and 

additional initial) appear before the induction period and one accelerated hydration peak 

appears after the induction period 
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SONG and JENNINGS (1999) have determined the chemical composition and pH of the 

pore solution extracted from six different ground granulated blast-furnace slag pastes. The pH 

of the mixing solution is expected to have a significant effect on the nature of C-S-H by 

affecting the chemistry of the pore solution. They have found that the composition of Si, Ca, 

Al and Mg are function at the pH of the aqueous phase, with high pH associated with the 

higher concentrations of Si and Al and the lower concentration of Ca and Mg. When slag was 

mixed with an aqueous phase with higher pH than 11.5. The reaction is activated or 

accelerated. The main hydration product was identified as C-S-H, and hydrotalcite 

(Mg6Al2C03(OH)i6.4H20), at later stages of hydration, was observed in the pastes with an 

aqueous phase of high pH. At pH lower than 11.5 the equilibrium solubility of silica is low 

and slag simply does not dissolve. Hydrotalcite seems to be a phase that should form when a 

high degree of hydration is reached in slag pastes. SHI and LI (1989); and SHI and DAY 

(1996a) have found that all caustic alkalis and alkali compounds that are less soluble than 

Ca(OH)2 can act as activators of slags. 

As a result of the reaction between the aluminosilicate phases, which are present in blast

furnace slag and an alkaline activator, hydrated products are formed of the thomsonite-

(NaCa2Al5Si5O20.6H2O), hydronepheline- (Na[AlSi206].l.lH20) and natrolite-type 

(Na2Al2Si3Ol0.2H2O), as well as hydrated silicates from the tobermorite group such as 

C-S-H (I). Furthermore, calcite, hydrogarnet (C3AH6), and hydrated magnesium silicates 

could also be formed according to VAN AARDT and VISSER (1977) who have pointed out 

that hydrogarnet can be produced due to hydroxide attack on clay minerals. Thus, these 

compounds could also be encountered in alkali-activated hydrated systems including silicates 

and aluminosilicates. The efficiency of an activator is very strongly related to the physico-

chemical nature of the material to be activated. The hydraulic activity of slag and fly ash 

depends on the quantity and quality of the amorphous phase present in the material [SLOTA, 

1987]. 

LI et al. (2002) have summarized the relationship between structure, composition, and 

activity of glass cementitious materials with low-calcium additions including slag and fly ash. 

The difference between slag and fly ash is that aluminate hydrates of the slag sample 
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obviously increase at the same hydration time. This is due to the fact that the alumina oxygen 

ions of slag more easily dissolve and react. Under high alkalinity, the glass structure of fly ash 

was easily broken. Because of the lower calcium content of the fly ash, only a little C-S-H gel 

forms. Therefore, pore structure results showed that there are many pores in the fly ash paste. 

Only in higher alkalinity condition is the glass structure of fly ash easily broken, and its 

activation and hydration properties are improved. 

B. Activation with sodium silicate and sodium hydroxide 

The use of sodium silicate as an activator that would yield equivalent one-day strength to 

ordinary Portland cement at normal curing temperature, while having reasonable workability, 

was the aim of many researchers. Activation with sodium silicate (water glass) has been 

widely reported to give rise to rapid hardening and high compressive strengths [DOUGLAS et 

al., 1991; QING-HUA et al., 1992; SHI, 1992; WANG AND SCRIVENER, 1995]. 

DOUGLAS et al. (1991) have presented results of a preliminary investigation dealing with 

the compressive strength development of alkali-activated ground granulated blast-furnace slag 

concretes; these concretes incorporated sodium silicate as an activator, but did not contain any 

Portland cement. The five concrete mixtures were proportioned using sodium silicate and 

small amounts of hydrated lime. The water-to-binder ratio of mixtures ranged from 0.34 to 

0.5. The air-entrained concrete produced satisfactory workability. The 1-day and 28-day 

compressive strengths of the concretes ranged from 20.4 to 38.9 MPa and from 45.5 to 59.6 

MPa respectively. They concluded that combined-alkali-activated slag could be used as high 

compressive strength cementitious materials. As well, the use of fly ash can increase the 

strength and decreases the shrinkage. 

QING-HUA et al. (1992) have reported that small amount of immediate reaction takes place 

when pure slag is mixed with water. Therefore, pure slag paste is capable of self-activation 

only to a small extent and the principle hydrate formed is C-S-H. The soluble sodium silicate 

(water glass) used had a composition of 10.8% Na20, 29.7% Si02 and 59.5% H20. The silica 

modulus (Ms = Si02/Na20)) was 2.85 and it was regulated to be 1.5 by adding NaOH 

solution. They used two amounts of water glass, 11 and 5.6%. The compressive strength of the 
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activated slag pastes has reached 68 MPa at 28 days for water glass content of 11% and lower 

compressive strengths with lower water glass content (5.6%). Hydrated lime (CH) influences 

the hydration rate at early age. With addition of CH, a silica rich gel is initially formed. The 

amount of water glass added is directly proportional to the compressive strength. In the alkali-

lime-activated slag pastes, the hydrates are C-S-H and possibly zeolite. 

BROUGH and ATKINSON (2002) have used sodium silicate activator with higher modulus 

(silicate-to-alkali ratio) that is less corrosive and thus safer, and which also partly alleviated 

set time difficulties. The slag samples used in this study were predominantly glassy, with very 

little crystalline material. High strengths were developed rapidly on activation with 1.5 M 

Na20(Si02)2 solution (Ms = 2). After the initial exotherm due to the wetting of the slag, two 

peaks were observed in the calorimetry of this system, the first corresponds to gelation and set 

of the sodium silicate, and the second to bulk hydration of the slag responsible for strength 

development. 

KRIZAN and ZIVANOVIC (2002) have activated slag with water glass (Na20.nSi02) and 

sodium metasilicate (Na2O.SiO2.5H2O). The n modulus of liquid water glass was 3.01 with 

9.62% Na20 and 29.0% Si02. Sodium hydroxide was added to change the n modulus; water 

glass with n moduli of 0.6, 0.9, 1.2, and 1.5 was used in the experiments. It was found that the 

mass of Na20, rather than the total mass of activators, correlated best with the physical 

properties of alkali-slag cements; accordingly, all activators were added as percentage by mass 

of Na20. Quartz sand (0-0.2mm) was used as aggregate in mortar specimens, with a water-to-

binder ratio of 0.43 and a weight ratio between binder and aggregate of 1:3. The cumulative 

heat of hydration increases by increasing the n modulus as well as the dosage of water glass, 

but is still lower than that of Portland cement. The compressive strength of normal-cured 

water glass slag cements is higher than Portland cement mortars. Drying shrinkage of alkali-

slag cements is considerably higher than that of Portland cement. Consequently, industrial use 

of alkali-slag cement needs better understanding of the hardening mechanism and requires 

further research based on presented observations and results. 
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JOLICOEUR et al. (1992) have studied the effect of using of 2% Na20 to activate slag paste, 

where they obtained low one-day strength, while when 4% NaiO was used, the early strength 

increased with increasing Ms from 0 to 0.5 and remained relatively constant with increasing 

Ms up to 2.0 with accompanying loss of workability. 

DOUGLAS et al. (1990) have studied the activation of slag by sodium silicate solution with 

Ms of 1.21, in combination with 2% lime and 1% Na2SC>4, which produced comparable 

strength to Portland cement mortar. 

XINCHENG et al. (1992) have reported one-day strength as high as 68.1 MPa for slag 

activated by sodium silicate solution with Ms of 0.77. 

QING-HUA and SARKAR (1994) have reported high one-day strength of slag pastes that 

contained a combination of liquid sodium silicate (5% Na20 dosage) with Ms of 1.5 in 

combination with 1.7% to 5.0% lime. The workability was found to decrease with increasing 

dosage of activator and the optimum lime dosage was found to be 2%. Use of lime 

successfully retarded the setting time. 

WANG et al. (1994) have achieved high one-day strength up to 37.9 MPa with the use of 

liquid sodium silicates. The best alkali dosages were within the range 3.0 to 5.5% Na20 by 

weight of slag and optimum range of Ms was 0.9 to 1.3 for neutral slag and 1.0 to 1.5 for basic 

slag; however, time of the initial set was less than 20 minutes. This was considered too short 

for most normal civil engineering applications. 

BAKHAREV et al. (1999) have studied the alkali activation of Australian slag using sodium 

silicate, sodium hydroxide, sodium carbonate, sodium phosphate, and a combination of these. 

The compressive strength obtained for sodium silicate-activated slag cements was in the range 

of 20 to 40 MPa, and depends on the modulus of the solution and concentration of alkalis, as 

shown in Figures 2.5 and 2.6. At a high modulus, early strength decreased and the setting time 

was significantly shortened; heat treatment (at 60°C) also had a significant accelerating effect 

on strength development of slag pastes. OPC/slag mixtures activated by alkalis showed lower 
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strength than the slag alone activated by an alkali solution. A mixture of sodium silicate 

solution of Ms of 0.75 and 4% Na was recommended for use in AAS concrete based on study 

of workability and compressive strength. It was noted that the replacement of 30% of slag by 

fly ash has reduced compressive strength. 
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Figure 2.5 The 28-day compressive strength of alkali-activated slag pastes [BAKHAREV et al., 1999] 

40 T M-1.25 OPC Paste w/c=0.5 

Compound Activator 

Figure 2.6 Compressive strength of pastes activated with (a) Na silicate with 4% of Na in the mixture 
and (b) sodium hydroxide and compound activator [BAKHAREV et al., 1999] 

COLLINS and SANJAYAN (2001) have used powdered sodium silicate with Ms of 1.0 and 

Na dosage of 4% (% by weight of slag) plus 1% lime, which yielded equivalent one-day 

strength to OPC and demonstrated better workability than OPC at water-to-cementitious ratio 

of 0.5. One-day strength and workability decrease with increasing Ms. They have also 

reported that the addition of lignosulphonate water-reducing retarder brought the workability 

up to the OPC control and the increasing addition of naphthalene sulphonate-based 

superplasticizer moderately improved workability, however, the paste is not workable as OPC 
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with W/B of 0.5. A mixture of lignosulphonate water-reducing retarder plus naphthalene 

sulphonate-based superplasticizer showed a significant improvement in workability, although 

still not as good as OPC with W/B of 0.5. 

SUGAMA (2007) has evaluated the usefulness of sodium-silicate-activated slag (SSAS) 

cement for completing geothermal wells containing highly concentrated H2SO4 and some 

CO2. Using a 20wt% sodium silicate solution (Si02/Na20 mol ratio of 3.22) as the alkali 

activator, the following observation were made for the SSAS cements autoclaved at two 

temperatures: 

• At 200°C, an outstanding compressive strength of more than 80 MPa, and a minimum water 

permeability of less than 3 0 x 10-5 Darcy were displayed. The combination of C-S-H and 

tobermorite phases was responsible for strengthening and densifying the autoclaved cement. 

• At 300°C, an excessive growth of well-formed tobermorite and xonotlite crystals generated 

an undesirable porous microstructure, causing the retrogression of strength and enhancing 

water permeability. Although all the phases formed in the autoclaved cements were vulnerable 

to reactions with H2SO4, so depositing bassanite scales as corrosion product over the cement's 

surfaces, the C-S-H phase played an important role in retarding the rate of acid erosion. Thus, 

after the uptake of Ca by the H2SO4, Ca-destitute C-S-H preferentially reacted with the Mg 

from the slag to form the lizardite phase that not only retarded the rate of acid erosion, but also 

retained the integrity of the cementitious structure. Therefore, SSAS cement has good 

potential as acid-resistant geothermal well cement at temperatures up to 200°C. 

It is important to mention that the setting time of this cement at room temperature depended 

primarily on the SiC>2/Na20 molar ratio in the sodium silicate activator; actually, using 3.22 

and 2.50 ratios contributed to long setting time of more than lOOmin. In contrast, the slurry 

made with the ratio of 2.5, it set rapidly in less than 25 min. However, when the ratio of 2.5 

was used and 50wt% of slag was replaced by fly ash, the setting time was changed from 617 

to 1767 min. 
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BAKHAREV (2005) has reported in his study that the influence of elevated temperature 

curing on phase composition, microstructure, and strength development in geopolymeric 

materials prepared using Class F fly ash, sodium silicate and sodium hydroxide solutions as 

activators. Fly ash was mixed with sodium hydroxide and sodium silicate solutions, providing 

up to 10% Na in the mixtures. Water-to-binder ratio of 0.3 and curing temperatures of 75 and 

90°C for 24 hours were applied. It was concluded that long obtained at room temperature is 

beneficial for strength development of geopolymeric materials. For materials utilizing fly ash 

activated by sodium silicate, 6-hour heat curing is more beneficial for strength development 

than 24-hour heat treatment. Fly ash mixtures activated by sodium hydroxide had more stable 

strength properties than the same mixtures activated by sodium silicate. The composition of 

aluminosilicate gel depended on treatment history. 

WANG (2000) has investigated the hydration process and development of the microstructure 

of alkali-activated slag (4NNaOH and liquid/binder ratio of 0.25), and concluded that 

dissolution-precipitation is the dominant mechanism for early reactions. The hydration 

products formed in AAS have been determined. Poorly crystalline C-S-H(I) gel of low Ca/Si 

ratio, hydrotalcite (Mg6Al2C03(OH)i6.4H20), AFm phases, and CH are the major hydration 

products for all the AAS pastes. Hydrotalcite-type phase with Mg/Al ratio of about 2 is 

identified on a submicrometer scale; such that it cannot be observed by the scanning electron 

microscope (SEM). CH may be formed at early ages if the Ca/Si ratio of slag is relatively 

high. Afm-type phases are formed at the expense of CH. This work was also confirmed by 

similar work done by [LOTHENBACH AND GRUSKOVNJAK, 2007]. 

PAN et al. (2002) have studied and developed a new kind of alkali-slag-red mud cementitious 

material (ASRC), with both high early and ultimate strength and excellent resistance against 

chemical attacks, by the application of composite solid activator into slag-red mud mixture 

system. The alkali activator is composed by solid water glass with a modulus of 1.2 and 

sodium aluminate clinker. The hydrated specimens were cured either at ambient temperature 

or in steam at 80°C (steam curing). The hydration products of ASRC cement are mostly C-S-

H gel with a very low Ca/Si ratio of 0.8-1.2. 
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BAKHAREV et al. (2002) have investigated the durability of alkali-activated slag (AAS) 

concrete in sulphate environment. AAS concrete was prepared using sodium silicate glass (Ms 

of 2) and sodium hydroxide solution (60% w/v) as activators. Liquid sodium silicate and 

sodium hydroxide were blended providing the modulus in solution (Ms) equal to 0.75, and 

5.4% Na20 in mixture with slag. The AAS concrete had a nominal strength of 40 MPa at 28 

days (w/b ratio of 0.5). Two tests were used to determine resistance of AAS concrete to 

sulphate attack. These tests involved immersion in 5% magnesium sulphate and 5% sodium 

sulphate solution. The main parameters studied were evolution of compressive strength, 

products of degradation, and microstructural changes. In the case of sodium sulphate solution, 

the compressive strength of AAS concrete decreased by up to 17%, while in the case of 

magnesium sulphate solution, the compressive strength decrease was more substantial, up to 

37%. 

SHI and LI (1989) have studied the properties of alkali-phosphorus slag cement and how 

they were influenced by the modulus of water glass, soluble phosphates, water to binder ratio 

and the fineness of the slag. When water glass was used as an activator of alkali granulated 

phosphorus slag cement, the anions of water glass react with Ca2+ dissolving from the surface 

of phosphorus slag grains and primary calcium silicate hydrate formed at the primary stage of 

hydration. If the dosage of Na20 is the same, the setting time of the cement shortens with the 

increase in the modulus of water glass. If the modulus is the same, the setting shortens with 

the increase in the dosage of NaiO. The modulus of water glass has a large effect on the early 

compressive strength of cement and almost no effect after 90 days. Soluble phosphates have 

hardly any effect on the setting time of alkali granulated phosphorus cement. 

COLLINS (1999) has concluded from his studies on the chemical activation of Australian 

slag that powdered sodium silicate (Na=4%, Ms=l) and 1% lime is the most suitable activator 

of Australian slag, based on one-day strength and workability. At W/B of 0.5, alkali-activated 

slag pastes (AASP), based on powdered sodium silicate activator have better dispersion than 

ordinary Portland cement pastes and showed minimal slump loss. However, liquid-based 

alkali-activated slag pastes, based on liquid NaOH and sodium silicate activators, showed 

considerable slump loss over two hours. A small difference in workability was mentioned 
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when gypsum was added to slag. The use of a small dosage of hydrated lime in AASP based 

on powdered sodium silicate improved the workability and one-day strength, as shown in the 

following Figures 2.7-2.10. 

GB50/50 

3% NaOH 4% NaOH 5% NaOH OPC 

6% NaOH + 4% NaiCCb 

5%NaOH + 4%Na2CO> 
H 1 1— 
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Figure 2.7 One-day compressive strength for Figure 2.8 Compressive strength versus time for 
NaOH compared with control pastes [COLLINS, NaOH + Na2C03 AASP with w/b = 0.5 [COLLINS, 
1999] 1999] 
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Figure 2.10 Compressive strength versus time for 
sodium silicate AASP with w/b = 0.5; effects of 
hydrated lime additions [COLLINS, 1999] 

In summary, the review of literature and results from experimentation show that alkaline 

activators have selectivity; that is, different activators have variable activation effects on slags 

from different origins. Analysis of hydration chemistry indicates that selectivity results from 

the variation of hydration products and microstructure from different combinations of slag and 

activator. Selectivity of activators suggests that strength of a blast-furnace slag with NaOH 

solution (ASTM C 1073) is better used as an internal quality control index rather than a 

quality evaluation index. To improve the sensitivity of the quality control test, the alkali may 

be selected based on activator-optimization testing rather than specifying an alkali [SHI AND 

DAY, 1996a]. 
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2.7.3 Alkali-activation of fly ash 

Fly ash is widely produced industrial waste in many places in the world. While fly ash is used 

to form blended cements; only about 20% is currently used for this purpose [MEHTA, 1989]. 

Most fly ashes from combustion of coal are made up of aluminosilicate and silicate glass plus 

small amounts of crystalline materials, including mullite, quartz, hematite, and magnetite. 

The glasses in these ashes are pozzolanic and consume calcium hydroxide upon hydration 

[MEHTA, 1989]. The research on alkali activation of fly ash is relatively new. The intrinsic 

reactivity of a fly ash depends upon various factors, primarily its chemical and mineralogical 

composition and fineness [DIAMOND, 1986]. 

SHI and DAY (1995) have performed experiments to determine the effect of various 

chemical activators on strength of lime fly-ash pastes manufactured with two types of fly ash 

— a low and a high calcium subbituminous ash. Blends of 80% fly ash and 20% hydrated lime 

were used. Pastes were continuously moist-cured at 50°C. The result indicated that the 

addition of small amounts of Na2SC>4 and CaCb can increase the pozzolanic reactivity of both 

types of fly ash; this resulted in a significant improvement in strength. Na2SC>4 has its 

predominant influence at early ages; its effect at later ages varies with the nature of the fly ash 

used. In general, early-age strength increases with the amount of Na2SC>4 dosage. The extent 

of strength improvement at later ages depends upon the dosage and type of fly ash used. The 

addition of calcium chloride has a variable influence on strength at early and intermediate 

ages. However, strengths at 90 days and 180 days are significantly improved. 

FRAAY et al. (1989) have examined the dissolution of class F-fly ash particles in a NaOH 

solution with a lime buffer at 7 days using transmission electron microscopy (TEM). At 28 

days, there is evidence of surface precipitation of CH and needle-like structure on fly ash 

grains. Only glass particles appear to react while mullite, quartz, and iron containing particles 

act only as nucleation sites. They have also shown that the reaction of fly ash in cement-bsed 

pastes is at first controlled by the rate of CH precipitation on the surface of the fly ash and that 

this rate is decreased by the precipitation of C-S-H from clinker phases on the surface of the 

ash. The precipitation of CH is controlled by the pH of the system and increases as the extent 
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of the hydration reaction increases, which causes release of OH- ions into the pore water 

forming C-S-H. The reaction rate between fly ash and CH is a function of the of fly ash 

dissolution rate. 

MA et al. (1995) have shown the formation of hydrate products around fly ash grains in the 

system 90% fly ash: 10% CH after 24 hours at 100°C. There was no formation of product at 

25 °C for the same period. The authors have suggested that this difference in the hydration 

rate is due to the increased dissociation of glass structure at high temperature. 

WILLIAMS et al. (2002) have investigated different systems of alkali-activated fly ash-

portlandite (CH) paste mixtures, which were analyzed using thermogravimetric analysis 

(TGA) and synchrotron X-ray diffraction (XRD) to determine the effect of varying the fly 

ash/CH ratio on the rate of reaction. In these studies, several different weight ratios of 

constituents and temperatures ranging from 25 to 60°C were investigated. NaOH solution was 

added. The water/solids ratio was kept constant at 0.8. This concentration of NaOH was 

chosen to give an initial pH above 13.2 because it has been suggested that the rate of reaction 

of ash is very slow below this value, as indicated by the authors. They have found out that the 

formation of a C-S-H type reaction product with a Ca/Si ratio is somewhat lower than that of 

hydrated neat Portland cement. Similar work was done on fly ash and CH by other researchers 

[LUXAN et al., 1989; MA AND BROWN, 1997; BIERNACKI et al., 2001] 

FERNANDEZ-JIMENEZ et al. (2005) have shown a descriptive mechanism for the 

activation of class F fly ash and classified the activation process into different steps i.e., 

dissolution and polymerization. In the first step of the reaction (nucleation), the vitreous 

aluminosilicate component of the fly ash dissolves in the alkaline solution, favouring the 

formation of a certain amount of aluminosilicate gel. During nucleation, gel composition is 

significantly affected by thermodynamic and kinetic parameters. In the second step of the 

reaction, gel polymerizes into zeolitic structure. In this study, fly ash was mixed with an 8 M 

solution of NaOH, (solution/ash = 0.35). The resulting paste was poured into small plastic 

moulds and oven-cured at 85°C for 5 h, 24 h and 60 days. As well, FERNANDEZ-JIMENEZ 

and PALOMO [2005] have studied the effect of activator on the composition and 
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microstructure of alkali-activated fly ash binder. They used three types of inorganic activators 

such as NaOH, Na2CC>3, and water glass solutions. Furthermore, this work was supported by 

another research on quantitative determination of phases in the alkali activation of fly ashes 

[FERNANDEZ-JIMENEZ et al., 2006]. 

PALOMO et al. (2007) have studied blended cements containing 30% Portland cement 

clinker and 70% fly ash. The powdery material was mixed with deionized water for "normal" 

hydration, and with two different alkaline solutions for "normal" alkaline activation. The 

mechanical strength developed by this type of cement differed significantly depending on the 

hydrating solution used. XRD, FTIR and 29Si MAS-NMR characterization studies were 

conducted to obtain information on the complex structural nature of the hardened matrices, 

which in all cases consisted of a mixture of amorphous gels (C-S-H + N-A-S-H gel). 

PALOMO, CRIADO, and FERNANDEZ-JIMENEZ have covered the area of fly ash 

activation in an intensive way and they form excellent research group [CRIADO et al., 2007; 

CRIADO et al., 2005]. 

2.7.4 Alkali-activation of fly ash/slag combination 

The preparation of ecological cementing material with slag and fly ash has drawn worldwide 

attention and much progress has been made in recent years, as previously shown in this part of 

the study. However, there is no much work done on combined use of the both; existing 

bibliography about the joint activation of fly ashes and slags is limited. From the knowledge 

of both materials, it is known that the disadvantages of one activation process can be balanced 

by the other. 

SHI AND DAY (1999) have studied the effect of two types of fly ash and the addition of lime 

on the strength development and hydration of sodium hydroxide- and sodium silicate (6% 

Na20 by mass)-activated slag/fly ash blends, which consisted of 50% fly ash and 50% slag by 

mass. Performance was compared to that of 100% slag cements. When NaOH was used as an 

activator, the slag replacement with ASTM Type F fly ash did not show significant effect on 

either strength development or hydration; Type C fly ash did not affect strength development, 

but chemically affected the hydration and strength development when Na2Si03 was used as an 
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activator. The addition of a small amount of hydrated lime significantly increased early-age 

strength, but slightly decreased later-age strength of the activated slag/fly ash blends. 

Measurement of the heat evolution during hydration indicated that the addition of the hydrated 

lime had a slight effect on hydration during the pre-induction period, but accelerated hydration 

thereafter. 

PUERTAS et al. (2000) have studied the activation of fly ash/slag pastes with NaOH 

solutions. The parameters of the process studied are: activator concentration (NaOH 2 and 10 

M), curing temperature (25°C and 65°C), and fly ash/slag ratios (100/0, 70/30, 50/50, 30/70, 

and 0/100). The equations of the models describing the mechanical behaviour of these pastes 

have been established as a function of the factors and levels considered. The ratio of fly 

ash/slag and the activator concentration always result to be significant factors. The influence 

of curing temperature in the development of pastes strength is lower than the contribution due 

to other factors. At 28 days of reaction, the mixture 50% fly ash/50% slag activated with 10 

M NaOH and cured at 25°C, developed compressive mechanical strengths of about 50 MPa. 

The nature of the reaction products in these pastes has been studied by insoluble residue in 

HC1 acid, XRD, FTIR and MAS NMR. It has been verified that slag reacts almost 

completely. It has also been determined that the fly ash is partially dissolved and participates 

in the reactive process, even in pastes activated at ambient temperature. The main reaction 

product in these pastes is a hydrated calcium silicate, like CSH gel, with high amounts of 

tetracoordinated Al in its structure, as well as Na ions in the interlayer spaces. No hydrated 

alkaline alumino-silicates with three-dimensional structure characteristics of the alkaline 

activation of fly ashes were formed. 

LI and LIU (2007) have used slag as an additive for fly ash-based geopolymers in their study. 

It was found that the incorporation of slag could significantly increase the compressive 

strength of the geopolymer. The compressive strength of geopolymer with 4.0% slag reached 

50 and 70 MPa when cured for 14 days at 30 and 70°C, respectively. XRD and Fourier 

transform infrared (FTIR) results showed that the addition of slag could generate more 

amorphous products and accelerate the reaction rate of raw materials. From X-ray 

photoelectron spectroscopy (XPS) results, the decrease of binding energy and a broadening of 
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peaks were observed for Si 2p, Al 2p, and O l s elements due to the Ca provided by slag. 

The decrease in binding energy was more favorable to zeolite formation. The results of MIP 

suggested that 4% slag addition significantly influenced pore structure of geopolymer. A 

refinement of pore size was exhibited after 4% slag addition, especially for specimens being 

cured at 70°C. For these reasons, the compressive strength of geopolymer made with 4% slag 

addition was greatly improved. 

ZHAO et al. (2007) have presented the results of the preparation of an ecological cementing 

material from granulated blast-furnace slag (GBFS) and Class C fly ash (CCFA). The 

desulphurization gypsum, calcined at 600-800°C for 0.5-1.5 h, works as the main ingredient 

of the activator in the cementing material. The optimized formulation of the cementing 

material was obtained with the aid of factorial design method: slag, 70%; CCFA, 18%; 

activator, 12%. The "partial super-fine grinding process" was adopted to improve the 

performance, in such a way that 85% of the mixture is ground to Blaine fineness of 

3500 cm2/g, 15% further ground to around 5000 cm2/g. The compressive strength of 28 days 

of the cement mortar is up to 49 MPa and flexural strength 8.4 MPa. The hydration products, 

investigated by SEM and X-ray diffraction, are mainly ettringite and C-S-H gel. The fineness 

has significant influence on the strength of cementing material, but the particle size 

distribution is more important. Partial super-fine grinding process provides an efficient 

method to improve the particle size distribution and thus the mechanical strength of the 

cementing material. The mass ratio of CCFA/GBFS has remarkable influence on the 

mechanical strength of the cementing material. Proper amount of CCFA can reduce cost 

without negative contribution to flexural strength. 

Finally, and according to ROY (1999) and SHI et al. (2006), the bibliographic history of 

alkali-activated and alkaline cement are summarized as shown in Table 2.6. 
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TABLE 2. 6 THE BIBLIOGRAPHIC HISTORY OF ALKALI-ACTIVATED BINDERS 

Author(s) Year Significance 
Kuhl 

Chassevent 

Feret 
Purdon 

Glukhovsky 

Glukhovsky 

Glukhovsky 

Davidovits 
Malinowski 

Davidovits 

Forss 
Langton and Roy 
Davidovits and Sawyer 
Krivenko 
Malolepsy and Petri 
Malek. et al. 
Davidovits 
Deja and Malolepsy 
Kaushal et al. 
Roy and Langton 
Majundar et al. 
Tailing and Brandstetr 
Wu et al 
Roy et al. 
Roy and Silsbee 
Palomo and Glasser 
Roy and Malek 
Glukhovsky 
Krivenko 
Wang and Scrivener 

1930 

1937 

1939 
1940 

1957 

1959 

1965 

1979 
1979 

1982 

1983 
1984 
1985 
1986 
1986 
1986 
1987 
1989 
1989 
1989 
1989 
1989 
1990 
1991 
1992 
1992 
1993 
1994 
1994 
1995 

Investigated setting behavior of slag in presence of caustic ash 
Measured reactivity of slags using caustic potash and soda 
solution 
Slag used for cement 
Investigated clinker-free cements consisting of slag and alkali 
Created soil cement that composed of hydrous and anhydrous 
aluminosilicates and alkalis 
Theoritical basis and development of alkaline cements 
First called "alkaline cement" because natural substances used as 
components 
"Geopolymer term"-emphasizes greater polymerization 
Ancient aqueducts characterized 
Mixed alkalis with a burnt mixture of kaolinite, limestone and 
dolomite and used several trade marks as Geopolymer, Pyrament 
F-cement(slag-alkali-superplasticizer) 
Ancient building materials characterized 
Patent of "Pyrament" cement 
D.Sc. thesis, R20-RO-R203-Si02-H20 
Activation of synthetic melilite slags 
Slag cement-low level radioactive wastes forms 
Ancient and modern concretes compared 
Resistance to chlorides shown 
Adiabatic cured nuclear wastes forms from alkaline mixtures 
Ancient concretes analogs 
C12A7 - slag activation 
Alkali-activated slag 
Activation of slag cement 
Rapid setting alkali 
Alkali-activated cements: an overview 
CBC with metakaolin 
Slag cement 
Ancient, modern, and future concretes 
Alkaline cements 
Slag and alkali-activated microstructure 
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2.8 Conclusions 

- Clinkerless alkali-activated slag cements characterized by their high strength, dense 

structure, low energy cost, and simple production technology compared with Portland 

cement. 

- Alkali activation of slag needs low concentration of alkali activator (pH lower than 12) 

- Slags exhibit selectivity towards the anion or anion groups of activators that have the same 

content of Na. 

- Sodium silicate provides the best activation with compressive strength of pastes and 

mortars exceeding that of OPC pastes of the same w/b ratio. 

- A mixture of powdered sodium silicate and a small dosage of lime improve the workability 

and one-day strength of alkali-activated slag pastes. 

- The hydration products of alkali-activated slag cement are mostly C-S-H gel with a very low 

Ca/Si ratio. 

- Heat treatment had a significant accelerating effect on strength development of slag 

pastes. 

- The reaction of fly ash and lime is very weak at room temperature, while the reaction of slag 

and lime is much more rapid than that of fly ash; therefore, at room temperature, slag can 

react with more lime and alkali can speed up this reaction. 

- The alkali-slag cement, as a low-cost product providing the possibility of using by-products 

and wastes in alkali-activated slag mixtures, can be seen as a solution to today's ecological 

problems. 

- Alkali activation of class F fly ash needs more concentrated alkali activator (pH higher than 

13) and higher temperature of activation due to its crystalline structure. 

- Bibliography existing about the joint activation of fly ashes and slags is limited. 

- The incorporation of slag with fly ash during alkali activation could significantly increase 

the compressive strength of the geopolymer. 

- The mass ratio of fly ash/slag has remarkable influence on the mechanical strength of the 

activated cementing material. 

-37-



2.9 Use of pozzolans as supplementary cementitious materials (SCMs) 

2.9.1 Pozzolanic and cementitious reactions of some active additives in blended cement 

pastes 

MARSH and DAY (1988) have reported results of thermogravimetric tests on hardened 

cement pastes containing fly ash. Ashes derived from subbituminous and lignite coals were 

used at replacement levels of 30% and 50% by weight. Thermal analysis was performed on 

samples which were water cured for various ages from 3 days to one year. An analytical 

technique was used to split the non-evaporable water content of cement pastes into two 

components: water held by calcium hydroxide, and water held in other reaction products. The 

technique is used to identify and monitor the progress of the different types of fly ash. There 

are distinct differences in the manner in which various ash/cement pastes hydrate. The 

subbituminous ash relies more upon the "pozzolanic reaction" between calcium silicate and 

calcium hydroxide to provide the strength-giving hydration product. Conversely, the lignite 

ash produces a substantial amount of hydrate by direct reaction between compounds of the ash 

and water. At early and intermediate ages, the hydrate produced from the reaction of fly ash 

may combine substantially more water per unit weight than the hydrates normally produced 

through the reaction of cement. 

MARSH et al. (1986) have investigated hardened cement paste specimens, with and without 

partial replacement of the cement by fly ash for various ages up to one year at temperatures 

between 20 and 80°C. The pozzolanic reaction of fly ash in cement, as measured by reduction 

in calcium hydroxide content and contribution to compressive strength, is accelerated by an 

increase in curing temperature. The acceleration of pozzolanic reaction is greater than the 

acceleration of Portland cement hydration for a given curing temperature. The maximum 

strength of cement paste which contains 30% by weight of cement replaced by fly ash is 

greater than that of plain cement paste for all curing temperatures. Consumption of calcium 

hydroxide with no corresponding gain in strength, or with a reduction in strengths, was 

observed for ash-pastes cured at 50°C and above. Changes in mercury porosity, on the other 

hand, correlate well with changes in strength during the early strength-gain periods and also 

during the later strength-decreasing period. Measurement of calcium hydroxide (CH) content 
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is of special interest in Portland cement/fly ash system as it provides an indication of the 

progress of the pozzolanic reaction. 

OHSAWA et al. (1985) have reported a selective dissolution method which, in principle, only 

dissolves pozzolan-cement hydration products, hydrated cement products, and cement 

components while leaving the remaining unreacted pozzolan undissolved. Where this test was 

used for the quantitative determination of fly ash in hydrated fly ash-CaS04.2H20-Ca(OH)2 

system, various kinds of selective dissolution were evaluated using pastes made from a single 

representative fly ash. Selective dissolution using picric acid, (trinitrophenol)-methanol 

solution was found to be adequate. Selective dissolution using picric acid-methanol-water was 

also used. Reproducibility of the determination by both methods was found to be satisfactory. 

LI et al. (1985) have used the same method as OHSAWA for the qualitative determination of 

unhydrated fly ash and silica fume, respectively. Their experimental results have shown that a 

selective dissolution method using a picric acid (trinitrophenol)-methanol-water solution is 

suitable to remove reacted cementitious products, and leave a residue of unhydrated 

pozzolans, such as fly ash and silica fume when mixed with cement. This enables their 

quantitative determination at various ages of hydration. Silica fume was found to have a much 

earlier stage reactivity than low-calcium fly ash, although only 78% of silica fume in a 10% 

silica fume:90% cement mixture reacted in 90 days at 38°C. 

JAMES and RAO (1986) have studied the chemical interaction of rice husk ash (about 96 % 

SiC>2) with lime and water. The setting process for lime-excess and lime-deficient mixtures 

was investigated. The product of the reaction has been shown to be a calcium silicate hydrate, 

C-S-H (I) by a combination of thermal analysis, XRD, and electron microscopy. Formation of 

C-S-H (I) accounts for the strength of lime-rice husk ash cement. 

MOUKWA (1990) has reported that cobalt furnace slag yields medium strength cements by 

addition of lime or Portland cement clinker in a small amount. Hydration can be accelerated 

by addition of sodium sulphate. Cements of sufficient quality for general use were obtained 
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with this material. The compressive and the tensile strength measured with cobalt slag 

concrete may justify its use as replacement for Portland cement. 

WENG et al. (1997) have studied the pozzolanic reaction between Portland cement, silica 

fume, and fly ash mixtures, where results indicated that silica fume additions reduce calcium 

hydroxide content in the paste as early as 12 hours. The reduction was in linear proportion 

with the silica fume dosage. Most of the silica fume reacted before 3 days, and a small portion 

remained for later slow reaction. The higher is the w/b ratio, the greater the silica fume 

reaction at early ages. Fly ash was found to depress calcium hydroxide formation at 12 hours. 

The pozzolanic reaction can begin at 3 days, but significant reaction did not occur until after 7 

days. The reactivity of silica fume was delayed by the presence of fly ash and its influence 

began at 1 day rather than 12 hours. A significant increase in hydrate water content was found 

between 3 and 7 days. At earlier ages, the hydrate water content was lower. 

LI et al. (2002) have concluded that the reaction of fly ash and lime is very weak at room 

temperature. The additions of sulphate and alkali improve the activation of the fly ash-lime 

system. The effect of alkali is more outstanding than that of sulphate. The reaction of slag and 

lime is much more rapid than that of fly ash. Therefore, at room temperature, slag can react 

with more lime while alkali can speed up this reaction. From the analysis of the balance 

system of hydrates, slag is an ideal substance in producing cementitious materials with low 

calcium, requiring only some Ca(OH)2 and a little activator to its composition. XRD, SEM, 

TGA, and DSC-TG results show this conclusion. The difference between slag and fly ash is 

that aluminate hydrates of slag sample obviously increase at the same hydration time. It is 

because the alumina oxygen ions of slag more easily dissolve and react. Under high alkalinity, 

the glass structure of fly ash was easily broken and its activation and hydration properties 

were improved. 

2.9.2 Use of pozzolans as durability-improving materials 

Durable concrete will retain its original form, quality, and serviceability when exposed to a 

given environment [ACI Committee 201, 1992]. In many environmental conditions, concrete 

is subjected only to mild attack. In others, attack can be so severe that the concrete structure 
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requires repairs, and often replacement, before the end of the design service life has been 

reached. Forms of attack may include any of the following: 

a) Abrasion; 

b) Alkali-silica reaction; 

c) Alkali-carbonate reaction; 

d) Carbonation; 

e) Freezing and thawing and de-icer scaling; 

f) Reinforcing-steel corrosion; and 

g) Sulphate attack 

Resistance to various forms of these attacks can be improved by reducing concrete 

permeability, thus reducing the intrusion of water or aggressive chemicals and their capillary 

transmission within the cement-paste matrix. Using pozzolans, ground granulated blast

furnace slag, fly ash, and silica fume can reduce permeability while also imparting other 

desirable properties to the concrete [KECK, 2001]. 

Research concerning the use of mineral admixtures to enhance the properties of concrete has 

been ongoing for several decades. Recently, the use of mineral admixtures has dramatically 

increased, due to an increase in environmental awareness. Higher early strength can be found 

in some modern cements due to more Ca(OH)2 formation, but this may adversely affect the 

durability and cost of concrete [CHAN AND WU 2000]. Since many mineral admixtures are 

by-products of other necessary reactions, these waste by-products can be used to reduce the 

amount of cement required, thus, in some cases, reducing the cost and the CO2 signature of the 

concrete. 

Pozzolans are not binders as such, but in the presence of water they can react with lime 

liberated by Portland cement hydration to become hydraulic cementitious systems. 

Cementitious materials, however, need only a small amount of chemical "activator", such as 

Portland cement, to become hydraulic cements. These limits generally range from as low as 

2% for silica fume, to some 60% in case of granulated blast-furnace slag, which is one of the 

most widely used supplementary cementitious materials. The estimated worldwide availability 
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of these mineral cement additives, in millions of tonnes per year, is as follows: fly ash 370, 

granulated blast-furnace slag 35, silica fume 2, and rice husk ash 20. By comparison, Portland 

cement production is almost 1.5 billion tonnes per year [MALHOTRA, 2000]. 

Blast-furnace slag, with high glassy phase content, possesses potential cementitious ability 

and forms C-S-H gel after reacting with calcium hydroxide [PRICE, 1975]. It can therefore, 

be used as a partial substitute for cement. Similarly, fly ash is a pozzolanic material and also 

often serves as cement replacement. Fly ash is suitable for massive concrete structures 

because its addition as a partial substitute for cement will reduce thermal hydration and 

bleeding, thereby, improving the overall durability of the concrete [KECK, 2001]. 

Silica fume or microsilica, when incorporated into concrete, increases its early strength [RAO, 

2001]. The hydration process is actually quite complicated, requiring the production and 

dissolution of various compounds at different stages. During these stages, several reactions 

occur. The combination of these reactions determines the progression of strength 

development. One belief is that strength can be derived from three mechanisms. First, as 

silica fume is added, pore size is refined and the resulting matrix is denser. Silica fume causes 

large pores to become smaller, while the production of certain compounds increases the 

density of the matrix, thus increasing the strength of the resulting bonds. Secondly, silica 

fume reduces Ca(OH)2(CH) content. Finally, silica fume concrete undergoes a cement paste-

aggregate refinement process. This process describes the enhancement of the transition zones 

between the cement paste and the aggregate [RAO 2001; TOUTANJI AND BAYASI 1999; 

MOHD ZAIN AND RADIN, 2000]. 

The addition of silica fume increases the early strength of concrete. C-S-H is considered the 

main carrier of strength in hardened cement. It is formed through the transformation of weak 

Ca(OH)2 to strong C-S-H gel through the pozzolanic reaction [RAO, 2001; TOUTANJI, 

BAYASI, 1999; MOHD ZAIN, RADIN, 2000]. Although many believe that the above 

reaction produces C-S-H gel, it does not mean that strength can be directly obtained through 

measurement of this parameter. In fact, concrete strength and durability can at best be 

determined indirectly by knowing C-S-H, CH, H content, and porosity [PAPADAKIS, 1999]. 
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HWANG and SHEN (1988) have reported the effect of varying blast-furnace slag content, 

fly ash content, and water/solid ratio on the behaviour of cement paste and concluded that 

increasing the slag content resulted in longer setting times. Furthermore, increasing the 

water/solid ratio also exhibited a similar tendency. The effect of fly ash on the setting 

behaviour of cement paste paralleled that of slag. 

FU et al. (2002) have studied the influence of clinker, activator, and fly ash contents on the 

properties of blended cement with high fly-ash content. Experimental data from XRD and 

pore size distribution indicated that the main hydration product of the fly ash blended cement 

was C-S-H gel, ettringite, and a small amount of Ca(OH)2. The amount of chemically 

combined water increased with the duration of curing age, while Ca(OH)2 content was 

reduced after 7 days. The strength of the mortars made with the blended cements decreased 

with increased fly ash content in the blended cement, especially at early ages. This 

phenomenon was overcome by introducing compound activators (CA) (Na2CC>3 and molasses) 

to the blended cement, with strengths significantly improved at 28 and 90 days when 1.15% 

CA was added to the blended cement; the activators destroyed the glass pearl surface structure 

of fly ash to dissolve the silicate and aluminate ions and accelerate the hydration of fly ash 

grain. 

LAFAVE et al. (2002) have reported that ground granulated blast-furnace slag improved the 

long-term corrosion resistance of concrete by filling and reducing the concrete pore structure, 

thereby decreasing permeability. As slag content increased, concrete chloride permeability 

typically decreased and permeability of slag concrete was less affected by increase in w/b 

ratio than ordinary Portland concrete. Carbonation can progress faster in slag concrete and 

slag content had to be limited to about 35% cement replacement if early strength development 

similar to control concrete was desired. 

Strength development in ternary blended cements based on Portland cement, ground 

granulated blast-furnace slag, and fly ash was studied in several countries in the 50s and 60s. 

Literature concerning fly ash made no mention of an optimum quantity for use in concrete 
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mixtures; however, recommendations have been made suggesting the use of 40% or less. 

Furthermore, if early strength is not an important factor, fly ash as high as 60% can be used 

[NAIK AND RAMME, 1989]. 

HUSSAIN and RASHEEDUZZAFAR (1994) have indicated that the use of fly ash could 

increase the resistance of concrete to chloride-induced corrosion of steel reinforcement, 

because fly ash concrete was less permeable to chloride ingress than concrete without fly ash. 

It was also able to bind some of the chlorides, thereby reducing the amount of free chloride 

available to initiate steel corrosion, but without reducing concrete pH below 12.5. Fly ash 

dosage of less than 15% by mass of cement was not effective in preventing reinforcing steel 

corrosion, and concrete with a fly ash dosage greater than 20% addition by mass of cement 

could be susceptible to carbonation at cracks [BERKE et al., 1991]. 

Slag has low strength at early ages when used in large quantities in concrete. This is due to 

the slow initial hydration of slag. Unlike fly ash, slag's reactivity is dependent more on 

temperature [MIURA AND IWAKI, 2000; SIVASUNDARAM AND MALHOTRA, 1992]. 

Like fly ash, two processes govern slag's reaction rate during the initial period of hydration. 

The first, nucleation and the growth rate of hydration phases, is the ability to provide sites for 

the bonding of Ca(OH)2 compounds. These compounds are then transformed into C-S-H gel. 

The second is the phase boundary interactions or the interactions that occur between the old 

compounds and the newly formed compounds. It has also been found that the initial rate of 

hydration is dependent on the initial lime content. This can be observed in the sharp decreases 

in free lime contents that occur in slag mixtures during the first day [MOSTAFA, et al., 2001]. 

When a proper ratio between fly ash and slag is used, the strength of the combination exceeds 

that of slag cement [SHI AND DAY, 1999]. 

RODRIGUEZ-CAMACHO et al. (2002) have reported results of different Portland-

pozzolan cements containing different natural pozzolans, and they were compared with 

ASTM Types I, II, and V cements. The susceptibility to sulphate attack was studied by 

measuring the expansion in mortar bars at different ages for 78 weeks. The pozzolanic 
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cements containing Type I and V Portland clinker and pozzolans with high pozzolanic activity 

have a better sulphate resistance than Type V cement, even after 52 weeks. The pozzolans 

containing alumina between 11.6% and 14.7% and high pozzolanic activity have the best 

sulphate resistance in cement than those containing at least 16% alumina. Pozzolanic cement 

with Type I clinker is more effective in increasing sulphate resistance. 

MEMON et al. (2002) have investigated the effect of mineral and chemical admixtures, 

namely fly ash, ground granulated blast-furnace slag, silica fume, and superplasticizers, on the 

porosity, pore size distribution, and compressive strength development of high-strength 

concrete in seawater curing conditions exposed to tidal zones. In this study, two levels of 

cement replacement (30% and 70%, by weight) were used. The total cementitious content 

used was 420 kg/m . A water/binder ratio of 0.4 was used to produce concrete having target 

compressive strength ranging between 54 and 63 MPa at 28 days of age. At the age of 364 

days, the compressive strength of the specimens produced ranged between 59 and 74 MPa. 

The pore-size distribution of both high-strength concrete was significantly finer and the mean 

volume radii at the age of 6 months were reduced about three-fold compared to OPC concrete. 

Results of this study indicate that both concrete mixtures (30% and 70%) exhibited better 

performance than the OPC concrete in seawater exposed to tidal zone. Hence, it is believed 

that both high-strength concretes produced would withstand severe seawater exposure without 

serious deterioration. 

In Canada, laboratory studies on ternary blended cement mortars at constant w/b ratio were 

done at CANMET using ASTM class F and ASTM class C fly ashes [BERRY, 1980; 

FOURNIER et al., 2001]. The availability of ground granulated blast-furnace slag in Canada, 

as well as the availability of fly ash from existing and future power plant installations justify 

further investigation of ternary binder systems for the optimization of compressive strength. 

Replacing large amounts of cement with mineral admixtures such as slag, fly ash, and silica 

fume can reduce the high cost. As a result, extensive research has been carried out, or is in the 

process of being performed on these admixtures in order to determine their usefulness. 

-45-



2.9.3 Use of pozzolans for mitigating the alkali-silica reaction (ASR) 

In 1940, STANTON showed that damage in concrete could sometimes result from reaction 

between the hydration ions in the pore water of concrete and certain forms of silica which are 

occasionally present in the aggregate. Destruction of concrete structures caused by alkali-

aggregate reaction (AAR) has been found in many regions of the world. 

Pozzolans such as silica fume, pulverized fly ash, and pulverized blast-furnace slag are known 

to reduce alkali silica reactivity (ASR) in concrete. Examination of the types and properties of 

reactive aggregates suggests that the aggregates that are either glassy, poorly crystallized, or 

those that have an imperfect or damaged silicate lattice are effective. Pozzolans likewise 

contain very fine particles of glassy silica. The pozzolanic activity is essentially the reaction of 

the cement's calcium hydroxide with the glassy silica. The reaction is relatively rapid because 

the silica particles are very fine and present a very large surface area per unit mass. Silica 

fume, fly ash, and ground granulated blast-furnace slag (slag) are widely used as concrete 

additives and cement replacements, both for economic reasons and to improve quality of 

concrete and guard against ASR. One property they share in common is that they are 

essentially very fine-grained silicate or silicate-aluminate glasses. Because of its fine particles, 

large surface area, and high silica content, silica fume is a very reactive pozzolan when used 

in concrete. It has the highest Si02 content of the three at > 90%; the average silica content of 

fly ash and slag is 38% (bituminous) to 48% (sub-bituminous) and 36%, respectively 

[MEHTA, 1983]. 

A. Alkali-Aggregate Reaction (AAR) 

This reaction can be defined as the chemical reaction in concrete between alkali hydroxides 

(hydroxyl ions associated with sodium and potassium [high alkaline pore solution]) from 

Portland cement and other constituents, such as admixtures and pozzolans, and certain 

constituents of some aggregates. Under certain conditions, this reaction can result in 

deleterious expansion of the mortar or concrete resulting in cracking, and is divided into two 

main types: 
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Alkali-carbonate reaction is a chemical reaction in concrete between alkali hydroxides and 

certain carbonate rocks, particularly certain calcitic dolomite and dolomitic limestone 

aggregates [GRATTAN-BELLEW AND MITCHELL, 2002], The reaction and products of 

the reaction may cause abnormal expansion and cracking of concrete in service. 

Alkali-silica reaction is a chemical reaction in either mortar or concrete between alkali 

hydroxides and certain siliceous rocks or minerals, such as opaline chert, strained quartz, and 

certain volcanic glasses, present as constituents of some aggregates. The product of the 

reaction, a silica gel, can cause expansion and cracking of the concrete or mortar. 

Factors that affect the rate and severity of AAR are [FOURNIER AND BERUBE, 2000]: 

i) Potential reactivity of the aggregate; 

ii) Alkali content of the cement; 

iii) Amount of water present in the concrete; 

vi) Humidity of the environment; 

v) Aggregate particle size; 

vi) External applied stress (or confinement) 

The alkali-silica reaction (ASR) has been identified as one of the major causes of deterioration 

of concrete structures, and can be explained by the surface phenomena of materials and 

crystalline structure of quartz (SiCh). The structure of crystalline quartz is built by repetition 

of a basic unit - silicon tetrahedron - in an oriented three-dimensional framework. A silicon 

ion, Si4+, is in the centre of the tetrahedron, surrounded by four oxygen ions at the corners. 

The silicon tetrahedrons are joined with each other through their vertices by oxygen atoms, 

and each of these is linked to two silicon atoms to attain electrical neutrality. However, on the 

surface of quartz, a complete tetrahedron does not evolve, and unsatisfied charges develop [LI 

et al., 1999]. In the presence of NaOH and KOH solution, unsatisfied charges on the silica 

surface are neutralized by the ions OH- and Na+, or K+. After the hydroxyl groups on the 

surface of the silica have been neutralized, if an excess of NaOH or KOH still exists, 

then the internal -Si-O-Si- can be disrupted. LI et al. (1999) pointed out that, in alkaline 

solutions, silica is much more easily dissolved, the hydroxyl ions being the catalyst. The 
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dissolved silicate ions, together with the readily ionized Na or K ions, form a colloidal 

suspension (alkali-silica gel). ASR can be simply described as [LI et al., 1999]: 

Si02 + Na+,K+ + OH" - » amorphous alkali silicate ('gel') (2.1) 

Some authors [DAVIES AND OBERHOLSTER, 1988; CHATTERJI et al., 1988] have 

pointed out that ASR is not merely a reaction between the alkalis present in the porous 

solution and the reactive aggregate, but sufficient Ca2+ ions are also required (which are 

supplied by the portlandite (Ca(OH)2 ) in the OPC pastes. The general outlines of this process 

[FERNANDEZ-JIMENEZ et al., 2002] are: 

Ca(OH)2 + Si02 + NaOH + H20 -> niNa20.n2Ca0.n3Si02.n4H20 (2.2) 

The resulting gel has an expansive nature depending on CaO content 

[DAVIES AND OBERHOLSTER, 1988; CHATTERJI et al., 1988].The gel product from 

ASR will expand through osmotic action in the presence of pore water or moisture and 

become deleterious to concrete structures. This expansive pressure can sometimes reach 6-7 

MPa [DIAMOND, 1989], which is enough to crack concrete structures. A deleterious 

expansion is commonly regarded as an expansion greater than 0.05%, since at this level small 

cracks are often visible on the surface of a concrete [HOBBS, 1986]. 

In general, it is known that adding mineral additives to concrete is an effective measure for 

preventing ASR. Many investigations have been carried out on the effect of silica fume, fly 

ash, and blast-furnace slag used as mineral additives for suppressing ASR in some countries. 

In 1940, STANTON was the first to explain the possibility of reducing expansion due to ASR 

by using pozzolanic cement containing finely ground 'Monterrey Shale' or by replacement of 

25% high-alkali cement with pozzolana. Now several hundreds of papers dealing with this 

subject have been published and most of them discuss the effectiveness of blast-furnace slag, 

fly ash, and silica fume. The effectiveness of mineral admixtures in preventing alkali-

aggregate reactions depends upon adequate dosage and its alkali content, these two parameters 

determining the increase or depletion of the alkalinity of pore fluids. Because the hydration 
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kinetics of these materials, and consequently their pozzolanic activity, are slow, accelerated 

methods can provide useful information by simulating their possible behaviour after long 

periods. 

The effectiveness of slag in preventing expansion due to alkali-aggregate reaction (AAR) was 

first reported by COX et al. (1950) and since then a number of papers have been published in 

many countries. Various theories have been presented regarding the mechanism of slag's 

action in reducing alkali-aggregate reaction (AAR) expansion [BAKKER, 1981; DIAMOND, 

1983; CHATTERJI, 1984; HOBBS, 1982]. A number of investigators have carried out tests 

on OPC/fly ash [NIXON AND GAZE, 1981; HOBBS, 1982; GAZE AND NIXON, 1983] and 

OPC/slag mortars [HOBBS, 1982; HOGAN, 1983] containing natural aggregate, but few tests 

have been carried out on concrete up to 1983 [NIXON, GAZE, 1983]. However, extensive 

work has been done and published related to the use of slag and fly ash in mitigating ASR 

expansion [LANE AND OZYILDIRIM, 1999; KERENIDIS, 2007]. Aggregate reactivity, 

alkali content of the concrete, chemical composition of the SCM, and exposure conditions 

affect the necessary level of SCM replacement for adequate protection. 

Silica fume has been used in concrete for some decades now. Initially, it was used as a cement 

replacement material, but in recent years silica fume has been used more and more as solid 

additive (microfiller) in concrete. Increased strength and improved durability are the main 

benefits. Incorporation of superplasticizer and silica fume offers flowable concrete with low 

W/C ratio. In other words, silica fume affects concrete quality in many ways, and when 

properly proportioned, it will greatly improve the quality of both fresh and hardened concrete 

[GUDMUNDSSON et al., 2000]. 

In 1979, ASGEIRSSON and GUDMUNDSSON first documented the use of silica fume to 

control ASR in concrete. A review of the extensive amount of research on this topic has 

revealed that the efficiency of silica fume in suppressing ASR expansion is primarily 

dependent upon the alkali contribution of Portland cement [THOMAS, BLESZYNSKI, 2000]. 

Based on this review, THOMAS and BLESZYNSKI (2000) have proposed the following 

relationship: 
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SF = K* Al (2.3) 

Where SF = silica fiime as percentage of cementitious material, Al = Alkali content of 

concrete (kg/m3 of Na20eq) contributed by the Portland cement, K = 2.5. 

Canadian standard practice CSA A23-27A (2004) proposes to adopt this approach using 

different values of K (from 2 to 3) depending on the level of prevention required. A minimum 

replacement level of 7 % is imposed when silica fume is sole supplementary cementing 

material. 

Canadian standard practice CSA A23-27A (2004) covers the use of ternary blends to 

counteract alkali-silica reaction. It states that when two or more SCMs are used in 

combination to control ASR, the minimum replacement levels for the individual SCMs may 

be partially reduced provided that the sum of the parts of each SCM is greater than, or equal 

to, one. For example, for a ternary blend with silica fume and slag, if the silica fume 

replacement level is reduced to a third of the recommended level, the slag replacement level 

must be at least two thirds of the minimum specified level. 

It is a common misunderstanding that most of the silica fume used in concrete is a very fine 

powder. It has been shown,; however, that some of the silica fume can remain in relatively 

large lumps in hardened concrete [PETTERSON, 1992; SHAYAN et al., 1993, JUENGER, 

OSTERTAG, 2004]. These lumps are typically from 50 to 100 urn in diameter, but much 

larger lumps have been observed [MARUSIN, SHOTWELL, 1995]. If the bulk density of the 

densified silica fume is too high, it may be difficult to disperse in the concrete. Poorly 

dispersed silica fume larger than 50 um could act as alkali-silica reactive aggregate, and 

obviously large amounts of lumps will reduce the beneficial filling role of silica fume in the 

cement paste matrix. The effectiveness of silica fume, measured as ASTM C 1260 expansion, 

was not affected by the presence of lumps up to few hundred micrometers in diameter 

[GUDMUNDSSON et al., 2000]. However, there are documented cases [JUENGER, 

OSTERTAG, 2004; MARUSIN et al., 1995] where relatively large lumps acted themselves as 

reactive aggregates. Therefore, if the lumps are smaller than the threshold value in terms of 
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size, they are pozzolanic in nature but, if the lumps are larger than the threshold they become 

alkali-silica reactive [GUDMUNDSSON et al., 2000]. 

BLACKWELL, et al. (1992) have studied concrete mixtures with a range of alkali contents 

and various levels of fly ash cast using two sources of greywacke aggregate. After 15 months, 

deleterious expansion was observed in OPC concrete (without fly ash) with alkali content in 

excess of 5.18 kg/m3 Na20eq. It is clear, from the results of this study, that in concrete 

specimens containing above 5 kg/m Na20eq, replacement of 25% or more of OPC with fly 

ash was effective in eliminating damaging reactivity at 15 months. This is the case even when 

the alkalis derived from the Portland cement and added salts (i.e. disregarding any alkali 

contribution from the fly ash) are sufficient to promote considerable expansion in concrete 

without fly ash. 

WANG and GILLOT (1992) have studied the effectiveness of combining air-entrainment 

with partial silica fume replacement of cement as a means of controlling expansion caused by 

alkali-silica reaction (ASR). The expansion of mortar bars due to ASR was reduced by the 

partial replacement of cement with silica fume and was also reduced by incorporation of air-

entraining agent (AEA). The combination of AEA and silica fume was far more effective in 

reducing expansion due to alkali-silica reaction than either AEA or silica fume used 

separately. The alkali-expansivity of mortar bars containing 2% opal as alkali-reactive 

aggregate was assessed using ASTM C 227 method, as shown in Figure 2.11. 

-51-



1.8 

\Z 

* 

Z 
o 
z<X6 
< a x u 

0 

6 iOO 200 300 
TIME IN DAYS 

Figure 2.11 Effect of combined AEA and SF on ASR expansion of mortar bars ASTM C227 [WANG, 
GILLOT, 1992] 

THOMAS (1996) has presented the findings from field studies of fly ash concrete structures 

containing reactive (alkali-silica) aggregates. The Nant-y-Moch Dam in Wales and Lower 

Noch Dam in Ontario were both constructed using fly ash (20% to 30% by mass of 

cementitious material) and greywacke-type aggregate. The study was extended to include 

other dams in the vicinity built with similar reactive aggregate, but without the benefit of fly 

ash. The fly ash structures are in excellent condition after over 25 years of service in contrast 

to the dams without fly ash, which exhibited various degrees of deterioration attributed to 

ASR. Damaging ASR was identified in the plain concrete structures at alkali contents 

significantly below the commonly adopted 3 kg/m3 Na20e limit. Both fly ash structures had 

soluble alkali contents in excess of this value. Microstructural and pore solution analysis 

showed that much of the alkali in the fly ash concrete was "bound" in the C-S-H and not 

available to the pore solution for ASR. 

FENG AND TINGYU (1998) have studied the mechanism by which natural zeolite powder 

(NZP) prevented alkali-silica reaction, where a decrease in alkaline-ion concentration in the 

pore solution of concrete through ion exchange, adsorption, and pozzolanic reaction of the 

NZP prevented the formation of alkali-silicate gel and improved the interface. Also, in adding 

NZP to saturated Ca(OH)2 solution stirred with NaOH, concentrations of Na+, Ca2+ and OH" 

ions are all reduced. The fineness of NZP influenced its effect while the pH showed greater 

KEY' 
-*-0XSF,0%AEA 
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decrease when NZP was finer. The alkalinity of the pore solution in NZP mortar bar decreased 

with an increase in NZP content. The ability of the NZP to reduce mortar bar expansion has a 

connection with its capacity to reduce OH" concentration in the pore solution. 

FENG et al. (1998) have studied the effect and mechanism of natural zeolite on preventing 

expansion due to alkali-aggregate reaction. The results confirmed that expansion can be 

minimized by increasing the fineness of natural zeolite powder or by a previous heat treatment 

for the zeolite additive. When 30% natural zeolite powder (alkali content varied from 3.3% to 

4.3% Na20e) was used to replace the same cement content, AAR did not take place in 

concrete. The inhibiting effect of natural zeolite powder on AAR was also related to its 

fineness. 

LI et al. (1999) have carried out tests to investigate the effects of calcium nitrite, fly ash, 

microsilica, and their combination on the alkali-silica reaction in accordance with ASTM C 

227 (mortar bar test). The chemically combined water, X-ray diffraction, and compressive 

strength of each batch of specimens were also measured to explore the mechanism of these 

effects. The results show that both the mineral admixture and the calcium nitrite solution have 

positive effects in preventing ASR expansion (20-50% reduction in expansion). It has been 

found that the addition of a calcium nitrite solution in this experiment has additional effects, 

which are favourable for strength development. 

LANE (2000) has reported that since 1992, The Virginia Department of Transport (VDOT) 

has required the use of pozzolans or slag in most concrete for the purpose of avoiding 

deleterious ASR with aggregates that contain microcrystalline or strained quartz. Laboratory 

studies of these materials in rapid and longer-term tests indicate that they are effective in 

preventing expansion when used in the proper amount. The rapid tests (Pyrex and AMBT), 

provide conservative indications of the amount of low-lime fly ash or slag needed to suppress 

the expansion of a highly reactive Virginia aggregate and thus can be used to quickly evaluate 

materials. The results indicate that the minimum amounts of low-lime fly ash or slag needed 

to prevent excessive expansion of Virginia aggregates are 15% and 35% by mass, 

respectively, with Portland cements having alkali contents up to 1.05% Na20eq. Concretes 
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containing low-lime fly ash or slag have been used in Virginia in these amounts since 1984 

and appear to be providing good service. 

DUCHESNE and BERUBE (1992, 2000) have studied the long-term effectiveness of six 

supplementary cementitious material (SCM) tested in the presence of two highly reactive 

alkali-silica aggregates from Canada; one siliceous limestone (Spratt Quarry) and one rhyolitic 

tuff (Beauceville Quarry). Three fly ashes (FA-A, FA-B, FA-C, alkalis varying from 2.34 and 

3.07 to 8.55% Na20eq, respectively), two silica fumes (alkalis vary from 0.77 to 3.64% 

Na20eq), and one granulated blast-furnace slag (GGBFS, alkali content of 0.64% Na20eq) were 

selected based on their elemental composition in order to represent a wide range of 

compositions. Concrete prism specimens were made with various contents of SCM and tested 

according to the CSA A23.2-14A specification for concrete prism test. The performance of 

SCM in suppressing expansion due to alkali-silica reaction was compared with that obtained 

by low-alkali cement (LA, 0.74% Na20eq). The SCMs were tested with the high-alkali 

cement (HA, 1.05% Na20eq). The cement alkali content was increased to 1.25% Na20eq of 

the mass of cement by adding NaOH to the mixing water. After 9 years of experiment, the 

control mixtures made with low-alkali cement show expansions of nearly 0.04%. The use of 

40% FA-A and FA-B (Na2Oeq equal to 2.34, 3.07%, respectively), as well as the use of 50% 

slag decreases expansions lower than those obtained with low-alkali cement. They obtained 

excellent correlation between the drop of alkali ions in pore solution and expansion reduction 

in concrete. Increasing the alkali ion content produced deleterious expansion even if a great 

amount of good SCM were used. The total alkali content of the concrete prism and the amount 

of SCM used are the key factors governing expansion behavior of concrete containing SCM. 

The expansion curves are shown in Figures 2.12 and 2.13. Results show that expansion curves 

flatten out after around two years of curing for all mixtures tested. This phenomenon was due 

to alkali ions leaching from the concrete prism stored over water in sealed plastic containers 

with wicks. This behavior is supported by very low alkali ions concentrations measured on 

concrete samples at the end of the experiment. A two-year limit is then suggested when using 

the CAN/CSA-A23.2-14A method to evaluate the expansion potential of mixtures containing 

SCM. 

-54-



0 750 1500 2250 3000 3750 0 750 1500 2250 3000 3780 
Thne«tay«) Thn«(d«yt) 

Figure 2.12 Expansion of concrete prisms (CSA A23.2-14A) made with two reactive aggregates and 
various amounts of fly ash at 100% RH and 38°C [DUCHESNE, BERUBE, 1992, 2000] 
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Figure 2.13 Expansion of concrete prisms (CSA A23.2-14A) made with two reactive aggregates and 
various amounts of silica fume at 100% RH and 38°C [DUCHESNE, BERUBE, 1992, 2000] 

DUCHESNE and BERUBE (1992) have studied an accelerated autoclave mortar bar 

method to evaluate the same SCMs using the same reactive aggregates in their studies on the 

expansion of mortar bars after 5 hours of autoclaving under low temperature-pressure 

conditions (130°C-0.17 MPa or 25 psi) and after 14 days in IN NaOH at 80°C. The results of 

concrete tests after 6, 12, and 18 months and the autoclave mortar-bar results were in good 

agreement with those from CSA concrete prism and ASTM accelerated mortar bar test using a 

limit of 0.1% expansion in the autoclave test and ASTM C 1260. It is worth noting that the 

expansion values for the control specimens with Spratt aggregate were 0.301% after 18 
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months, 0.324% after 5 hours, and 0.323% after 14 days according to CSA concrete prism, 

autoclave, and ASTM accelerated methods, respectively. 

HUDEC and GHAMARI (2000) have shown that waste glass (approximately 18% Na2Oeq 

content) has pozzolanic properties, since it also consists of amorphous silica. Experiments 

were carried out to determine the type, proportion, and size of crushed and powdered waste 

glass that would be most effective in reducing ASR. The glass was used both as replacement 

of a given size of reactive Spratt aggregate fraction (4%) and as an additive (8%). The rapid 

80°C IN NaOH mortar bar method was used for comparative testing. The results showed that 

the glass fractions coarser than sieve No. 200 (75 um) acted as a highly-reactive aggregate and 

increased the ASR expansion of mortar. Smaller size fractions decreased ASR expansivity, 

and the decrease was a function of the total glass surface area. Colored (lower quality) bottle 

glass was slightly more effective than white bottle glass. The ASR reduction by powdered 

glass was equivalent to that produced by the same amount of silica fume. 

KOJIMA et al. (2000) have carried out mortar bar tests in order to evaluate the reactivity of 

glass powder (contains about 13% Na20eq) produced from waste bottles in the alkali-silica 

reaction. Five levels of glass powder replacement ratio (0 to 40%) and two levels of water to 

cementitious material ratio (30% and 50%) were chosen. Glass powder was incorporated as 

the replacement for fine aggregate or cement. River sand was used as the natural fine 

aggregate. Large expansive strain was not observed under the accelerated condition (1.2% 

Na20eq content) and its value was smaller than 0.1% at the age of 6 months, even if a larger 

amount of glass powder (30 to 40% replacement ratio) was used. It is suggested that glass 

powder is sound for the alkali-silica reaction, when used as replacement material for fine 

aggregate or cement, this work was also confirmed by [SHAYAN AND XU, 2004; SHI et al., 

2005]. The alkali in glass powder does not accelerate the alkali-silica reaction, though it 

contains a larger amount of alkali (13 % Na20eq). The glass powder produced from waste 

bottles has the potential to be used as an ingredient of concrete. Also, the use of waste glass as 

an aggregate and its effect on mechanical properties and ASR has been studied by several 

other researchers, including SCHMIDT and SAIA (1963), JOHNSTON (1974), and FIGG 

(1981), whose results suggested that the use of glass aggregate generally produces highly 
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unsatisfactory concrete due to ASR and poor strength development. FIGG (1981) has also 

noted that the ASR involving glass aggregate is qualitatively different from ASR involving 

more porous natural aggregates, exhibiting a pessimum with respect to particle size. POLLEY 

et al. (1998) have indicated in their study that glass aggregate is a satisfactory substitute for 

natural fine aggregate, at replacement levels of up to 20% of total aggregate, the glass 

gradation must be between 75 um and 1.5mm. A comparable strength to control concrete was 

obtained at comparable water-to-cementitious ratio when fly ash in a proportion of 0 to 35% 

of the total cementitious material was obtained. 

YAMAMOTO and KANAZU (2000) have studied the relation between pozzolanic activity 

and preventive effect on ASR of fly ash, and proposed an accelerated chemical test to estimate 

the effectiveness of fly ash in preventing ASR expansion in concrete. The chemical test 

estimated the consumption ratios of Ca in normal Portland cement and fly ash blended 

suspensions. The consumption ratio of Ca was named API (assessed pozzolanic-activity 

index): 

API = (([Ca(c)] - [Ca(f+c)]) / [Ca(c)]) * 100 % (2.4) 

The characters Ca, c, and f stand for Ca ion concentration, cement and fly ash, respectively, 

where the time taken to obtain the results is about one day (reacting condition: 80°C - 18 

hours). There was a linear correlation between API and the preventive effect on ASR derived 

from mortar bar tests; the higher the API, the higher the preventive effect. The results 

suggested that the proposed chemical testing method might be a useful and convenient method 

to estimate the effect of fly ash in preventing ASR. The proposed chemical method resulted in 

evaluating not only the effect of fly ash in preventing ASR, but also the pozzolanic activity. 

The pozzolanic activity index (AI) of each fly ash sample was determined as a ratio of 

compressive strength of the mortar with fly ash to the control mortar without fly ash at 28 

days of age. 
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One of the most popular recommendations is replacing 50% or more of the ordinary Portland 

cement (OPC) by ground granulated blast-furnace slag. However, there have been a number of 

results from laboratory tests indicating that this process may not always be effective. 

LUMLEY (1992) has reported in some laboratory tests that a slag of moderate alkali content, 

used to replace 30% of a high-alkali Portland cement only marginally alleviated ASR 

expansion in mortar bars containing natural opaline aggregates. In another test, a second slag 

of lower alkali content than the cement used actually increased expansion. In 1982, HOBBS 

reported experiments using mortar bars made with high alkali cement and opal as reactive 

aggregate. He found that "if the cement has an alkali content of 1.1% and the cement content 

is 550 kg/m3, damage due to ASR may be avoided if 50% of the cement is replaced by slag." 

He concluded that slag acts as an "alkali diluter" and that it may be assumed to contain no 

available alkali, however, HOBBS (1986) has quoted other examples of slag alleviating ASR 

to a lesser extent than expected. 

Slag has variable alkali content, and it seems that under certain circumstances, some 

proportion of these alkalis might become released within concrete, especially if the concrete 

alkali content derived from other sources is comparatively low. However, the extent to which 

any such released alkalis will promote ASR expansion remains uncertain. There is conflicting 

evidence concerning the contribution of alkalis from fly ash to the reaction, and it has been 

suggested that one-sixth of the total (acid-soluble) alkalis in fly ash should be considered 

when calculating the total available alkalis in concrete [HOBBS, 1986]. In contrast, other 

researchers have shown that fly ash concrete can tolerate higher alkali contents than concrete 

without fly ash, even when the alkalis from fly ash are disregarded [NIXON et al., 1984; 

THOMAS et al., 1991; OBERHOLSTER AND WESTRA, 1981; DUNCAN et al., 1973]. 

The replacement level of a single SCM needed to prevent deleterious ASR expansion and 

cracking may create other problems or concerns. For example, there is a perception that the 

incorporation of 50% slag or greater than 20% fly ash needed to ensure adequate protection 

against ASR expansion may lead to poor resistance to deicer-salt scaling [THOMAS, 1996; 

MEHTA, 1989]. Likewise, incorporating silica fume at levels greater than 10% by mass of 
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cement may lead to dispersion and workability concerns. However, it is possible to alleviate 

these and other concerns by using ternary blends with reduced amounts of fly ash or slag in 

combination with silica fume. There has been increased interest in the use of ternary blends of 

cementitious materials in recent years, partly due to the development of high-performance 

concrete. Such blends contain Portland cement together with two other supplementary 

cementitious materials (e.g. silica fume with either fly ash or slag). These ternary blends are 

known for producing concrete with excellent fresh and mechanical properties. 

THOMAS and BLESZYNSKI (2000) have studied ternary blend combinations of silica 

fume, blast-furnace slag, and Portland cement. The performance of these blends in terms of 

controlling deleterious expansion due to ASR shows that there is a synergistic effect when 

appropriate combinations of silica fume and slag are used. Mixtures with relatively low levels 

of silica fume (4 to 6%) combined with moderate levels of slag (20 to 35%) are very effective 

in controlling expansion in concrete containing high-alkali cement and highly reactive 

aggregate. The use of an appropriately proportioned ternary blend causes a marked reduction 

in expansion equal to, or greater than the superposition of the individual influences of a single 

SCM. A preliminary study was conducted using the accelerated mortar bar test (CSA A23.2-

25A) to evaluate appropriate mix combinations of silica fume and blast-furnace slag. 

Expansion levels less than 0.1% at 14 days were used to evaluate effective mix combinations. 

The straight line drawn between the single SCM points represents the "theoretical" effective 

ternary blend combinations. It is interesting to note that ternary mixtures that have sufficiently 

controlled ASR expansion extend beyond this theoretical threshold. This implies a synergistic 

effect exits between the SCMs resulting in reductions in expansion greater than the sum of the 

individual SCMs acting alone, as shown in Figure 2.14. 

SHEHATA and THOMAS (2002) have investigated the effect of cementitious system 

containing Portland cement, silica fume, and fly ash on expansion due to alkali-silica reaction. 

Concrete prisms were prepared and tested in accordance with CSA A23.2-14A standard. Paste 

samples were cast using the same or similar cementitious material and proportions as were 

used in the concrete prism test. It was found that practical levels of silica fume with low-, 

moderate- or high-calcium fly ash were effective in maintaining expansion below 0.04 % after 
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2 years. Pore solution chemistry showed that while pastes containing silica fume yield pore 

solutions of increasing alkalinity at ages beyond 28 days, the shortfall of the increased pore 

solution alkalinity with age obtained for cementitious systems containing silica fume was 

overcome by using fly ash together with silica fume. In other words, ternary blends resulted in 

pore solution of low alkalinity throughout the testing period (3 years). 
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Figure 2.14 Performance of mortar ternary blend combinations with Spratt aggregate (BLESZYNSKI, 
THOMAS, 2000) 

TEMIZ and KARAKECI (2002) have used high-calcium fly ash (HCFA) and silica fume 

(SF) as mineral admixtures. The effect of these admixtures on the microstructure of cement 

paste was investigated using X-ray diffraction (XRD) and scanning electron microscopy 

(SEM). The reaction of HCFA and SF with portlandite, which occurs in Portland cement (PC), 

forms a new calcium-silicate-hydrate (C-S-H) gel. Thus, the amount of Ca(OH)2, which is 

harmful for concrete decreased. 

FOURNIER et al. (2000) have summarized new proposed standards for the determination of 

the potential alkali reactivity of aggregates, and selection of appropriate measure for 

preventing deleterious expansion due to AAR. The proposed approach for selecting preventive 

measures against ASR involves a risk evaluation process based on the following factors: (1) 

the degree of reactivity of the particular reactive aggregate, (2) the size of the concrete 
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element and the environmental conditions to which it will be subjected, and (3) the expected 

service life of the structure. Proposed preventive measures are then determined according to 

the following approaches: (1) limit the alkali content in the concrete to a selected level, and/or 

(2) use of an effective supplementary cementing material (SCM) or an effective combination 

of supplementary cementing materials (SCMs) in sufficient amount. 

ICHIKAWA and MIURA (2007) have proposed that OH" and R+ ions in the pore solution 

de-polymerize silica-rich aggregate to convert to fluid hydrated alkali silicate. The surface 

region of the aggregate is homogeneously covered with the alkali silicate. Consumption of 

OH" ions by the reaction assists the dissolution of calcium into the solution. The Ca ions 

easily penetrate into the soft alkali silicate to re-polymerize the silicate. The aggregate is now 

tightly packed with a rigid reaction rim that allows the penetration not of alkali silicate but R+, 

Ca2+ and OH" ions. The Ca2+ ions penetrate much slower than the R+ ions. The OH" and R+ 

ions penetrate through the reaction rim to convert the fresh silicate into bulky alkali silicate. 

The resultant expansive pressure is stored in the aggregate. The accumulated pressure cracks 

the aggregate and the surrounding cement paste when the pressure exceeds the tolerance of the 

aggregate surrounded by the reaction rim and the cement paste. In this study, Portland cement 

and ASR-reactive andesite containing significant amount of glassy silicate were used. The 

content of alkali was enriched to 2.5 times while keeping the Na20/K20 ratio constant. The 

concrete block wrapped with a cloth was kept at 40°C under 100% relative humidity for 

4 months. The concrete block was then kept in a closed plastic bag at room temperature. 

2.9.4 Alkali release from fly ash and slag 

In the context of the alkali-silica reaction in mortar and concrete, the question of how much 

alkali is released from latent hydraulic binders and are actually available for the reaction has 

been the subject of a great deal of work and controversy over the last decade. Although the 

reaction itself is the result of the attack on reactive silica by hydroxyl ions, the concentration 

or amount of these that become available is generally influenced, though not always, by the 

concentration or amount of alkali available [BARLOW AND JACKSON, 1987]. Some 

authorities accept that the water-soluble alkali content of the hydraulic binder provides a 
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quantitative measure of the alkalis available in concrete. The ASTM C311 method for 

"available alkali" acknowledges that in the case of concrete, we are not dealing with water, but 

a high pH solution with the possibility that this solution may attack the glass in which the 

alkalis in fly ash and granulated blast-furnace slag are mainly bound. The ASTM method uses 

calcium hydroxide to provide an alkaline environment, but, as has been established by 

BUTTLER et al. (1981), the amount of alkali released is dependent upon the relative 

proportions of the constituents in the paste. 

Both fly ash and slag can have alkali content markedly higher than Portland cement. 

GLASSER and MARR (1984) and COX et al. (1950) have shown that alkalis can be released 

by fly ash and slag into the pore solution and that the alkalis released can be in greater 

quantity than those from a Portland cement. DIAMOND (1981), however, has concluded 

from tests using two Danish fly ashes that one fly ash, which had a total alkali content of 2.4% 

by mass, acted as an inert diluter whilst the other, which had a total alkali content of 3.3 % by 

mass, extracted a small proportion of alkalis from the pore solution. 

CANHAM and NIXON (1987) have reported that fly ashes, when blended with Portland 

cement of moderate alkali content, were generally capable of reducing the concentration of 

hydroxyl ions in the pore solution phase to a greater extent than would be expected if they 

were assumed to behave as cement of zero alkalinity. The reduction in alkalinity of the pore 

solution caused by fly ash proceeded over a relatively long time, which suggested that it is 

probably associated with the incorporation of alkalis into C-S-H gel formed by the slow 

pozzolanic reaction. On the other hand, ground granulated slags, when blended with Portland 

cement tend to reduce the hydroxyl ion concentration of the pore solution phase, through 

generally to a lesser extent than would be expected if they were assumed to behave as cement 

of zero alkalinity. The effectiveness of slags in lowering the hydroxyl ions concentration of 

cement pore liquid is not primarily controlled by the alkali content of the slag, and it appears 

that other factors influencing the nature and composition of the C-S-H gel formed may be 

important. 
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DUCHESNE and BERUBE (1994) have studied the pore solution chemistry of cement 

pastes made with two condensed silica fumes, three pulverized fly ashes(with different alkali 

contents vary from 2.34 to 8.55%) and one ground granulated blast furnace slag. The extracted 

solutions were tested at 7, 28, 84, 182, 364 and 545 days of curing (38°C and 100% R.H.). 

Results were compared to expansions obtained for a 2 year time period in the CAN/CSA 

A23.2-14A Concrete Prism Method for concrete specimens made with two very alkali-silica 

reactive aggregates and tested at the same conditions and water/cement/SCM. A long-term 

threshold in alkali hydroxide concentration was observed around 0.65N, below which no 

significant expansion occurred in corresponding concretes. The lower the SCM alkali content 

and the concrete alkali content as well, and the higher the SCM content, the easier this limit is 

satisfied. They observed that a large proportion of alkalis released by the fly ash sample, with 

high alkali content (8.55%), remains in solution and is available for ASR (88% at 28 days and 

62% at 1.5 year with 20% fly ash; 52% at 28 days and 36% at 1.5 year for 40% fly ash). 

Moreover, they have concluded that a threshold in alkali concentration was observed around 

0.65N NaOH+KOH over a long time period, which corresponds in this study to a 30% drop 

with respect to the controls; below this value, no significant expansion occurred in 

corresponding concretes made with very reactive aggregates. 

2.9.5 Influence of fluorides on the degree of cement hydration 

SAUMAN (1989) has studied the influence of fluorides and silicofluorides on the degree of 

cement hydration. The following compounds were selected: CaF2, NaF, CaSiF6, Na2SiF6, and 

K^SiFg. A basic mixture was employed which consisted of clinker and natural gypsum in the 

weight ratio 93 parts:7 parts. The addition of fluoride or silicofluoride was always converted 

to 7% of natural gypsum; the hydration period (22°C, 100% relative humidity) corresponded 

to 24 hours. After this period the samples were freed by a chemical process from the 

mechanically bound water. The degree of hydration was determined on the basis of the 

liberated portlandite Ca(OH)2, which was determined thermogravimetrically and converted 

together with the secondarily formed CaC03 into CaO. The results can be seen from the 

illustration shown in Figure 2.15 from which one can conclude that no retardation of the 

hydration process can be proved either in the case of CaF2 or NaF, but pronounced retardation 

effect is exhibited due to the presence of Na2SiF6. 
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Figure 2.15 Quantity of liberated lime versus addition of fluorides or silicofluorides [SAUMAN, 1989] 

SHANBA and ZHONGHUI (1989) have studied the effect of fluoride on hydration of C3S 

by burning a stoichiometric mixture of C3S with CaF2, specified at 1500°C for 3 hours, and 

repeating the burning twice. All samples were ground to about 3000 cm2/g (Blaine) and 

studied by chemical analysis, XRD, conduct calorimeter, SEM, and compressive strength 

tests. The results showed that the hydration degree, the chemical bound water, the rate of heat 

evolution, and the compressive strength were decreased with increasing F content in C3S 

samples at 1 day, but increased at 3 days. As the content of F in C3S increased, the time at 

which Ca2+ and OH" ion concentrations in liquid phase reach maximum was delayed. The 

higher the F in C3S, the more time delayed by the concentrations of Ca and OH- were more 

the same for all samples at 3 days. The addition of CaF2 as an admixture during hydration has 

little effect on compressive strength and the Ca2+ and OH" concentration in liquid phase. 

2.10 Conclusions 

- The reactivity of pozzolans could be significantly increased by several methods, such as 

elevated temperature curing and the addition of proper chemical activators to their pastes. 

- There is obvious correlation between the pozzolanic activities of mineral admixtures and 

preventive effects on alkali-silica expansion. 

- Microstructural and pore solution analysis showed that much of the alkali in the fly ash and 

slag concrete was bound in the C-S-H and not available to the pore solution for alkali-silica 

reaction. 
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- C-S-H reaction product of glassy phase of mineral admixtures with CH, with lower Ca/Si 

ratio, has the ability to entrap alkalis. 

- CaF2 has no harmful effect on the hydration of cement phases. 

- Many studies support the high effectiveness of fly ash and slag in suppressing alkali-

aggregate reaction, where their concrete can tolerate higher alkali content than concrete that 

does not incorporate then -

- The partial replacement of Portland cement with single SCM such as fly ash, slag, or silica 

fume affects the reduction in ultimate expansion, but may lead to durability concerns. 

- The use of appropriately proportioned ternary mixtures causes a marked reduction in 

expansion equal to, or greater than, the superposition of the individual influences of a single 

SCM and decrease durability concerns. 

- When blended cements are used, the influence of alkali contained in the admixtures (fly ash, 

slag, etc.) on expansion is very small. 

- Particle-size distribution mainly influences both fly ash and slag reactivity at early ages, 

while the chemical composition and amorphous phase content play a prevailing role at later 

ages. 

- Poorly dispersed silica fume (densified silica fume) larger than 50 urn could act as alkali-

silica reactive aggregate. 

- Accelerated test CSA C23.2-25A (IN NaOH at 80°C) is suitable to detect alkali 

reactive aggregate and can be used to evaluate the effectiveness of mineral admixtures 

against alkali-silica reaction. 
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CHAPTER 3 

MATERIALS AND TEST PROCEDURES 

3.1 Introduction 

The materials used in the current study are frequently referred to, and therefore this chapter 

concentrates on the properties of these materials in order to avoid repetition in subsequent 

chapters. It should be noted that this chapter is divided into two parts. Part I deals with glass 

frit used as clinkerless binder, while part II examines glass frit as a supplementary 

cementitious material and its effect on alkali-silica reaction (ASR). 

3.2 Cementitious binders 

Combinations of cement with various combinations of GF and cementitious materials to form 

different cementitious systems were used to study potential synergetic effects. The term water-

to-binder ratio is used rather than the conventional water-to-cement ratio, to take into account 

all of the binders mentioned hereafter. The physical and chemical properties of the 

cementitious binders, which were obtained from the NOVA Pb and St. Lawrence Cement 

company, are summarized in Table 4.1. 

3.3 Ordinary Portland cement (OPC) 

Ordinary Portland GU cement, sourced from St. Lawrence Cement company and meeting the 

requirements of CSA A3 001 specification, was used as the main binder to which other 

cementitious materials were added as partial cement replacements. An adequate quantity of 

OPC from the same silo was stored during work on this part of the study in their original bags 

as one batch and with sealed airtight plastic covers in a storage room where the temperature 

remained between 20 and 22°C. The physical and chemical properties of OPC used in this 

investigation, which were tested by the supplier, are shown in Table 4.1. 

3.4 Glass frit (GF) 

Glass frit was supplied by the company NOVA Pb Inc. of Sainte-Catherine, Quebec, Canada. 

An adequate quantity of glass frit was obtained to ensure all mixtures done in this part of the 

study were from the same batch. The glass frit was stored in large sealed and airtight barrels 

from one single source, where the temperature remained between 20 and 22°C. The physical 
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and chemical properties of glass frit were tested by NOVA Pb and Universite de Sherbrooke 

laboratories, respectively, and are summarized in Table 4.1. 

3.5 Ground granulated iron blast-furnace slag (slag) 

The ground granulated iron blast-furnace slag (slag) used in this study was provided by the St. 

Lawrence Cement company. It complies with Canadian specification CAN/CSA A3 000 

(Canadian Specification for Supplementary Cementing Materials). An adequate quantity of 

slag was stored to ensure all mixtures containing slag as binder originated from a single source 

and were of uniform composition. Slag was stored in sealed airtight barrels in a large storage 

room where the temperature remained between 20 and 22°C. The physical and chemical 

properties of the slag used in this study were tested by Universite de Sherbrooke laboratories 

and are shown in Table 4.1. 

3.6 Fly ash (Fa) 

The pulverized fly ash (Fa) used in this study, classified as Class F, was supplied by the 

Lafarge Canada Company. It complies with CAN/CSA A3000 and ASTM C-618 

specifications. An adequate quantity of Pfa was stored to ensure all mixtures containing Pfa 

as binder originated from a single source and were of uniform composition. Pfa was stored in 

sealed airtight barrels in a large storage room where the temperature remained between 20 and 

22°C. The physical and chemical properties of Pfa used in this work were tested by Universite 

de Sherbrooke laboratories and are shown in Table 4.1. 

3.7 Condensed silica fume (CSF) 

The condensed silica fume (CSF) used was supplied by SKW Canada Inc., Becancour, 

Quebec. It complies with CAN/CSA A3 000 specification. An adequate quantity of CSF was 

stored to ensure all mixtures that contained CSF as binder originated from a single source and 

were of uniform composition. CSF was stored in sealed airtight barrels in a large storage room 

where the temperature remained between 20 and 22°C. The physical and chemical properties 

of CSF used in this study were tested by Universite de Sherbrooke laboratories and are 

summarized in Table 4.1. 
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3.8 Coarse and fine aggregates 

3.8.1 F ine aggregates 

Five types of fine aggregates were used in this work. 

i) The Ottawa sand used as standard sand was supplied in bags. Ottawa sand is unique, its 

rounded grains of clear colorless quartz, diamond-like in hardness, are pure silica 

(silicon dioxide) uncontaminated by clay, loam, iron compounds, or other foreign 

substances. Ottawa sand was obtained from the St. Peter sandstone quarry. It meets the 

requirements of Canadian specification CSA A23.1(ASTM C33), as shown in Figure 

3.1. 
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Figure 3.1 Grade distribution of fine aggregates 

ii) Aime Cote sand, which consists of river sand, was used as regular sand and was supplied 

in barrels. It complies with Canadian specification CSA A23.1(ASTM C33), as shown in 

Figure 3.1. 

iii) LG sand is provided by Bau-Val Inc. The company, located in Saint-Hippolyte in the 

Lower Laurentians area, operates a quarry with very rich deposits of granite aggregates 

that it offers to various specialized markets in the Laurentians and elsewhere, including 

the construction market. 

iv) Spratt (limestone) and Mirabel (dolostone) coarse aggregates were crushed to pass 

through different sieves according to ASTM C227, as shown in Table 3.1. The size 

fractions thus obtained were recombined to be used in accelerated mortar bar testing. 

Ottawa sand 

Aime Cote sand 
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TABLE 3.1 GRADE PROPORTION OF TESTED AGGREGATES 

Sieve size (mixture 
Passing 
5 mm 

2.5 mm 
1.25 mm 
630 um 
315 um 

Retained 
2.50 mm 
1.25 mm 
630 (am 
315 urn 
160 um 

of 4 bars) 
Mass (%) 

10 
25 
25 
25 
15 

Mass (g) 
135 

337.5 
337.5 
337.5 
202.5 

3.8.2 Coarse aggregate 

Spratt aggregate is commonly used as standard aggregate in AAR investigation. Spratt 

aggregate was crushed and sieved into three-grain sizes according to CSA A23.2-14A, i.e. 20-

14mm, 14-10mm, and 10-5mm sieves. 

Aime Cote coarse aggregate used in three-grain sizes - 10, 14 and 20 mm - was supplied by 

the Aime Cote Company. It meets the requirements of CSA A23.1 (ASTM C33) specification 

and its particle size distribution is shown in Figure 3.2. 

5" 100 

10000 20000 30000 40000 50000 

Sieve size (um) 

Figure 3.2 Aime Cote aggregate particle size distribution 

The physical properties of both fine and coarse Aime Cote and Ottawa aggregates are given in 

Table 3.2. These properties were used in the mix design for the concrete prism test. 
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TABLE 3.2 PHYSICAL PROPERTIES OF FINE AND COARSE AGGREGATES 

Properties 

Name 

Type 

Maximum diameter 

Modulus of fineness 

Density 

Absorption coefficient 

Coarse 
aggregate 

Aime Cote 
Crushed 

(calcareous) 
10mm 

6.4 

2.64 

0.57 

Coarse 
aggregate 

Aime Cote 
Crushed 

(calcareous) 
14mm 

-

2.63 

0.44 

Fine aggregate 

Aime Cote 

River sand 

<5mm 

2.5 

2.73 

1.27 

Fine 
aggregate 

Ottawa sand 

excavated 

<0.6mm 

-

2.65 

-

The above-mentioned materials were used in the two main phases of this thesis. The other 

materials specific to each phase are mentioned in each part separately, as follows: 

3.9 Alkali-activated GF cement 

3.9.1 Alkali-activators 

The activators used in this study were as follows: 

i) Technical grade sodium hydroxide, which was in pellet form, with a purity of 

97.0%. This activator is referred to as NaOH; 

ii) Technical grade sodium carbonate; 

iii) Technical grade potassium carbonate; 

iv) Technical grade hydrated lime; 

v) Technical grade sodium metasilicate; 

vi) Technical grade sodium sulfate. 

3.10 Alkali-silica reaction 

The aggregates used in this part of the study were evaluated according to the requirements of 

CSA A23.2-25A, A23.2-14A, and ASTM C 227 Canadian specifications, as shown later. 

3.10.1 Mortar bar tests 

The fine aggregates used in this part of the study were Ottawa sand, Aime Cote sand, LG 

sand, and ground Mirabel and Spratt coarse aggregates. The coarse aggregates used were 

previously crushed, then passed through a series of sieves, as shown in Table 3.1. 
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3.10.2 Concrete prism test 

The fine aggregates used in this part were Ottawa and Aime Cote sands, while Spratt 

aggregate was the only coarse aggregate used. Spratt aggregate was sieved into three grades 

and proportioned into three equal parts according to CSA A23.2-14A, i.e. 20-14mm, 14-

10mm, and 10-5mm sieves. 

3.10.3 NaOH pellets 

Technical grade sodium hydroxide, provided in pellet form with a purity of 97 %, was used to 

increase the alkalinity of the surrounding or internal environment presents in mortar bar or 

concrete prism tests. 

3.10.4 Chemical admixtures 

The only superplasticizer (SP) used is a polynaphthalene-sulfonate-based material (PNS). It 

was mainly used as a dispersing agent for those mixtures containing condensed silica fume 

and as a dispersing agent and water-reducer for the other mixtures. The specific density of SP 

is 1.21 and the solid content is 42%. 

3.11 Experimental program 

3.11.1 Introduction 

The main objective of this research program is to assess the effective utilization of GF in 

concrete and "green" concrete manufacturing. This main objective is divided into two sub-

objectives. The first sub-objective is to improve the pozzolanic and hydraulic properties of GF 

as an ecological binder for manufacturing of clinkerless paste, mortar, and concrete. The 

second sub-objective is to use GF as an alternative supplementary cementitious material as 

OPC cement replacement, and assess the effect of the alkali content of GF on ASR expansion 

in mortar and concrete. During the experimental program, different Canadian and American 

specifications, as well as modified specifications, were used, as shown in Figure 3.3. 
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Figure 3.3 Schematic diagram of the main steps in the experimental program. 
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The experimental program is divided into two main phases as described hereafter and 

illustrated in Figure 3.3. 

A. Use of GF as an activated cementitious binder by using combinations of two methods: 

i)- The chemical method; 

ii)- The thermal method (heat curing). 

The aim of this part of the study was to obtain a GF clinker-free binder by using different 

activators and combinations of activators, under different conditions, that enhance the latent 

pozzolanic and hydraulic properties of GF. Tests were conducted on series of different pastes, 

mortars, and concretes. The improvement of binding properties of GF by partial replacement 

with a small amount of given mineral admixtures (partial replacement), such as silica fume, 

fly ash, and slag, was carried out. This part of the study showed the potential of using various 

methods to improve the binding properties of GF. 

B. Use of GF as an alternative supplementary cementitious material (active additive) 

This part of the study was conducted to show the actual effect of the alkali content in GF on 

ASR expansion in mortar and concrete, both in the short and long term. 

3.12 Alkali-activated glass frit binder (AAGFB) 

In this part of the study, the pozzolanic and hydraulic activities of GF incorporating different 

activators and tested at different temperatures of activation were evaluated. To begin this 

evaluation, a few trial mixtures were done. 

3.12.1 Trial mixtures 

Trial mixtures to determine the actual binding ability of GF as a clinkerless binder were first 

carried out. Preliminary results showed that GF is highly reactive with most alkaline salts at 

elevated temperatures. Some of these mixtures contained fly ash and slag to estimate the effect 

of their presence with GF before proceeding with the detailed experimental program, as 

shown in Table 3.3. 
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TABLE 3.3 ACTIVATED TRIAL MIXTURES OF GF ALONE OR IN 
COMBINATIONS WITH SLAG OR FLY ASH 

Sample 
No. 

1 
2 
3 
4 
5 
6 
7 
8 

Glass 
frit 
(%) 

33.3 
38.0 
80 
80 
80 
100 
100 
100 

Slag 
(%) 

40 
-
-

20 
20 
-
-
-

Fly 
ash 
(%) 

-
31 
-
-
-
-
-
-

Lime 
(%) 

26.7 
31.0 
20.0 

-
-
-
-
-

w/b 
ratio 

0.29 
0.29 
0.23 
0.29 
0.32 
0.14 
0.19 
0.19 

Ottawa 
sand 

-
-
-
-
+ 
-
+ 
+ 

b/sand 
ratio 

-
-
-
-
1 
-

0.44 
1 

S
ill
 

-
-
-
3 

3.3 
3 
3 
3 

Activation 
temperature 
(°C) and time 

80°C-18hrs 

Notes 

Set 
Set 
Set 

50MPa 
28MPa 
35MPa 
23MPa 
18MPa 

+ stands for mortar (added sand), 50mm test cubes were used to test compressive strength 

Table 3.3, and Figures 3.4 and 3.5 have shown that GF could be activated alone or in 

combination with slag or fly ash. Both NaOH and lime could be used as effective and primary 

activators. The initial activation of GF alone using NaOH gave a compressive strength of 35 

MPa (sample 6), while the activation of GF replaced by 20% slag using the same activator 

increased the compressive strength to about 50 MPa (an increase of about 43%) in less than 24 

(sample 4) hours. Based on the results of these preliminary tests intensive work on the 

activation of GF into a clinkerless binder and its utilization in manufacturing pastes, mortars, 

and concretes has been carried out. 

/ 

t_ 

;Cl»>frit*slag« ftne Glu»fcfc*ftrMk + lim« 

'-HB--
Chetfal* Usae 

Figure 3.4 Different lime-activated glass frit Figure 3.5 Different alkali-activated glass frit mixtures 
mixtures alone or in combination with slag or alone or in combination with slag giving a 1-day 
fly ash compressive strength of up to 50 MPa 
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3.12.2 Detailed laboratory program 

The experimental laboratory program is divided into three main parts. In the first part, 

different glass frit pastes incorporating different activators and subjected to different 

temperatures of activation were tested. Slag and fly ash were used as co-binders (in small 

ratios) to improve mechanical properties. The presence of slag and fly ash with GF was tested 

at low temperature of activation, as the main aim of their presence with GF was to decrease 

the need for high temperature of activation. In the second phase, which is strongly related to 

the first phase, different mortars were fabricated based on the best mixtures of the first phase, 

and mechanical strengths were determined to obtain the best sand-to-GF ratio. In the third 

part, a series of concrete mixtures were made and their mechanical properties, represented by 

compressive strengths, were determined. 

A. Inorganic activator 

The activators used in this part were as follows: 

1- NaOH, and Ca (OH)2 and various combinations of the two; 

2- Na 2CO3, K 2CO3, CaC03 and various combinations of the three; 

3- Na2 S04; 

4- Na2Si03.9H20. 

Binary and ternary combinations of these salts were used through the activation process. All 

the other inorganic and organic basic salts are also recommended. The characteristics of the 

mixtures tested in each part are summarized in the next section for paste, mortar, and concrete. 

A variety of concentrations and temperatures were chosen. A temperature of 21°C and 100% 

R.H. were chosen as curing conditions to monitor compressive strength development after the 

completion of the activation process. 

3.12.3 Test procedures 

A. Steam-curing reactor 

The reactor is mainly composed of a small humidity chamber measuring 

50 X 50 X 70 cm and a temperature-control unit, as shown in Figure 3.6 and 3.7. All of the 

activated mixtures tested in this part of the study were cured in this reactor. 
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Figure 3.6 Actual and schematic diagrams of the reactor used 

Figure 3.7 Top view of the reactor used 

3.12.4 Mixing method 

The mixing of paste was carried out in a 5-litre stainless steel mixing bowl. The total amount 

of binder used for any given batch ranged from 1.25 to 2.5 kg. Mixing was conducted using a 

two-speed switch mixer. Pastes were prepared by mixing the pre-weighed NaOH pellets and 

water in the mixing bowl, and then adding the pre-weighed GF powder to this solution and 

mixing for 2 minutes at slow speed. The mixing was then stopped for 2 minutes and finally 

mixed for another 2 minutes at high speed. The resulting paste was then cast into moulds with 

2-inch cubes made of brass, which is a thermally conductive material. The moulds were 

placed 5 cm above water by means of a steel rack with four vertical support legs as shown in 
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the reactor diagram in Figures 3.6 and 3.7. The temperature is automatically controlled and the 

unit is attached to an LCD screen as well as an electronic recorder to register the temperature 

reading over time. 

This system is ideal for carrying out the activation process of such materials and it is highly 

recommended. Both the temperature and the pressure can be controlled and maintained at 

constant level, in addition to the relative humidity, which can be maintained at 100% during 

the activation process. This activation process can be schematically represented, as in Figure 

3.8, to show the overall activation process used after thermal curing. The samples were 

removed from the reactor after selected time periods and covered with an isolator to let them 

cool down slowly. They were then demoulded and cured in the humidity chamber (20 ± 2°C 

and 100% R.H.) until they reached testing age. Many other activators and SCMs could be 

used in this system. After the activation energy surpasses the threshold activation energy, GF 

and any other SCM combinations with GF can be easily transferred into a new binder. 

Ca(OH)2 

GF 
NaOH 

U. 
Reactor 
100% R.H. 

AT 
V 

AAGF 

Concrete 

Mortar 

Paste 

Figure 3.8 Schematic diagrams of the activation process 

3.12.5 Mix characteristics of GF clinkerless cement pastes made with NaOH activator 

As the most effective activator, NaOH was chosen as the first activator to begin with in 

preparing the first series of clinkerless GF pastes. Three temperatures of activation of 50, 60 

and 80°C were chosen. 
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A. Paste mix design 

In the first mix at 50°C, a constant GF content was used with w/GF ratio changing according 

to the apparent workability, which in turn changes according to NaOH concentration, as seen 

in Table 3.4. It can be seen that as NaOH increases, so does the w/GF ratio just as the 

hygroscopic effect of NaOH increases water demand. The same observation was noted with 

the other mixtures at 60 and 80°C, as shown in Tables 3.4 and 3.5. The molar concentrations 

of NaOH have been calculated with respect to the mixing water. It is more practical to express 

NaOH concentration in molar value than in percentage value, as the molar value is more 

representative of the pore solution in the paste. The mixture proportions of these series are 

given in Tables 3.4 and 3.5. 

TABLE 3.4 MIXTURE CHARACTERISTICS OF SAMPLES TESTED AT 50 AND 
60°C 

Mixtures 

C0.5 
CI 

C1.5 
C2 

C2.5 
C3 

C3.5 
C4 

C4.5 
C5 

50°C 

W/GF 

0.312 
0.310 
0.307 
0.308 
0.308 
0.316 
0.315 
0.318 
0.322 
0.324 

Na20 
(molar) 

0.26 
0.52 
0.79 
1.05 
1.31 
1.53 
1.79 
2.03 
2.25 
2.49 

60°C 

W/GF 

0.315 
0.315 
0.319 
0.318 
0.320 
0.319 
0.319 
0.319 
0.319 
0.319 

Na20 
(molar) 

0.26 
0.51 
0.76 
1.01 
1.26 
1.52 
1.77 
2.02 
2.27 
2.53 

TABLE 3.5 MIXTURE CHARACTERISTICS OF SAMPLES TESTED AT 80°C 

Mixtures 

CI 
Cl-sp 

C2 
C3 

C3-sp 
C4 
C5 

W/GF 

0.290 
0.290 
0.306 
0.302 
0.250 
0.306 
0.308 

Na20 
(molar) 
0.556 
0.556 
1.054 
1.603 
1.603 
2.110 
2.618 

Remarks 

0.74% (solid SP) 

1.29 (solid SP) 
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3.12.6 Other single activators used 

In this part of the activation process, a temperature of 60°C was used with the other activators 

in their different forms. The activators used varied from single to binary and ternary 

activators, as shown in the following part: 

A. Ca(OH)2 activator (CH) 

As previously mentioned, this activator was tested during the determination of the pozzolanic 

properties of GF using ASTM C 311 and ASTM C 593. The activation temperature in this test 

was 60°C. Three GF replacement levels by CH were used, that is 10, 20, and 30% CH. 

B. Sodium metasilicate (Na2Si03.9H20) activator 

Sodium silicate activator is one of the well-known activators used in the activation of slag and 

fly ash. Sodium meta-silicate consisting of 22% Na20, 21% SiC>2, and 57% H2O was used. 

The silica modulus (Ms = Si02/Na20) is a crucial factor that affects its activation capacity. 

Available literature indicates that Ms = 0.75 is the best ratio for this purpose; however, other 

ratios were used (0.33 and 0.97). Different Si02 and Na20 concentrations calculated with 

respect to GF total mass were used. Consequently, different Ms ratios with different Na 

contents were investigated. 

3.12.7 Binary activator 

Different binary mixtures of inorganic activators were tested for their efficiency to activate 

different GF paste mixtures with water-to-binder ratio of 0.35 and at an activation temperature 

of 60°C for an 18 hour period of activation. 

A. Ca(OH)2 and Na2CC>3 -based system 

The efficiency of this binary activator was also tested at an activation temperature of 60°C. 

The aim of using this activator depends on the reversible reaction that gives NaOH as the 

target activator, which is obtained indirectly through the reaction of Ca(OH)2 and Na2C03, as 

follows: 
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Ca(OH)2 + Na2C03 «-* 2NaOH + Ca C03 (3.1) 

The molar ratio of Na2C03 to Ca(OH)2 that was used in this test was 1.122. This molar ratio 

was formulated in such a way that it gives 1.5% Na20 with respect to GF content. 

B. Ca(OH)2 and NaOH -based system 

A mixture of 20% Ca(OH)2 and NaOH equivalent to 1.5% Na20 with respect to GF content 

was tested. This mixture is very important as it shows the competence between the formation 

of both of NaF and CaF2 minerals in the formed paste. The temperature of activation was also 

60°C. As well, other mixtures of 20% Ca(OH)2 and NaOH with concentrations of 2 and 5% 

Na20 were tested at 80°C to investigate the effect of the abundant presence of Ca(OH)2. 

C. NaOH and Na2C03 

A binary mixture of both NaOH and Na2C03 was used to activate GF in such a way that their 

sum equals approximately 1.5% Na20 and where the Na20 content coming from Na2C03 

equals to 0.5 % Na20 in terms of total percentage with respect to GF content. 

D. NaOH and Na2S04 

A binary mixture of both NaOH and Na2S04 was used to activate GF in such a way that their 

sum equals approximately 1.5% Na20 with respect to total mass of GF. The dosage of Na2S04 

was calculated to give 0.5% Na20 with respect to the total mass of GF. 

E. Ca(OH)2 and K2C03 -based system 

The efficiency of this binary activator was evaluated during this part of the study. The aim of 

using this binary activator depends on the reversible reaction that gives KOH as the target 

activator, which is obtained indirectly through the reaction of Ca(OH)2 and K2C03, as follows: 

Ca(OH)2 + K2C03 ^ 2KOH + CaC03 (3.2) 
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The molar ratio of K2CO3 to Ca(OH)2 used in this test was 1.16. This molar ratio was 

formulated in such a way that it results in K2O, which is equivalent to 1.5% Na20 with respect 

to GF weight, while the w/GF ratio was 0.35. 

F. Ca(OH)2 and CaCC>3 -based system 

A mixture of Ca(OH)2 and CaCC>3, each with a dosage of 2.5% with respect to the total mass 

of GF by addition, was used. The w/GF ratio was also 0.35. This low concentration of 

Ca(OH)2 was chosen to ensure the activity of GF at low concentration of Ca(OH)2. 

G. Ca(OH)2 and Na2S04 -based system 

A binary mixture of 20% Ca(OH)2 and Na2S04 with a dosage equivalent to 1.5% Na20, was 

used. The equation shown below was taken into account. Therefore, this mixture can be 

considered as a quaternary mixture (containing the reactant and product of this reaction). 

Ca(OH)2 + Na2S04 ~ CaS04 + 2NaOH (3.3) 

3.12.8 Ternary mixture 

One ternary combination of activators was used to assess the effect of combining more than 

two activators on the development of the compressive strength. 

A. Ca(OH)2 -Na2S04 - NaOH-based system 

A ternary mixture of 20% Ca(OH)2, Na2S04, and NaOH equivalent to 1.5% Na20 was 

investing. The dosage of Na2S04 was formulated in molar ratio so that half of Ca(OFf)2 reacts 

with the entire quantity of Na2S04 to from anhydrite. 

3.12.9 Mortars 

A. Sample preparation and mixing method 

This mortar is prepared in the same way as the paste was prepared in the previous part, except 

for the sand, for which Ottawa sand was added directly after 30 seconds of adding GF to the 
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activator-containing mixing solution. The total mixing time was kept at 6 minutes as with the 

aforementioned paste part. The mixer used is shown in Figure 3.9 

B. NaOH-activator 

In this part of the study, a series of mortars made up of glass frit, Ottawa sand, and NaOH 

activator were tested. An activation temperature of 60°C and a concentration of 3% Na20 were 

chosen as both values were found to be optimum based on the results of testing. Different GF-

to-sand ratios were evaluated, as shown in Table 3.6. The reference flow value was taken to be 

about 25 ± 5 (as that used with ASTM C 227) and any sample that gave higher than this limit 

was rejected. 

TABLE 3.6 COMPOSITION OF TESTED MORTARS 

Mixtures 

M0.5 
Ml 

M1.5 
M2 

M2.5 

(GF/(GF+sand))% 

66.67 
50.00 
40.00 
33.33 
28.57 

C. Ca(OH)2 activator 

Different amounts of portlandite (CH), with respect to total mass of GF, were added to GF. It 

is important to mention that CH was added to, and did not partially replace, GF. Two 

activation temperatures, i.e. 30 and 50°C, three CH addition values, and three w/GF ratios, 

because of the addition of three different CH dosages, were chosen, as shown in Table 3.7. 

TABLE 3.7 COMPOSITION OF TESTED MORTARS 

Sand/GF 

Ml .5-1 
Ml .5-2 
Ml.5-3 

(GF/(GF+sand)) 
(%) 
40 
40 
40 

CH 
(%) 
10 
20 
30 

w/GF 

0.445 
0.474 
0.506 
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3.12.10 Concrete 

A. Materials 

The physical and chemical properties of binders, activators, chemical admixtures, and the type 

and properties of fine and coarse aggregates were outlined earlier in this chapter. 

B. Mixture proportions 

The mix design of these mixtures is based on the mixtures used in studying the alkali-silica 

reaction in concrete according to CSA A23.1-14A, with some modifications required to 

simulate field concrete whereas the mix design used is shown in Table 5.9. 

C. Samples preparation and mixing method 

An ordinary rotating tilting drum concrete mixer was used to prepare the activated concrete, as 

shown in Figure 3.9. NaOH activator is dissolved in a bucket containing the whole amount of 

mixing water, while in the case of portlandite, it is pre-weighed with GF powder. The fine 

aggregate is added first to the drum mixer, followed by the coarse aggregate during the 

rotation of the drum, within 30 seconds after that, half the amount of mixing water was added 

followed by the binder for 2.5 minutes where the drum remained under rotation. During this 

time the second half of water was added. It was then stopped for another 2.5 minutes, after 

which it was left to rotate for 4 minutes. At this moment, the concrete is ready for fresh 

properties measurements. 

Figure 3.9 Two mixers used for mortar and concrete fabrication 
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3.13 Alkali-silica reaction studies on glass frit-containing mortar and concrete 

3.13.1 Tests on mortars 

A. Testing method 

In this part, the effect of the presence of GF, with and without other mineral admixtures, on 

the linear expansion of mortar mixtures was investigated according to different specifications 

the following: CSA 23.2-25A, ASTM C227, and ASTM CI260. 

B. Materials 

Five types of aggregates were used: Ottawa, Aime Cote, and LG sands, and Spratt and 

Mirabel aggregates. As well, different cement mixtures were used. The grading proportions 

used for preparing the mortar bars throughout this part of the study (for Aime Cote sand and 

Mirabel and Spratt aggregates), are shown in Table 3.8. 

St. Lawrence GU cement was the main cement used, which was partially replaced (% of mass) 

by different mineral admixtures according to the mix desig used. Commercial Canadian 

condensed silica fume (CSF) cement was also used in one test to show the effect of 

superplasticizer on the expansion of ternary mixtures containing silica fume. 

TABLE 3.8 GRADING PROPORTION FOR THE AGGREGATE USED IN MORTAR 
BAR TEST (CSA A23.2-25A) 

Sieve size 

Passing 

5 mm 
2.5 mm 
1.25 mm 
630 um 
315 um 

Retained 

2.50 mm 
1.25 mm 
630 um 
315 um 
160 um 

Mass % 

10 
25 
25 
25 
15 
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TABLE 3.9 WATER-TO-BINDER RATIOS ACCORDING TO THE SPECIFICATION 
USED 

Specification 

ASTM C227 

CSAA23.2-25A 

Water-to-binder ratio (w/b) 

That gives flow of mortar of 
105-120 

0.44 for natural fine aggregate 

0.5 for crushed coarse aggregates 

C. Proportion of mortar 

The dry materials for the test mortar were proportioned using 1 part cement and 2.25 parts 

graded aggregate by mass, w/c equal to 0.44 by mass for natural fine aggregates (Aime Cote, 

and Ottawa sand), and 0.5 for the crushed coarse aggregate (Spratt and Mirabel aggregates). 

The flow table was also used to establish the required amounts of mixing water, where the 

flow value was to be in between 105-120 (according to ASTM C227 specification), as in 

Table 3.9. A test series is comprised of three mortar bar specimens measuring 2.54 X 2.54 X 

28.5 cm. Samples are identified by a number indicating the percentage of each cementitious 

material, as well as by a symbol, for example S for slag, SF for silica fume, FA for fly ash, 

and finally GF for glass frit. The letters B, T and Q stand for binary, ternary, and quaternary 

mixtures, respectively. For example, T20GF5SF stands for a ternary mixture with 20% GF 

and 5% SF. 

The following mortars were tested: 

i- Binary mortars (cement plus either GF, slag, fly ash, or silica fume); 

ii- Ternary mortars (cement + GF and either slag, fly ash or slica fume against 

commercial ternary cements); 

iii- Quaternary mortars (ciment plus GF and silica fume plus either slag or fly ash). 

The most important mixtures in this part of the study are the two main quaternary cements that 

were tested without any change in their compositions, as follows: 

i- Quaternary cement - fly ash (25% GF, 20% fly ash, 5% silica fume); 
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ii- Quaternary cement - slag (25% GF, 30% slag , 5% silica fume). 

D. Curing conditions 

- 38°C, 100% R.H. (ASTM C227) 

- 80°C , INNaOH (CSA A23.2-25A) 

E. Linear expansion measurement 

The length change can be calculated at any age using a length comparator in accordance with 

ASTM C490, as shown in Figure 3.10, as follows: 

L = 
(z*-z/)*ioo (3.1) 

T 

m A 
*V .̂ 

V ."A 

\ i 
K: 

I 

i 
\.-/ 

ua 

&L 

Reference bar 

Figure 3.10 Length comparator and re-zero before reading 

) 

-'If-'.-: 

Test bar 

F. Storage of mortar bar containers 

There are two types of mortar bar containers, as shown in Figure 3.11, depending on the type 

of specification used. For the accelerated mortar bar test, the bars were immersed in IN NaOH 
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solution at 80°C, while for ASTM C227 the mortar bars were stored in containers lined with 

wicking material to ensure 100% R.H. and then stored at 38°C. 

CSA A23.2-25A (ASTM C 1260) 

Figure 3.11 Curing of different mortar mixtures according to type of specification used 

G. Evaluation method 

According to ASTM C 227 and C 33, when linear free expansion of mortar bar at 90 and 180 

days is less than 0.05% and 0.1%, respectively, no harmful alkali aggregate reaction (AAR) 

would occur in concrete. As well, according to CSA A23.2-2A, accelerated mortar 

barexpansion of less than 0.15% at 16 days after casting is indicative of innocuous behaviour 

in concrete. Mortar bar tests are important tests that provide valuable information about the 

nature of interaction between GF and different types of mineral admixtures. In addition, these 

data could provide the compositions of the pessimum mixtures of GF with other mineral 

admixtures. 

3.13.2 Tests on concrete 

In this part of the study, CSA A23.2-14A specification was followed to study the effect of the 

presence of GF, with and without other mineral admixtures, on the linear expansion behaviour 

of the concrete prism of mixtures cured at 38°C and 100 % R.H. This specification is a long-

term test, from which significant data were obtained after one year. 
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A. Materials 

i) Cement and NaOH 
St. Lawrence GU cement with a total Na20eq alkali content of 0.86% was used. The total 

alkali content was calculated as: 

Na20 + 0.658 K20 = Na2Oeq (3. 2) 

Reagent grade NaOH was added to the concrete mix water to increase the alkali content of the 

cement used, expressed as Na20 equivalent, to 1.25% by mass of cement. 

ii) Aggregates 

A non-reactive fine aggregate was used (Ottawa sand), while the coarse reactive aggregate 

(Spratt aggregate) was sieved into three equal parts using four sieves. The size fractions used 

were 20-14 mm, 14-10 mm, and 10-5 mm. The grading machine works in a way that sieving 

was conducted under continuous shaking process, as shown in Figure 3.12. Oversize and 

undersize grades were discarded. 

""" 'f 
p . . . f' 

Figure 3.12 Sieving machine for Spratt aggregate 

B. Concrete mixture proportions 

A total of 19 concrete mixtures were proportioned as shown in Tables 3.10 with the following 

requirements: 

- Cement content of 420 kg/m of concrete; 
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- Coarse to fine aggregate ratio of 60:40 by mass; 

- Effective water to binder ratio in the range of 0.42-0.45; 

- NaOH was dissolved in mixing water to obtain total alkali content (Na20eq) of 1.25 by mass 

of cement. 

The mixtues made consisted of the following: 

- Control cement concrete composed of 100% GU cement. Both Ottawa and Aime Cote sands 

were used separately with Spratt aggregate to study the effect of Ottawa and Aime Cote sands 

on ASR expansion. These samples were identified as Control (CO, control Ottawa), 

Control+(CO-Na), Control-A+(CA-Na, Control-Aime Cote), where "Na" or "+" represents 

added alkali. 

- Binary cement concrete mixtures composed of OPC partially replaced by 25 and 50% GF 

with and without added alkali. They were identified using the following symbols: B25GF, 

B25GF-Na, B50GF, and B50GF-Na, where Na denotes added alkali, which is sometimes, 

represented using the "+" sign. Ottawa sand and Spratt aggregate were the only aggregates 

used in these mixtures. 

- Ternary cement concretes composed of OPC partially replaced by GF and silica fume in the 

presence or absence of both added alkali and SP. They were identified using the following 

symbols: T20GF5SF, T20GF5SF-Na, T20GF5SF-SP, and T20GF5SF-Na-SP, where Na 

denotes alkali, which is sometimes, represented using the "+" sign and where SP stands for 

PNS superplasticizer. Ottawa sand and Spratt aggregate were used in this part. 

- Quaternary cement concretes composed of GU cement partially replaced by GF, silica fume, 

and slag or fly ash in the presence or absence of SP. In this part, Ottawa sand and Spratt 

aggregate were the only aggregates used and their mixture compositions are identified by 

Q25GF30S5SF+, Q25GF30S5SF, Q25GF30S5SF+SP, Q25GF30S5SF-SP, 

Q20GF25FA5SF+, Q20GF25FA5SF, Q20GF25FA5SF-SP, and Q20GF25FA5SF+SP. The 

"+" sign represents added alkali while "SP" represents added superplasticizer. 
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TABLE 3.10 MAIN MIX PROPORTIONS FOR CONCRETE PRISM MIXTURES 
WITH AND WITHOUT ADDED ALKALI 

19 Concrete 
mixtures 

CO 
CO+ 
CA+ 

B25GF 
B25GF+ 
B50GF 
B50GF+ 

TSF 
TSF+ 

TSF-SP+ 
TSF-SP 

QFa 
QFa+ 

QFa-SP+ 
QFa-SP 

QS 
QS+ 

QS-SP+ 
QS-SP 

w/c 

0.45 

SP 
(PNS) 

-
-
-
-
-
-
-
-
-
+ 
+ 
-
-
+ 
+ 
-
-
+ 
+ 

Added 
alkali 

-
+ 
+ 
-
+ 
-
+ 
-
+ 
+ 
-
-
+ 
+ 
-
-
+ 
+ 
-

Mix co 

Cement 

420 
420 
420 
315 
315 
210 
210 
315 
315 
315 
315 
210 
210 
210 
210 
168 
168 
168 
168 

Slag 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

126 
126 
126 
126 

mposition of tested concretes (Kg/m3) 

Fly 
ash 

-
-
-
-
-
-
-
-
-
-
-

105 
105 
105 
105 

-
-
-
-

Silica 
fume 

-
-
-
-
-
-
-

21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 

Glass 
frit 

-
-
-

105 
105 
210 
210 
84 
84 
84 
84 
84 
84 
84 
84 
105 
105 
105 
105 

Ottawa 
sand 

712 
712 

-
709 
709 
709 
709 
707 
707 
707 
707 
698 
698 
698 
698 
702 
702 
702 
702 

Aime 
Cote 
sand 

-
-

712 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Spratt 
agg-

1070 
1070 
1070 
1064 
1064 
1064 
1064 
1060 
1060 
1060 
1060 
1050 
1050 
1050 
1050 
1054 
1054 
1054 
1054 

C. Storage of concrete prism 

The concrete prisms were cured according to CSA 23.2-14A, in a vertical position inside a 

25-L plastic container, then in a temperature-controlled cabinet, as shown in Figures 3.13 and 

3.14, respectively. 

Figure 3.13 Mortar bar and concrete prism curing Figure 3. 14 Curing chamber for concrete prism 
container set-up test adjusted at 38°C 
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D. Calculation of length change 

The change in length of each prism is based on the initial measurement. The difference 

between the initial and each successive measurement is calculated and expressed as a 

percentage of the initial effective length, adjusted to reflect the fact that the effective length is 

the distance between the inner ends of the steel measuring studs and not the overall length 

[CSA 23.2-14A], as shown in Figure 3.15. 

Figure 3.15 Length comparator for concrete prism samples 

Samples of concrete cylinder with dimension of 100 X 200 mm were cured under the same 

test conditions and were tested for compressive strength after 2 years, to correlate the final 

expansion with final compressive strength. 

3.14 Pore solution chemistry, micro-pores, and microanalysis 

3.14.1 Pore solution chemistry 

The expressed pore solution analysis was also undertaken. In this part of the study, pastes 

containing the same cementitious matrix and a water-to-binder ratio of 0.50, as shown in 

Table 3.11, were fabricated and cured at 38°C in a closed system to prevent evaporation or 

acquiring of humidity in order to prevent interaction with the surrounding environment. 
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TABLE 3.11 MIXTURE COMPOSITIONS OF THE MOST FREQUENTLY USED 
CEMENTITIOUS SYSTEMS 

Mixtures 

Control 

B25GF 

B50GF 

T20GF5SF 

Q25GF30S5SF 

Q20GF25FA5SF 

Symbol 

CIO 

B25 

B50 

TSF 

Qs 

QFa 

Composition (%) 

100% cement (0.9% Na2Oeq) 

75% cement + 25% glass frit 

50% cement + 50% glass frit 

75% cement + 20% glass frit + 5% silica fume 

40% cement + 25% glass frit + 30% Slag + 5% silica fume 

50% cement + 20% glass frit + 25% fly ash + 5% silica fume 

Two pressure cycles were used; the first cycle was under squeezing pressure of 200kN, which 

was followed by release of the pressure, and the second cycle of the pressure was then applied 

under squeezing pressure of 1MN. The mixtures containing GF (B25 and B50) needed more 

pressure, where a squeezing pressure of 1.4 MN was applied to get the same volume of 

extracted water as from the control sample. When using the same pressure, the extracted pore 

water from Gf samples was nearly half of that given by the control; therefore, extrapressure 

was applied to get as much volume of pore water as possible. 

A series of microstructural and micro-pore analyses was also carried out on these systems. 

The paste samples were prepared and placed in sealed plastic containers, and cured at 38°C for 

3, 7, 28, and 180 days. At the time of each test, the data were obtained by squeezing the pore 

solutions from the blended cement pastes with an appropriate pore solution expression device, 

as shown in Figure 3.16, immediately followed by chemical analysis of the clear solution. The 

chemical analysis included the determination of Na+, K+, Ca+ , and OH" ions concentrations, 

as well as pH. The micro-pore analysis was conducted at 3, 7, 28, and 180 days of curing. The 

electrical conductivity of the extracted solutions was also determined at the same time as the 

chemical analysis using pH and conductivity meter. 

-92-



Figure 3.16 Pore solution expression device set-up 

3.14.2 Pore size distribution analysis 

Different control, binary, ternary and quaternary paste mixtures were tested for change in pore 

size distribution due to the change in their cementitious matrices after 28-day curing at 38°C. 

Different cement-to-water ratios were investigated in different control and ternary mixtures, in 

addition to two quaternary mixtures. The compositions of the cementitious mixtures tested are 

shown in Table 3.12. Some of these mixtures were used with superplasticizer at 0.8% as a dry 

extract with respect to cement content. Each mixture was tested three times and each curve 

represents the average of three results, as will be shown later in Chapter 6. 
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TABLE 3.12 MIXTURE COMPOSITIONS OF DIFFERENT CEMENTITIOUS 
SYSTEMS 

Mixtures 

Control 
Control 
Control 
B25GF 
B50GF 

T20GF5SF 
T20GF5SF 
T25GF15S 
T25GF15S 

T20GF15FA 
T20GF15FA 

Q20GF25FA5SF 
Q25GF30S5SF 

W/C 

0.4 
0.45 
0.5 
0.5 
0.5 
0.35 
0.5 

0.35 
0.45 
0.35 
0.40 
0.5 
0.5 

SP, % 
Dry extract 

-
-
-

-

-

0.8 
-

0.8 
-

0.8 
-
-
-

The Pascal 240 porosimeter operates in the classic range from atmospheric pressure up to 200 

MPa, as shown in Figure 3.17. This unit is a versatile, high-pressure porosimeter. 

H W ..• ... _Jfc *^_ 

Figure 3.17 Pascal 240 porosimeter for determination of pore-size distribution 

3.14.3 Microstructure analysis 

Use of scanning electron microscope (SEM) is of great significance as it provides deep insight 

into microstructural changes between different cementitious systems, water-to-binder ratio, 

and curing time. The importance of the analyzing unit EDS, which is attached to the SEM, 

was attributed to its ability to carry out X-ray elemental spot analysis, mapping, and area 
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analyses. Jeol SEM is the device generally used in this part of study, as shown in Figure 3.18. 

Samples were fixed on an aluminum sample holder with carbon-based adhesive tape, which is 

coated with Au-Pd. Samples were observed using a JEOL JSM-840A scanning electron 

microscope, as well as with a Hitachi S-3400N scanning electron microscope, as shown in 

Figure 3.19. High resolution Hitachi FEG-SEM S-4700 was also used during this study 

(Figure 3.20). The S-4700 has a snorkel objective lens and achieves high resolution of 2.1 nm 

at low voltage of 1 kV and short working distances that are preferred for high-resolution work. 

Figure 3.18 JEOL JSM-840A scanning electron Figure 3.19 Hitachi S-3400N scanning electron 
microscope with EDXA unit microscope 

Figure 3.20 High resolution Hitachi FEG-SEM S-4700 
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A. Samples preparation for SEM analysis 

The hardened paste samples are placed in a plastic mould. Epoxy resin was then cast into the 

mould and cured overnight at room temperature. The following day, the sample was removed 

and cut using an Isomet Buehler low speed saw equipped with a low concentration diamond 

wavering blade, as shown in Figure 3.24. The lubricant used during the cutting process was 

ISO Cut Fluid. The cross-section obtained was then polished using a Struers polishing 

machine (Model DAP-7, from Beta Diamond Products Inc.), as shown in Figure 3.24. Each 

paste was used with a separate Struers polishing cloth to avoid contamination. The sample was 

polished twice with each diamond paste at two different speeds (250 and 125 rpm) for 5 min. 

Following each polishing process, the sample was immersed in methanol, which is kept under 

ultrasonic vibration for at least 5 min before being sputtered under vacuum with 

gold/palladium (Au-Pd), and analyzed using the JEOL SEM, Model JSM-840A and the 

Hitachi SEM Model S-3400N at 20 kV. 

3.15 Rheological studies 

Four paste mixtures including control and binary mixtures containing 25, 50, and 75% GF 

were prepared in 500 mL containers and mixed using a kitchen blender. A quantity of 200 g of 

cement or GF-blended cements was mixed with cold water, at 5°C, and at water-to-cement 

ratio of 0.5 to compensate for heat generation resulting from the mixing action. The 

temperature of the paste was 22 ± 2 °C after mixing. 

After 5 min from initial water and cement contact, consistency of the pastes was measured 

using a mini-slump cone. A plexiglass mini-slump cone was used to determine slump flow. It 

had an upper diameter of 19 mm, a bottom diameter of 38 mm, and a height of 57 mm. The 

tests were made on a plexiglass plate. The spread diameter or slump flow was obtained by the 

mean of two diagonal diameter measurements. 

Following the slump flow determination, plastic viscosity and yield stress of the pastes were 

then determined using a co-axial rotating cylinder viscometer. The co-axial rotating cylinder 

viscometer (Chandler 3500) used for the determination of rheological properties had an outer 

cylinder radius of 18.42 mm, as shown in Figure 3.21. The height of the bob was 38 mm and 
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the gap between the bob and rotor was 1.17 mm. A paste sample of 350 ml was used for each 

test. The cylinder and the bob were kept within the paste prior to test for 20 seconds to allow 

the paste to fill the gap between the cylinder and the bob. The speed of the rotating cylinder 

was increased from 0 rpm to 300 rpm (510 s"1) in 4 steps (3, 60, 100, and 300 rpm). The speed 

was then reduced to 3 rpm (5.1 s"1) again stepwise, and measurements were taken at each of 

the following speeds: 300, 200, 100, 60, and 3 rpm (corresponding to 510, 340, 170, 10.2, and 

5.1 s"1, respectively). Each step continued for 20 sec, and the dial reading of the viscometer 

was recorded at the end of this period. The dial reading was converted to shear stress (in Pa) 

by multiplying the values with a coefficient of 0.511 which was supplied by the manufacturer 

of the viscometer. A linear fit (modified Bingham model) was used to estimate plastic 

viscosity and yield stress by regression analysis of the shear stress-shear rate data obtained 

from the descending curve. Apparent viscosity was expressed as the ratio of the shear stress to 

shear rate at any given shear rate using the descending curve again. The reason why the 

rheological measurements were made using the descending curve is that the behaviour of the 

pastes is dependent on their shear history. If the paste is not sheared before the test, the pastes 

will have different degrees of structuring. Shearing the paste under high speed at the end of 

the up-curve causes structural break-down and creates uniform conditions before testing. 

Figure 3.21 Chan 35 Viscometer Model 3500 Chandler Engineering 

3.16 Compressive strength machine 

The compressive strength machine for mortar was adjusted at a loading rate of 2500 lb/10 s 

for all tested samples, as shown in Figure 3.22-a. This machine was mainly used in the 
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determination of the compressive strengths of the activated paste and GF mortar samples. The 

concrete samples were tested using the compressive strength machine shown in Figure 3.22-b 

with a loading rate of 1800N/s. Compressive strength normally represnts the average of three 

samples, which is approximated to the nearest integer value. This value is written over the 

curve or the histogram representing the compressive strength. 

a-Compressive strength machine for mortar b-Compressive strength machine for concrete 

Figure 3.22 Compressive strength machines used during the study 

3.17 Other instrumental devices 

The devices used in this part of the study are of great importance and are available at the 

laboratories of the Universite de Sherbrooke. These devices include XRD diffraction, 

scanning electron microscope with analyzing XRD probe (SEM-EDS), laser granulometry, 

pycnometer for density, and cutting and polishing machine. 

3.17.1 X-ray diffraction (XRD) 

Tested paste samples were manually grinded using an agate mortar to obtain sufficiently fine 

particles to avoid preferred orientations, which could affect results. The measurements were 

performed on PANalytical's version X-ray diffractometer, Model X'Pert Pro, implementing 

the following experimental parameters: Tension, 45 kV; Current 40 mA; Goniometer, 

Theta/Theta; Soller Slit, 0.04 rad., and Mask, 10mm with CuKa radiation working, as shown 
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in Figure 3.23. The readings were collected in the range of 29 of 5-60°, with scanning rate of 

0.047second. 

Figure 3.23 Philips X-ray diffraction device used for XRD analysis 

Cutting machine Polishing machine 

Figure 3.24 Cutting and polishing machines for preparation of samples used in SEM analysis 

The sputter coater uses an electric field and argon gas. The sample is placed in a small 

chamber that is at a vacuum, as shown in Figure 3.25. Argon gas and an electric field cause 

an electron to be removed from the argon, making the atoms positively charged. The argon 

ions then become attracted to a negatively charged gold/palladium foil. The argon ions knock 

gold/palladium atoms from the surface of the gold/palladium foil. The gold/palladium atoms 
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fall and settle onto the surface of the sample producing a thin gold/palladium coating of a 

thickness of 20 nm. 

Figure 3.25 A sputter coater coats the sample with gold atoms 

3.17.2 Particle size and density analyzers 

The particle size analyzer used in this part of the study was a FRITSCH analysette22, while a 

Quantachrome multipycnometer was used for density throughout this study, as shown in 

Figure 3.26 and 3.27, respectively. 

Figure 3.26 Laser granulometry Figure 3.27 Pycnometer for density of powder samples 
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CHAPTER 4 

CHARACTERIZATION OF GF AND OTHER MINERAL ADMIXTURES 

4.1 Introduction 

The characterization of GF and other mineral admixtures is important. The whole study is 

largely based on the results obtained from this part. The main physical and chemical 

properties of glass frit (GF) were obtained and compared with other cementitious materials 

(cement, CSF, Pfa and slag). The pozzolanic, hydraulic, mechanical, and some rheological 

properties of GF were studied. 

4.2 Chemical analysis 

The chemical analysis of GF and other cementitious materials is shown in Table 4.1, from 

which some parameters such as the lime-silica ratio, the basicity ratio, and the hydraulic index 

could be obtained. These parameters are very helpful in predicting the reactivity of GF and 

comparing it with other materials. Data obtained from this analysis are decisive from the 

ASR- and alkaline-activation points of view. Alkali content is critical and a matter of great 

concern in terms of ASR studies, while the hydraulic index is a good indication of the 

possibility of alkaline-activation. The use of spot analysis carried out with a scanning electron 

microscope (SEM-EDS) is extremely important to emphasize the chemical analysis as well as 

in calculating of C/S ratio in the overall C-S-H formed in different cementitious matrices. 

4.3 Physical properties 

Table 4.1 shows various physical properties, while the rest of the physical properties such as 

particle-size distribution, X-ray diffraction patterns, and microstructure, are shown in Figures 

4.1 to 4.9, respectively. 
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TABLE 4.1 PHYSICAL AND CHEMICAL PROPERTIES OF CEMENTITIOUS 
MATERIALS 

Oxide composition (%) 
Si02 

AI2O3 
Fe203 

CaO 
MgO 

Na20eq 
CaF2 

S03 

*Lime silica ratio 
** Basicity ratio 

***Hydraulic index 
Loss on ignition (%) 

C3S 
C2S 
C3A 

C4AF 
Density 

Fineness (m2/kg) 
Specific surface, BET(m /kg) 

Passing 45 um (%) 
Time to initial set (min) 
Time to final set (min) 

Compressive strength (MPa) 
3 days 
7 days 

GF 
33.8 

25.10 
3.40 
14.6 
0.76 
10.12 
12.1 

0.63 
0.40 
1.20 

N/A 
N/A 
N/A 
N/A 
2.68 
419 

95 
N/A 
N/A 
N/A 

OPC 
22.0 
3.93 
3.76 
63.3 
1.91 
0.90 

2.47 
2.95 
2.51 
3.15 
<1 

58.76 
18.64 
4.05 
11.44 
3.15 
420 

95 
180 
365 

20.4 
27.7 

Slag 
37.6 
10.79 
1.37 

42.45 
7.03 
0.53 

0.42 
1.13 
1.02 
1.60 
0.99 
N/A 
N/A 
N/A 
N/A 
2.89 
410 

N/A 
N/A 
N/A 
N/A 

PFa 
48.1 

23.43 
17.53 
2.24 
0.86 
2.54 

0.42 
0.17 
0.04 
0.55 
0.14 
N/A 
N/A 
N/A 
N/A 
2.53 
410 

90 
N/A 
N/A 
N/A 

CSF 
95.94 
0.48 
0.15 
0.63 
0.33 
0.74 

0.23 

0.01 
0.97 
N/A 
N/A 
N/A 
N/A 
2.22 

17500 
20250 

100 
N/A 
N/A 
N/A 

Cem-SF 

26.2 
3.77 
3.77 
56.4 
1.9 

0.92 

3.7 

2.36 
2.43 
N/A 
N/A 
N/A 
N/A 
3.0 
580 

N/A 
N/A 
N/A 

N/A 

*Lime silica ratio = CaO/Si02 

**Basicity ratio = (CaO + MgO)/(Si02 + A1203) 
***Hydraulic index = (CaO + MgO + Al203)/Si02 

4.4 Particle-size distribution 

The particle-size distribution of the three main cementitious materials is given in Figure 4.1, 

from which it can be observed tha. GF and slag had comparable particle-size distributions and 

are both finer than fly ash. 
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Figure 4.1 Particle-size distributions for GF, Pfa and slag 

4.5 SEM-EDS analysis 

This part of the study concerns the microstructural investigation of all of the mineral 

admixtures used, with special emphasis on GF as the main target of the study. GF was 

analyzed using micro- and nano-microprobe analyzers. The main elements found in the 

chemical analysis shown in Table 4.1 were confirmed by micro and nano-analyses, as shown 

in Figures 4.2 and 4.3. 

Si 

A Al Ca 

Na 

Figure 4.2 SEM photomicrograph showing angular forms for GF 
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Figure 4.3 SEM Photomicrograph of glass frit powder (nano-scale) 

Both GF and slag particles are irregular and angular in shape, while those of fly ash are 

spherical, and those of condensed silica fume appear in the shape of very fine particles and 

condensed in lump forms, as shown in Figure 4.4 and 4.5. These physical forms are important 

in the interpretation and analysis of results. 
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Figure 4.4 Photomicrograph of the four mineral admixtures used 
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Figure 4.5 Powder state of the four mineral admixtures used 

4.6 X-ray diffraction analysis 

The X-ray diffraction patterns showed that GF is nearly 100% amorphous material, very 

comparable to silica fume and slag; these are classified as non-crystalline materials, as shown 

in Figures 4.6 to 4.9. The hump of GF is of intermediate intensity between slag and condensed 

silica fume. GF is then more amorphous than slag and less than that of condensed silica fume, 

as shown in Figures 4.6 to 4.8. XRD patterns of fly ash are completely different, where fly ash 

is mainly glassy (amorphous) with some crystalline inclusions of mullite (Mul), hematite 

(Hem), magnetite (Mag) and quartz (Qz). 

Figure 4.6 X-ray diffraction patterns for GF 
powder 

Figure 4.7 X-ray diffraction patterns for silica fume 
powder 
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Figure 4.8 X-ray diffraction patterns for slag 
powder 

Figure 4.9 X-ray diffraction patterns for fly ash 
powder 

Therefore, according to the hump of amorphicity given by XRD analysis (under the same 

conditions) of the three mineral admixtures and GF, these admixtures can be arranged, in a 

descending order, as follows: 

Silica fume > GF > Slag > Fly ash 

Hence, it is expected according to this preliminary test that fly ash has slow reactivity with 

respect to other mineral admixtures used. As well, it is expected that its thermal activation 

needs more energy to overcome the energy barrier because of the crystalline compounds. 

4.7 Chemical reactivity of GF 

The chemical reactivity of GF, especially its reactivity with acids and bases, is of great 

significance. Comparative laboratory observation of the reactivity of mineral admixtures with 

different acids and bases has been summarized and shown in Table 4.2. Comparison between 

GF, slag, and fly ash was carried out to investigate the chemical behavior of GF with respect 

to other well-known mineral admixtures. The data derived from Table 4.2 and Figure 4.10 

show that GF is an amphoteric material with a dual nature reacting with acids as a base and 

with base as an acid. The reactivity with acids is a type of decomposition reaction, which can 

be taken as a benefit for acid activation or structure changes by acidic modification depending 

on the chemical composition of the rest of the material. 
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TABLE 4.2 CHEMICAL REACTIVITY OF GF, PFA, AND SLAG WITH DIFFERENT 
ACIDS AND BASES 

Observation 

Acidity 

Basicity 

NaOH 
Ca(OH)2 

Na2C03 

Na2Si03 

HC1 
HNO3 
H2S04 

Glass frit 

+ (-AT) 
+ (-AT) 
+ (-AT) 

+ (expansion, cracks) 
-

+ (+ AT) 
-

Slag 

+ (+ AT) 
+ (+ AT) 
+ (+ AT) 

+ (shrinkage, cracks) 
+ (+ AT) 
+ (+ AT) 
+ (+ AT) 

Fly Ash, class F 

+ (- AT) 
+ (-AT) 
+ (- AT) 

-
-

+ (+ AT) 
-

+ = +ve reaction, - = -ve reaction, +AT= exothermic reaction, and -AT= endothermic 
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Figure 4. 10 Reactivity of GF with different concentrations of nitric acid 
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Tfinal 

(°C) 
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AT 

2 
13 
32 
67 
92 

The reactivity of GF in alkaline media is essential and considered as the basis for the 

activation of GF into clinkerless binder (Chapter 5). In the current chapter, the hydraulic and 

pozzolanic properties of GF were explored and assessed, paving the way for real application 

of clinkerless-activated GF cement. 

4.8 Investigation of the pozzolanic and hydraulic activity of GF 

4.8.1 Pozzolanic activity 

A. ASTMC311 

ASTM C311 specification was used to evaluate the strength activity index of GF with 

Portland cement. In the test mixture, 25% cement used in the control mixture was replaced by 

the same mass of GF powder, instead of 20% GF as recommended in ASTM C311. The use of 

25% GF as cement replacement is suggested because 25% GF is the actual dosage that was 
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used in the alkali-silica reaction studies. The mixture proportion was 1:2.75 for cement or 

blended cement and the standard graded sand, respectively. The water-to-cement ratio was 

0.484 for the control mixture, while for the GF-cement mixture, 0.482 helped maintain the 

same flow. After casting 50-mm cubes and demoulding them according to ASTM C 109, the 

cubes were stored in lime-saturated water, and compressive strengths were determined at 1, 7 

and 28 days of age. The strength activity index with Portland cement was determined as 

follows: 

Strength activity index = (A/B)* 100 (4.1) 

where: A = average compressive strength of test mixture cubes (MPa), and B = average 

compressive strength of control mixture cubes (MPa). 

Another mixture with the same composition was prepared at the same time, but after 

demoulding, the cubes were heat-cured by immersion in hot water, at 80°C in a sealed 

container. The strength activity indices of each mixture at different curing times are shown in 

Table 4.3 and Figures 4.11 and 4.12. 

TABLE 4.3 STRENGTH ACTIVITY INDEX FOR 25% GF AT DIFFERENT CURING 
TEMPERATURES 

21±2°C 
80 ± 2°C 

Stren 
Id 

84.08 
91.36 

gth activity index 
7d 

91.84 
86.22 

28d 
114.56 
103.26 

III 
60 
50 
40 
30 
20 
10 -

•B25GF-230C 

•Control-23oC 

10 20 30 

Curing time (days) 

40 

| | | Control-80oC 

B25GF-80OC 

10 20 30 

Curing time (days) 

40 

Figure 4.11 Compressive strength of 25% GF binary Figure 4.12 Compressive strength of 25% GF 
mortar mixture cured at normal temperature binary mortar mixture cured at 80°C 
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The results showed that 25% GF replacement contributed to the development of compressive 

strength. The mixture containing 25% GF resulted in higher compressive strength than the 

control mixture after 28 days under normal curing conditions. The same trend was also 

observed with heat curing. The heat-cured mixtures gave lower compressive strength than 

those cured under normal curing conditions, as shown in Figures 4.11 and 4.12. 

B. ASTM C593 

This test is intended to qualify pozzolans for use with lime. The pozzolanicity of GF with lime 

at 55°C was determined according to ASTM C593, and the mixture design is shown in Table 

4.4. The compressive strengths should be calculated after 7 days according to ASTM C593, 

but they were determined at 1, 3, and 7 days. The results showed that the compressive strength 

at 1 day is about 25 MPa, whereas at 7 days the compressive strength reached 32 MPa, as 

shown in Figure 4.13. Therefore, GF has substantial pozzolanic properties according to ASTM 

C593, which recommended a minimum compressive strength of 4.1 MPa. 

TABLE 4. 4 POZZOLANIC REACTIVITY OF GF WITH LIME 

Constituents 
Hydrated lime (CH) 

GF 
Graded Ottawa sand/(GF+lime) 

Water/(GF+Hme) 

Values used 
33.33% 
66.67% 

2.74 
0.59 

ra
ge

 

> 
< 

a> 
> 
(0 
(0 

2 a. 
fc 
o u 

J? 
a. 
s 
£ 
a> 

re
n 

+ J 
(0 

35 

in 
25 
20 
15 
10 

5 
0 

31.02 •ASTM C593 
*31.97 

Complete 
consumption of CH 

0 2 4 6 8 

Activation time (days) 

Figure 4.13 Compressive strength of GF mortar activated by lime according to ASTM C593 
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4.8.2 Hydraulic activity 

A. ASTMC1073 

The hydraulic activity of GF and slag by reaction with alkali was also determined according to 

ASTM C 1073. Instead of normal mixing water, a reagent of sodium hydroxide solution at 

20% concentration and a solution/binder ratio of 0.45 by volume of solution and mass of 

binder with a curing temperature of 55°C were used. The calculated quantities of the materials 

were mixed in one batch to prepare the test specimens, as shown in Table 4.5. There is no test 

limit has been recommended by ASTM CI073 specification. 

TABLE 4.5 CONSTITUENTS TO BE USED IN THE HYDRAULIC ACTIVITY INDEX 
TEST 

Constituent 

Graded standard sand (g)/ test sample (g) 

NaOH solution (20%), (mL)/ test sample(g) 

Average compressive strength (MPa) for slag 

Average compressive strength (MPa) for GF 

Mixture 

2.75 

0.45 

19 MPa 

31 MPa 

The hydraulic activity is the average of the compressive strengths of three cubes at 24 hours. It 

was found that the hydraulic activity of slag with NaOH at 55°C is 19 MPa, while that of GF 

is 31 MPa. Therefore, according to ASTM C 1073 specification, that did not recommend a 

specific limit, slag has a hydraulic activity index of about 61% of that obtained with GF. 

According to ASTM C 593 and C 1073, NaOH activator is more effective than a Ca(OH)2 

activator. NaOH activator gave a compressive strength at 24 hours equal to what was given by 

Ca(OH)2 after 7 continuous days under activation condition. 

4.8.3 Compressive strengths 

The development of compressive strength due to the addition of GF, which partially replaced 

cement used in fabricating mortar mixtures at different conditions, was investigated. The 

importance of this test is that it reflects the direct effect of the pozzolanic reactivity of GF on 

the development of compressive strength with time. 

-110-



In this test, mortar cubes measuring 5 X 5 cm were fabricated using Ottawa sand to ensure the 

absence of any side effect due to ASR reactivity of aggregates used, which may affect the 

evolution of compressive strength with time. The cubes were cured in lime-saturated water at 

21±1°C. The compressive strength development with time was determined until 2 years. 

Figure 4.14 shows the effect of incorporating 25% GF partially replaced GU cement used in 

this test. The binary mixture with 25% GF shows higher compressive strength from 28 days 

until 2 years, as an indication of the continuous pozzolanic reactivity and the stability of such 

binary system with time. 

71.9 
66.2 

•B25GF 
•Control 

400 600 800 

Curing time (days) 

Figure 4.14 Long-term compressive strength of 25% GF binary mortar mixture cured at normal 
temperature 

4.9 Resistance to sulfate attack 

4.9.1 Expansion due to sulfate attack 

Sulfates are widespread in soil, ground water, and seawater. Damage caused by sulfates has 

been observed particularly in foundations, sewage systems, and marine structures. The long-

established explanation of sulfate attack is that sulfate reacts with calcium hydroxide, 

Ca(OH)2, to form gypsum. The gypsum may then react with tricalcium aluminate C3A in the 

concrete to form ettringite and monosulfoaluminate. These reactions result in substantial 

increase in volume with subsequent cracking. ASTM CI012 was employed to evaluate the 

inhibiting effect of binary mixtures containing GF to sulfate attack on cement mortar. The test 

consists in preparing three mortar prisms (25.4 X 25.4 X 279.4 mm) using Ottawa sand with a 

special pin cast in both ends of the specimen to facilitate length change measurement. The 

water-to-binder ratios for the control, 25% GF, and 50% GF mixtures were, 0.485, 0.459, 

0.436, respectively. The specimens were cured in limewater until they achieved strength of 20 
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MPa, and were then placed in the sodium sulfate solution. The change in length was 

monitored using a length comparator at designated test times. The cement binder is considered 

sulfate-resistant if the expansion does not exceed a pre-selected value, of 0.1%, after 6 months 

for moderate sulfate resistant binder or a year for high sulfate-resistant binder. At 6 months, 

the control mixture (made with the type GU cement of Table 4.1) has surpassed the 

specification limit at about 3 months, while the 25% GF mixture approaches the borderline of 

the specification limit. The mixture with 50% GF, for its part, is still far from the specification 

limit and it can be said that it did not react with the sulfate solution, which is a good indication 

of the high sulfate resistivity of this mixture, as shown in Figure 4.15. 

0 20 40 60 80 100 120 140 160 180 

Curing time (days) 

Figure 4.15 Resistance to sulfate attack at 6 months 

4.9.2 Effect of sulfate attack on compressive strength 

The compressive strength of 5 X 5 X 5 cm cubes made of the same mortar according to 

ASTM C1012 specification was investigated with time. The importance of this study is that it 

shows the effect of sulfate attack on the expansion of mortar containing different dosages of 

GF, as well as the effect of such attack on the development of compressive strength of the 

same mortar with time. Figure 4.16 shows that the binary mixture with 50% GF is still 

acquiring compressive strengths with time whereas, the binary mixture with 25% GF and the 

control stopped acquiring compressive strength at earlier times. This result is in accordance 

with other test results obtained in the next chapters of the present study. It is worth mentioning 

that the binary mixture containing 25% GF suffered remarkable disintegration at 1 year, as 

shown in Figure 4.17 
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Figure 4.16 Progress of compressive strength in sulfate attack environment 
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Figure 4.17 Effect of sulfate solution after 2 years immersion, binary mixture containing 25% GF was 
damaged by sulfate solution 

4.10 Rheological studies 

4.10.1 Mini-slump test 

This test is a multi-purpose test that was carried out on GF binder pastes. The effect of water-

to-cement ratios, as well as the effect of the partial replacement of cement by GF-based 

binders, on the flowability of the corresponding pastes was determined. The compatibility of 

these binders with superplasticizer was also investigated. Different systems including binary, 

ternary, and quaternary mixtures were studied. These systems were also tested for ASR 

expansion, as shown in Chapter 6. 

The most important cementitious systems used in this part of the study are listed in Table 4.6. 

These mixtures were used in mortar and concrete. Some of the mixtures in Table 4.6 have 

-113-



been mechanically tested by [LALDJI AND TAGNIT-HAMOU, 2006; 2007; TAGNIT-

HAMOU, LALDJI, 2004] and were chosen for their satisfactory results. 

TABLE 4.6 MIXTURE COMPOSITIONS OF THE MOST FREQUENTLY USED 
CEMENTITIOUS SYSTEMS 

Mixes 
Control 

B25GF 

B50GF 

B75GF 

T25GF15S 

T25GF15FA 

T20GF5SF 

Q25GF30S5SF 

Q20GF25FA5SF 

Composition (%) 

100% cement (0.9% Na2Oeq) 

75% cement + 25% GF 

50% cement + 50% GF 

25% cement + 75% GF 

60% cement + 25% GF + 15% Slag 

60% cement + 25% GF + 15% fly ash 

75% cement + 20% GF + 5% silica fume 

40% cement + 25% GF + 30% Slag + 5% silica fume 

50% cement + 20% GF + 25% fly ash + 5% silica fume 

Different control mixtures were made using different water-to-binder ratios of 0.4, 0.45, and 

0.5 to compare with the ternary mixtures containing GF, slag, fly ash, and silica fume, while 

the binary, ternary, and quaternary mixtures containing GF were used with water-to-binder 

ratio of 0.5. The effect of GF replacement level on the flowability of its mixtures is clearly 

shown in Figure 4.18, where the mixture containing 25% GF gives more flowable consistency 

than the other mixtures, including the control. Therefore, 25% GF decreases the water demand 

in the paste, and as the water-to-binder ratio was kept constant, an increase in flowability is 

expected. On the other hand, replacement levels of 50 and 75% GF decreased the flowability, 

as shown in Figure 4.18. The reduction in flowability by increasing GF dosage was attributed 

to the viscosity of the mixture containing this dosage of GF, as proven by the reduced 

viscosity measurements mentioned in this chapter (refer to 4.10.2). 
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Figure 4.18 Flow value of different binary mixtures 

40 50 

By comparing the mixtures to each other, which are control, B25GF, B50GF, T20GF5SF, 

Q25GF30S5SF, and Q20GF25FA5SF at constant water-to-cement ratio of 0.5, an expected 

behavior was observed, as shown in Figure 4.19. That is to say, the mixtures containing silica 

fume gave very low flowability and the ternary mixture of T20GF5SF gave zero flow from the 

beginning until the end of the test. The Q20GF25FA5SF quaternary mixture was slightly 

better, as it gave relatively poor flowability after 5 minutes and 30 minutes, but reached zero 

reading at 45 minutes; The other Q25GF30S5SF quaternary mixture has lost its flowability 

after 5 minutes where it gave zero reading at 30 minutes. On the other hand, the control and 

the three binary mixtures, B25GF, B50GF, and B75GF are still flowable until 45 minutes, as 

shown in Figure 4.18. These curves show the effect of GF in presence of other mineral 

admixtures on the flowability of mixtures containing these binders. 
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Figure 4.19 Flow value of the main cementitious mixtures 
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4.10.2 Viscosity by rheometer 

In this part of the study, the effect of GF addition on the rheology of different pastes was 

investigated. The plastic viscosity for each of the four binary mixtures containing GF with 

replacement levels of 0, 25, 50, and 75%, was calculated from the slope of the rheogram 

shown in Figure 4.20 and the results given in Table 4.7. The slopes of these curves were 

obtained from modified Bingham model where the points fit the second order equation. 

T = T0 + Mp."y + c'y2 

where I is the shear stress (Pa), T0 is the yield stress (Pa), |0,p is the plastic viscosity, c is 

insignificant constant, and finally "y is the shear rate (s"). As C"y is very small, it can be 

neglected. The plastic viscosity was obtained from the second order equation. It is important to 

remember that: 

T = 0 * 0.511, where 0 is the angle of deflection, and y = speed (rpm)*1.7 

0 100 200 300 400 500 

Shear rate (s~1) 

Figure 4.20 Rheogram for cement paste made with different GF replacement levels 
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TABLE 4.7 PLASTIC VISCOSITY AND YIELD STRESS OF THE FOUR PASTE 
MIXTURES 

Mixtures 

Control 
B25GF 
B50GF 
B75GF 

Plastic viscosity 
(Pa.s) 
0.1197 
0.1270 

0.1491 

0.1818 

Yield stress (Pa) 

9.804 
9.871 
11.042 

12.539 

R2 

0.99 
0.99 
0.99 

0.98 

The relationship between flow and yield stress is shown in Figure 4.21. The flow of different 

mixtures containing GF is inversely proportional to yield stress, the initial stress needed to 

cause these mixtures to move. As the viscosity of the mixtures increases with increase in GF 

content, the flow value decreases and yield stress increases. It is important to note that the 

mixture containing 25% GF had a higher flow value than that of the control, and both mixtures 

had nearly the same yield stress. This finding was supported by the mini-slump test, which 

showed that the mixture containing 25% GF gave higher flowability than the control mixture 

at the same water-to-cement ratio. 
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Figure 4.21 Relation between yield stress and mini-slump flow 

4.11 Electrical conductivity and heat evolution 

The electrical conductivity of cement paste can be used as an effective means of studying the 

progress of cement hydration and for monitoring structural changes occurring within the paste. 

Five binary mixtures were studied in this part of the study. This binary mixtures are 25 and 

40% slag (B25S and B40S), 25% fly ash (B25Fa), 25% GF (B25GF) and 5% silica fume 
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(B5SF). Figure 4.22 shows that the electrical conductivity of the binary mixture with 5% SF 

is higher than all mixtures at the beginning, due to its fineness. As well, Figure 4.23 shows 

that ternary mixture of GF with slag is the highest among the other ternary with fly ash and 

silica fume, as an indication of its higher reactivity at the beginning of the reaction. On the 

other hand, the ternary mixture of GF with silica fume is the most reactive mixture as it has 

the lowest electrical conductivity. 

0 600 1200 1800 ° 200 400 600 800 100° 1200 

Time (min) Time (min) 

(a) Binary mixtures (b) Ternary mixtures 

Figure 4.22 Electrical conductivity of different binary and ternary mixtures 

Heat of hydration is another important property, which reflects the reactivity of the blended 

cement mixture with respect to the control mixture. Generally, the addition of mineral 

admixtures decreases the heat of hydration. As silica fume is much finer than GF, slag, and fly 

ash, its binary mixture develops higher temperature than the other binary mixtures, as shown 

in Figure 4.23(a). As well, B25S develops silghtly higher temperature than that B25GF 

mixture, as shown in Figure 4.23(a). Accordingly, 20GF5SF ternary mixture (20% GF and 5% 

SF) is more reactive than the ternary of 25% GF with 15% slag or 15% fly ash (25GF15S and 

25GF15Fa), which can also be attributed to the difference in the replacement levels. Due to its 

slow pozzolanic reactivity, the ternary mixture with GF and fly ash gives lower heat of 

hydration due to the lower reactivity of fly ash, as shown in Figure 4.23(b). 
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Figure 4.23 Heat evolution as a function of time 

(b) Ternary mixtures 

In conclusion, GF is an amorphous material. GF reacts with hydrated lime and sodium 

hydroxide as both pozzolanic and hydraulic material. The addition of 50% GF prevents the 

deterioration due to sulfate attack. The rheoligical properties of GF pastes are highly affected 

by GF content. The flowability of GF pastes decreases by increasing GF content from 25 to 

50%. 
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CHAPTER 5 

ALKALI-ACTIVATED GF CEMENT (AAGFC) 

5.1 Introduction 

The construction industry has made considerable strides forward over the last decade with 

regards to the use of many pozzolanic materials, in particular slag, fly ash, and metakaolin. 

These materials possess excellent latent hydraulic properties that could be highlighted by the 

addition of certain types of activators, resulting in a series of new binders. Some of these 

binders are strong enough to produce clinker-free concrete that can compete with normal 

concrete. 

Today, most concrete producers worldwide recognize the value of pozzolanic enhancements 

to their products and, where they are available, they are even becoming a basic routine 

concrete ingredient. Most pozzolans used today are by-products from other industries, such as 

slag and fly ash. As such, there has been relatively little work done with regard to recycled, 

optimized, and engineered pozzolanic materials, which are specifically intended for use in 

Portland cement-based formulations. Glass frit (GF) is one example of such materials that 

originates from the aluminium industry. In the present study, glass frit has been used as a 

clinker-free binder and evaluated in pastes, mortars, and concretes. 

The work described in this chapter is the first to be carried out on such material, and has been 

conducted and planned in order to answer the following questions: 

- Can glass frit be activated? 

- What are the best activators? 

- What is the best method of activation? 

- At what concentration should they be used? 

- What are the conditions of activation? 

- What about incompatibility between GF and some activators? 

- What are the main problems with activation? 

- What is the best application? 

- Can the mechanical properties be improved by mixing glass frit with low replacement 

levels of both slag and fly ash? 
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A wide variety of NaOH concentrations was tested and the effect of each on the development 

of mechanical and microstructural properties was assessed. As well, other activators were 

tested. The success of the GF-activating trial mixtures has facilitated the current work and led 

to a realistic prediction of the results throughout this research. In fact, the results obtained 

showed the real potential of GF conversion into a binder after 18 hours of activation at 

different activation temperatures of 50, 60 and 80°C. The activation time of 18 hours was 

chosen as the optimum time for activation, as after this time undesirable thermal effects 

including swelling and cracks formation begin to appear. The tested samples were then 100% 

humid cured for 28 days. 

5.2 Development of NaOH activator: effect of concentration, and temperature 

5.2.1 Activation temperature of 5 0°C 

Figure 5.1 shows the compressive strength development of 10 activated GF mixtures using 10 

different concentrations of NaOH expressed as a percentage of the total mass of GF, i.e. 0.5 to 

5% Na20 with incremental increase of 0.5, as shown in Table 3.4 (p.81). Figure 5.1 presents 

the average compressive strength results for each mixture with time until 28 days. Other 

histograms at curing time of 1 and 7 days are presented in Figure 5.A1 (Appendix A). Figure 

5.1 shows that compressive strength increases as NaOH concentration increases for all 

mixtures at 1 day, while this behavior changed with 7 and 28-day tests. Two observations 

could be made: the first is related to the effect of temperature, where the tested samples after 

24 hours gave a continuous increase in compressive strength, while the second is related to the 

effect of curing time. After 7 and 28 days, compressive strength increases from the initial 

concentration (CO.5) to a concentration of C2, while at C3 the compressive strength begins to 

decrease, then increase again with cracks appearing at the surface. From Figure 5.1, it is 

apparent that the best concentrations at later ages are 5, 4.5 and 1.5% Na20. There is a big gap 

between the samples activated at 0.5% Na20 and those activated at 1% Na20. This means that 

1% Na20 is enough to activate GF to give a binder with significantly higher compressive 

strength. It also means that there is a pessimum concentration of NaOH, at which the system 

acquires improved properties. From this observation, it could be concluded that there exists 

optimum temperature and concentration of NaOH after which undesirable cementitious 
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properties may be obtained. As the final aim of this chapter is to create a cementitious material 

that is suitable for concrete applications, it was determined that, according to the results 

obtained on the group of pastes activated at 50°C, GF could be appropriate for the fabrication 

of precast concrete elements. For this reason, and to determine the feasibility of this 

application, activation temperatures of 60 and 80°C were also investigated in the experimental 

program. The 7-day test is very critical, as it reflects the initial effect of curing conditions on 

the stability of the cementitious products formed. 
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Figure 5.1 Compressive strengths of 1, 7 and 28-day samples activated at 50°C 
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5.2 Compressive strengths of 28-day samples activated at 50°C 

5.2.2 Activation temperature of 60°C 

As was done with the samples activated at 50°C, the compressive strength development of 10 

activated GF mixtures at 60°C using 10 different concentrations of NaOH expressed as a 
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percentage of the total mass of GF, i.e. 0.5 to 5% Na20 with incremental increase of 0.5 was 

investigated; the results are presented in Figure 5.3 and Table 3.4. As well, compressive 

strengths at 1, 7, and 28 days are presented in Figures 5.4 and 5.A2 (Appendix A). At 60°C, 

the activated samples showed different behaviors, which can be classified into two groups. 

The first group starts at 0.5% Na20 and ends at 3% NaiO, while the second group starts at 

3.5% Na20 and ends at 5% Na20, as clearly shown in Figures 5.4 and 5.2A (Appendix A). 

This behavior is evident at testing times of 1 and 7 days, while at 28 days, the samples 

activated at high concentrations of 3.5% to 5% Na20 showed a reduction in compressive 

strength. In other words, compressive strength decreases as NaOH concentration increases at 

later ages and under this specific temperature of activation, as shown in Figure 5.4. Figure 

5.A2 (Appendix A) showed the presence of a large gap between the samples activated at 0.5% 

and 1% Na20, and this gap is larger than the gap found between those samples activated at 

50°C by more than 39%, as calculated from Figures 5.A1 and 5.A2 (Appendix A). The best 

results were obtained from the samples activated by 3.5, 4, and 1% Na20, respectively. 
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Figure 5.3 Compressive strength of 1, 7, and 28-day samples activated at 60°C 
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Figure 5.4 Compressive strength of 28-day samples activated at 60°C 

5.2.3 Activation temperature of 80°C 

At a temperature of 80°C, we suggested the use of superplasticizer (SP) with critical 

concentrations to adjust the workability, as shown in Table 3.5. A naphthalene sulfonate-based 

superplasticizer was used with samples activated with concentrations of 1 and 3% Na20 where 

these concentrations were critical, as shown in the samples activated at 50 and 60°C. The 

average compressive strengths of 5 activated GF mixtures at 80°C using 5 different 

concentrations of NaOH expressed as a percentage of the total mass of GF, that is 1 to 5% 

Na20 with incremental increase of 1, are presented in Figure 5.5. The effect of temperature of 

activation has been demonstrated in this part. At the age of 1 day, there is no significant 

difference in compressive strength, and unlike those cured at 50 and 60°C, this can be 

attributed to the effect of higher temperatures, as shown in Figure 5.6. The gain in 

compressive strength is directly proportional to the concentration of the activator. However, at 

curing ages of 7 and 28 days the tested samples start to show the same behavior of loss in 

compressive strength, as shown in Figure 5.A3 (Appendix A), similar to previous 

experiments. These samples can be separated into two groups. The first group begins at 1% 

and ends at 2% Na20, while the second group begins at 3% and ends at 5% Na20, as shown in 

Figures 5.6 and Figure 5.A3 (Appendix A). It is evident that the samples containing 

superplasticizer showed higher compressive strengths than the same samples without 

superplasticizer, likely due to the dispersing effect of superplasticizer, making more particles 

available for the reaction. Therefore, superplasticizer plays an important role in improving the 

durability of such activated samples by affecting the microstructure of the formed phases. 
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Figure 5.5 shows that the samples activated with 1% Na20 (CI) with superplasticizer give the 

best compressive strength, as does the sample activated by 2% Na20 (C2) at 28 days. In 

addition, the samples activated by 1% Na20 without superplasticizer give equivalent strengths 

with time, while the other samples show a reduction in compressive strength with time, as 

shown in Figures 5.5, and 5.3A (Appendix A) The critical concentration yielding the lowest 

strength is still at 3% Na20. This suggests that there exists a midpoint concentration before 

and after which there is substantial change in the essence and nature of the newly formed 

cementitious structure. It is worth noting that the samples activated by concentration of 5% 

Na20 had shown a considerable reduction in compressive strength from around 90 MPa at 1 

day to lower than 50 MPa at 28 days. It was attributed to the formation of NaF mineral, which 

is a very soluble mineral and its presence was confirmed by XRD analysis, as shown later. 

The reduction in compressive strength was attributed to the cracks and splitting formation at 

the surface due to formation of soluble mineral, which was expected to be villiaumite. 
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Figure 5.5 Compressive strength of 1, 7 and 28-day samples activated at 80°C (sp=superplasticizer) 
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Figure 5.6 Compressive strength of 1-day samples activated at 80°C (sp= superplasticizer) 

5.2.4 Comparison between the activation temperature and concentration of activator 

At a curing age of 1 day, the compressive strength increases with increase in temperature at 

the same activator concentration, as well as compressive strength generally increases as the 

concentration of activator increases. The higher compressive strengths are obtained at the 

higher concentration, as shown in Figure 5.7. At 7 days, the optimum concentration of 

activator seems to be at 2% Na20 concentration at a temperature of activation of 80°C, 

whereas the optimum concentration at 60°C is 1% Na20 and that at 50°C is 5% Na20, as 

shown in Figure 5.8. There are two optimal concentrations at a curing age of 28 days and a 

temperature of 60°C, which are 1 and 4% Na20, while at 50°C there is only one optimal 

concentration at 5% Na20. At 28 days and at 80°C, there is also only one optimal 

concentration at 2% Na20, as shown in Figure 5.9. This part of the activation process using 

NaOH as an activator, is accompanied by SEM-EDS analysis to investigate the effect of 

NaOH concentration and temperature on GF particles, as shown later. 
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Figure 5.7 Comparison between samples activated 
at different temperatures and concentrations of 
activator at 1 day 

Figure 5.8 Comparison between samples activated 
at different temperatures and concentrations of 
activator at 7 days 
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Figure 5.9 Comparison between samples activated at different temperatures and concentrations of 
activator at 28 days 

5.2.5 Simple analysis 

A statistical analysis was carried out with the previously mentioned results to calculate the 

rate of gain in compressive strength with temperature increase at constant concentration and 

curing age. The analysis was conducted using results obtained from activated samples at a 

curing age of 1 day at 50, 60, and 80°C. Both 1 and 5% Na20 concentrations have the same 

rate of gain in compressive strength with temperature. The rate of gain in compressive 

strength due to these two concentrations is very low at high temperature. This behavior can be 

interpreted as follows, and as shown in Figure 5.A4 (Appendix A): 

i) At high temperature and low concentration, there are enough GF particles and low 

concentration of activator to activate these GF particles. 
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ii) At high temperature and high concentration of activator, there is sufficient 

concentration but fewer GF particles, so that the rate is accelerating with 

temperature until it reaches complete dissolution of GF particles, after which the 

rate begins to slow down. 

The rate of gain in compressive strength at concentrations of 2 and 3% Na20 increases with 

the increase in temperature, as shown in Figure 5.A5 (Appendix A). This trend is the reverse 

of what was obtained at 1 and 5% Na20. This can be interpreted the same way, as there are 

enough GF particles and sufficient concentration of activator to dissolve these particles. 

However, the rate of gain in compressive strength at a concentration of 4% Na20 has shown 

the same trend as that of 1 and 5% Na20, as shown in Figure 5.A6 (Appendix A). From 

regression and best-fit line analysis of the curves obtained from Figures 5.A4-5.A6 (Appendix 

A), the following equations could be obtained, as shown in Table 5.1: 

TABLE 5.1 EQUATIONS FOR BEST FIT LINES OF COMPRESSIVE STRENGTH-
TEMPERATURE RELATION 

Concentration 

CI 
C2 

C3 

C4 

C5 

Best fit equations, R2~i 

Fd = - 0.026 * T2 + 4.3435 * T - 124.16 
Fc2 = 0.025 * T2 - 2.0232 * T + 75.16 

Fc3= 0.0112* T2- 0.2108 * T - 15.6 

Fc4= -0.0511* T2 + 7.9493 *T-231.18 

Fc5 = - 0.0236 * T2 + 4.3923 * T - 107.7 
Fc stands for compressive strength, C stands for concentration, and T for temperature used 

By taking the first derivative of these equations with respect to the applied temperature and 

then substituting in the resulting equations by each temperature value, the following data 

could be derived, as shown in Table 5.2: 
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TABLE 5.2 CHANGE IN RATE OF COMPRESSIVE STRENGTH GAIN WITH 
ACTIVATOR CONCENTRATION 

Temperature(°C) 

50 
60 
80 

Rate of compressive strength 
CI 
1.74 
1.22 
0.18 

C2 
0.48 
0.98 
1.98 

C3 
0.91 
1.13 
1.58 

gain(MPa/°C) 
C4 

2.84 
1.82 
-0.23 

C5 
2.03 
1.56 
0.62 

From Table 5.2, the following curves representing the change in rate of compressive strength 

gain with the activator concentration can be obtained, as shown in Figures 5.10 to 5.12. The 

change in rate of compressive strength gain for mixtures activated at 50 and 60°C can be 

demonstrated, as in Figure 5.10 and 5.11, where there is one peak for each temperature; which 

stands around 4-4.5% Na20 at 50°C and 3.5-4% Na20 at 60°C, while at 80°C, the peak stands 

around 2.5% Na20, as shown in Figure 5.12. These results are in accordance with the 

previously mentioned results, as shown in Figures 5.2, 5.4, and 5.A.3. It is important to note 

the effect of temperature change on optimal activator concentration, which flips to lower 

concentration value in the direction of applied temperature, as shown in Figure 5.13. 
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Figure 5.10 Change in the rate of compressive 
strength gain at 50°C and different activator 
concentrations 
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Figure 5.12 Change in the rate of compressive 
strength gain at 80°C and different activator 
concentrations 
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Figure 5.13 Difference between change in the rate 
of compressive strength gain at 50 and 80°C and 
different activator concentrations 

The explanation as to why at 80°C and higher NaOH concentration, compressive strength 

experiences an abrupt drop was attributed to the formation of villiaumite mineral (NaF), as 

shown in SEM-EDS and XRD analyses. 

5.2.6 XRD analyses 

A series of XRD and SEM-EDS analyses were undertaken to interpret the mechanism of 

activation. XRD analysis obtained from samples activated using 1, 4 and 5 % Na20 at 80°C 

and a curing age of 1 day, as shown in Figure 5.14. XRD analysis showed the presence of 

villiaumite (NaF), which is very soluble with respect to fluorite (CaF2) mineral 

[BEKMURATOV AND DOBRYNINA, 1971; CATHERINE AND JOSEPH, 1986; 

CATHERINE, 1987; PAUL AND SEIKO, 1991; MORALES et al., 2007] and can lead to 

instability of the cementitious system formed. Villiaumite formation increases with Na20 

concentration. It is evident that the fluoride originated from the composition of GF. This also 

explains previously mentioned results obtained from the group of samples activated at high 

concentrations of NaiO and at 80°C, which were accompanied by cracks and cleavage at the 

surface and were attributed to a high rate of formation of NaF. This unstable mineral leads to 

instability in the activated system and results in a reduction in compressive strength due to 

formation of different planes of cleavage that leads to splitting and failure in strength. Figure 

5.14 shows the formation of villiaumite with increasing NaOH concentration. As well, Figure 

5.15 shows the formation of other newly formed phases that are responsible for the bonding 

force of the cementitious system. Zeolite-like materials are the major phases that formed 

during the activation process, which are responsible for the bonding force. 
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Figure 5.14 XRD patterns of paste samples 
activated by 1, 4 and 5% Na20 at 80°C for 24 
hours 
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Figure 5.15 XRD patterns of C4 sample activated 
at 80°C with 4% Na2Q 

The negative effect of villiaumite formation was overcome by adding Ca(OH)2 activator 

(refer to 5.5.2), which competes with NaOH to form fluorite mineral (CaF2), which is more 

stable than NaF. 

5.2.7 SEM analysis 

Figures 5.16 to 5.23 show the effect of NaOH concentration on GF particles. At low 

concentration of NaOH, namely 0.5% Na20, there is initial formation of reaction rims around 

the GF particles, which are responsible for the weak binding capacity in this system. At higher 

concentration, the rim thickness increases, as shown in Figures 5.16 and 5.18. Consequently, 

the binding force increases and the compressive strength increases as a result. Figures 5.16 

and 5.18 explain the gap found between the compressive strength of the samples activated by 

0.5 and 1 % Na20. The thickness of the reaction rim in the mixture containing 1% Na20 can 

be inferred from the compressive strength difference. As well, the intensities of the SEM-EDS 

spectra are directly proportional to the concentration used, as shown in Figures 5.17 and 5.21, 

as an indication for the existence of internal rearrangement and reconcentration of the silicate 

layers at the surface, as shown in Figures 5.19 and 5.20. Therefore, NaOH is a selective 

activator prone to react with silicate compounds, thus opening their structures and facilitating 

their recrystallization into new cementitious phases, as shown in Figures 5.19 and 20 

(rectangular crystals). 
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In this part of the analysis, the paste activated by 0.5 % Na20 showed that GF particles started 

to stick to each other and pack themselves in a very condensed way, as shown in Figure 5.16. 

The SEM total area analysis showed the presence of silicon, calcium, aluminium, sodium, and 

potassium elements, which are the main components of GF particles, as shown in Figure 5.17. 

It is very important to trace the intensities of these elements to evaluate their concentrations on 

the surface of GF particles due to the activation reaction. 
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Figure 5.16 SEM image of paste activated by 0.5% Na20 at 50°C, at 1 day 
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Figure 5.17 SEM elemental spot analysis of paste activated by 0.5% Na20 at 50°C, at 1 day 
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As the concentration of NaOH increases along with the reaction rims around GF particles, this 

may lead to more binding capacity between the GF particles, as shown in Figure 5.18. NaOH 

begins the reaction with the surface of GF particles leading to dissolution of the surface with 

formation of reaction rims around GF particles, which was followed by 

de-polymerization of the amorphous system, as clearly shown in Figure 5.18. 

Figure 5.18 SEM image of paste activated by 1% Na20 at 50°C, at 1 day 

As the concentration of NaOH increases, the reaction rims increase, and as the dissolution of 

GF particles increases, as the ease of formation of new phase crystals. These crystals formed 

as a result to an increase in the interaction between GF parfticles and NaOH leading to 

rearrangement and polymerization of the de-polymerized GF particles, as shown in Figure 

Figure 5.19 SEM image of paste activated by 5% 
Na2Oat50°C, for 24 hour 

Figure 5.20 SEM image of paste activated by 5% 
Na20 at 50°C, for 24 hours (different place) 
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Figure 5.21 SEM elemental spot analysis of paste activated by 5% Na20, at 50°C for 24 hours 

The intensities of the SEM-EDS spectra are directly proportional to the activator 

concentration used: low intensity at low concentrations and high intensity at high 

concentrations, as an indication of the reformation of the silicate layers, i.e. polymerization at 

the surface, as shown in Figures 5.17 and 5.21. The relation between the intensity of the 

silicate phase and the concentration of NaOH used is shown in Figure 5.A7 (Appendix A). 

NaOH can be considered a selective activator, which reacts with silicate compounds 

dissolving their structures and easing their crystallization to form new phases with new 

geometrical structures (rectangular), as shown in Figures 5.19 and 5.20. 

As the concentration of 3% Na20 is the intermediate concentration that showed good results, 

it was therefore chosen for study by SEM-ED analysis at 60°C. Figures 5.22 and 5.23 showed 

that as the temperature increases, the system becomes more structured and more compact. The 

effect of increasing activation temperature is evident, as there is formation of a mix of 

rectangular and spherical crystals, indicating the effect of heat on GF particles. Therefore, 

increase in temperature produces quite enough energy to induce the rapid formation of 

different types of crystals, as shown in Figures 5.22 and 5.23. 
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Figure 5.22 SEM image of paste activated by 3% Figure 5.23 SEM image of paste activated by 3% 
Na20 at 60°C, for 24hours Na20 at 60, for 24 hours 

These figures show that the resulting phases are mainly sodic zeolite-based alumino-silicate 

compounds (geo-polymers), as confirmed by XRD analysis, which is shown in Figure 5.24. 
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Figure 5.24 XRD analysis for paste activated by 3% Na20 at 60, for 24 hours 

50 

These minerals, as confirmed by XRD analysis, have quasi-crystalline structure due to their 

low intensities. Therefore, based on previously mentioned results, the following hypotheses 

could be postulated: 

i) The effect of NaOH is extremely vital in creating the appropriate environment that 

promotes disintegration of the alumino-silicate structure of the GF by rupturing the 

weak bonds in that structure; 

ii) Increased temperature facilitates their rupture and accelerates the disintegration of 

the network of this structure; 
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iii) Once there are available reacting species in the system, a process of de-

polymerization and re-polymerization, along with the alkaline condition, promote 

the formation of geopolymeric structures; 

iv) These structures mainly consist of sodium alumino-silicate hydrate compounds as 

the major mineral, while the minor minerals are a mixture of alumino-silicate, 

calcium alumino-silicate, and calcium silicate hydrates; 

v) The presence of Na+, K+ and Ca + is needed because of their charging balance and 

catalytic role. The alkali ions are found in two states: 

a- entrapped inside the cementitious system and ionically bound in the structure; 

b- trapped around the polymeric structure, where they are free in the system to 

guarantee the stability condition of the formed structure, as visualized and 

demonstrated in Figure 5.A8 and 5.A9. 

5.3 Ca(OH)2 activator (CH) 

CH was previously investigated in Chapter 4, in which the pozzolanic activity of GF with 

portlandite at 55°C was evaluated. The pozzolanic activity of GF with hydrated lime was 

evaluated, and it was found that its activity increases with temperature. The change in GF 

activity with change in CH dosage can be followed by tracking the major peaks of portlandite 

using XRD analysis. Table 5.3 shows that the water demand increases with increasing CH 

content. On the other hand, compressive strength decreases with an increase in CH dosage, as 

shown in Figure 5.25. The concentration of 10 % CH seems to be the optimum concentration, 

after which there is remarkable reduction in compressive strength, because of the presence of 

extra free and unreacted hydrated lime, as shown in Figure 5.25. The most important 

observation here is that there is gradual progress in compressive strength with time, which 

indicates that the temperature of activation of 60°C was not adequate to facilitate the 

pozzolanic reactivity of GF to consume most of CH rapidly. 
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TABLE 5.3 MIX DESIGN AND WATER DEMAND 

GF (%) 

90 
80 
70 

CH (%) 

10 
20 
30 

Water/(GF+CH) 

0.359 
0.400 
0.435 

• 70GF30CH 
• 80GF20CH 

28 

Time (days) 

365 

Figure 5.25 Compressive strength of GF-based mixes with different CH contents (60°C) 

The intermediate mix of 80% dry GF powder and 20% CH was selected, based on results 

shown in Figures 5.13 and 5.25, for monitoring by XRD analysis. This XRD analysis was 

used to quantify the pozzolanic activity of GF with CH based on the major peaks of CH. This 

combination was mixed with water (GF-to-water ratio was 0.40) and the paste was cast in 

molds measuring 50 x 50 x 50 mm and cured under accelerating conditions of 80°C and 100% 

R.H. for 18 hours in the curing chamber. After curing, the moulds were removed from the 

curing chamber and covered with a thermal insulator to cool down slowly. The samples were 

then tested for compressive strength. The compressive strength was the average of 3 tested 

samples. Paste hydration was also monitored by X-ray diffraction (XRD) analysis. X-ray 

diffraction analysis has effectively shown that after 18 hours of hydration, the lime was 

largely consumed, as shown in Figure 5.26 and Appendix 5.B. This test showed the strong 

pozzolanic behavior of GF. Figure 5.26 has also shown the formation of fluorite (CaF2). 

Fluorite is a stable mineral. Although, part of the lime was used in fluorite formation, the 

pozzolanic behavior of GF is still predominant because the average compressive strength of 

the paste was found to be about 16 MPa after 18 hours. 
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Figure 5.26 XRD analysis of activated GF paste with 20% CH activated at 80°C 

Moreover, the identification of the newly formed phases such as calcium alumino-silicate 

hydrate (C-S-A-H) and fluorite (CaF2) minerals is of great significance that confirms the 

formation of fluorite. As a result, this part of the study can be used as a fruitful introduction to 

the chemistry of this system and prove the way for further study. 

5.4 Sodium metasilicate activator (SMS) 

The properties of this activator were given in Chapter 3. This activator has been tested with 

different silica moduli (Ms = Si02/Na20 = 0.319, 0.75, and 0.97) by changing its Na20 

content. The main problem with SMS activator is its solubility, where it was used in powder 

form. The silica modulus (Ms) was changed using NaOH pellets, and by recalculating their 

molar ratio to each other, different Ms could be obtained. Silica modulus of 0.75 was first used 

in such a way that Na20 concentrations were 2 and 3% Na20. The temperature of activation 

was 60°C. The results are shown in Table 5.4 and Figure 5.27. 

TABLE 5.4 MIXTURE CHARACTERISTICS OF SAMPLES TESTED AT 
CONSTANT Ms AND AT 60°C 

N a 2 0 
% 
2 
3 

M s 

0.75 
0.75 

GF/w ratio 

0.35 
0.35 

Remarks 

Surface swelling and scaling 
Water silica is very insoluble 
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The main difficulty with this Ms is swelling, cracking and/or scaling at the surface of the 

activated samples, as shown in Figure 5.27. 

I 

0 '' i 

Therefore, this Ms modulus from literature does not function well with GF. For this reason, 

new Ms formulations were conducted, as shown in Table 5.5 and 5.6. The first formulation 

was designed in such a way that Ms equals to 0.97 and Na20 content changes from 1 to 2%. 

The formulation with this Ms did not show any effective reaction, as shown in Table 5.5 and 

Figure 5.28. 

TABLE 5.5 MIXTURE CHARACTERISTICS OF SAMPLES TESTED AT CONSTANT 
Ms AND AT 60°C 

N a 2 0 
% 
1 

1.5 
2 

M s 

0.97 
0.97 
0.97 

GF/w ratio 

0.35 
0.35 
0.35 

Remarks 

No setting 
No setting 
No setting 

Figure 5.27 Surface swelling, cracks, and scaling 
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Figure 5.28 Negative reaction with deteriorated surface (no setting) 

Therefore, another formulation was conducted with low Ms equal to about half of the first 

formulation presented in Table 5.4, as shown in Table 5.6. The formulation with this Ms was 

characterized by two regions of efficiency, as shown in Figure 5.29. In first region, for a 

concentration of Na20 equals 2.94%, where the final products show no signs of deterioration; 

however, in the second region, where the concentration of Na20 is higher than 4.41%, there is 

clear formation of cracks and early deterioration. Despite that, the compressive strengths 

given by the latter concentrations were higher than that given by 2.94% Na20 with no cracks, 

as shown in Figure 5.30. 

TABLE 5.6 MIXTURE CHARACTERISTICS OF SAMPLES TESTED AT CONSTANT 
Ms AND AT 60°C 

N a 2 0 
% 

2.94 
4.41 
5.87 

M s 

0.329 
0.329 
0.329 

GF/w ratio 

0.35 
0.35 
0.35 

Remarks 

Good setting 
Surface cracks 
Surface cracks 
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compressive strength 
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Figure 5.30 Appearance of final product as a function of Ms concentration 

A clear relation could be drawn between Ms and Na20 concentration, as shown in Figure 5.31. 

Different regions of SMS efficiency are clearly shown, where the most efficient region is that 

with low Ms and moderate NaaO concentration, as demonstrated in Figure 5.30. 
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Figure 5.31 Effect of Na20 content of SMS on final product appearance and durability 

5.5 Binary activators 

5.5.1 Ca(OH)2 and Na2C03 -based system (CH-NC) 

Both Ca(OH)2 and Na2C03 are basic compounds that synergistically interact to form calcite 

and NaOH, as follows: 

Ca(OH)2 + Na2C03 <-• 2NaOH + Ca C03 (5.1) 

Their interaction indirectly pumps NaOH into the system with a given concentration 

according to their molar ratio. A slight quantity of Ca(OH)2 (CH) or Na2C03 (NC) may 

remain in the system and react with GF particles. A mixture of NC and CH with a molar ratio 

of NC to CH of 1.12 was thus formulated in a such way to supply free NaOH with 

concentration of 1.5 % Na20. The efficiency of this binary activator was evaluated under a 

temperature of activation of 60°C. 

The results obtained show that this dosage of Ca(OH)2 is not sufficient to initiate reasonable 

strength, as shown in Figure 5.32. Therefore, addition of further CH is recommended, as well 

as extra heat input. Moreover, Figure 5.32 shows that strength gradually increases with time. 
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Figure 5.32 Development of compressive strength by CH-NC binary activator 

5.5.2 Ca(OH)2 and NaOH-based system (CH-NH) 

This system has a double advantage. First, it decreases the formation of NaF, villiaumite 

mineral, and second, the activated system acquires the advantages of the presence of NH and 

CH. A mixture of 20% CH with exact amount of NH equivalent to 1.5% Na20 (1.5NH20CH) 

with respect to GF content was tested at 60°C. The combination of CH and NH shows their 

synergetic interaction to form the stable CaF2 mineral at the expense of unstable NaF mineral 

in their cementitious matrix. The results shown in Figure 5.33 support the supposition of 

decreasing the formation of villiaumite by the addition of Ca(OH)2, which guarantees steady 

compressive strengths with time without any detectable deterioration. As well, the mixtures of 

20% Ca(OH)2 and NaOH with concentrations of 2 and 5% Na20 (2NH20CH and 5NH20CH) 

with respect to GF were tested at 80°C to investigate the effect of the abundant presence of 

Ca(OH)2 in the prevention of NaF formation. Figure 5.33 shows the stability of compressive 

strength with time even at higher concentration of NH (5% Na20) in presence of 20% CH, 

contrary to what was found with NH alone, as previously shown in Figure 5.8 and 5.9. 

In comparison with CH-NC activator, CH-NH activator imparts the system with 

approximately 12 times more compressive strength than that provided by CH-NC activator. 

As well, compressive strength is nearly stable with time, as shown in Figure 5.33. CH-NH 

binary activator with different ratios is highly recommended, as it gives promising results. The 

abundant presence of CH assists the formation of CaF2 (stable mineral) and prevents NaF 

mineral formation even at higher NH concentration (5% Na20), as confirmed in Figure 5.34. 

The SEM-DS analysis of 5NH20CH has shown the formation of nano-sized and well-oriented 
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fiber-like structures with a width smaller than 50 nm, as shown in Figure 5.35. Two structural 

forms were observed, spherical and cubic. The only difference between both structures is the 

sulfur content, where sulfur was detected only in the spherical structure, as shown in Figure 

5.36. There is an indication of the continuous transformation of the cubic form into a spherical 

one, as indicated by the abundant presence of spherical forms, as shown in Figure 5.37. 
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Figure 5.33 Development of compressive strength by NH-NC binary activator 
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Figure 5.34 XRD patterns of the interaction of GF with 5NH20CH after 24 hours at 80°C 
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Figure 5.35 Zeolitic nano fibre-like structure formed due to interaction of GF with 5NH20CH after 24 
hours at 80°C. 
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Figure 5.36 Elemental spot analysis for two forms of zeolitic structures formed due to interaction of GF 
with 5NH20CH after 24 hours at 80°C. 
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5.5.3 NaOH and Na2C03 -based system (NH-NC) 

A binary mixture of both NaOH and Na2CC>3 was used to activate GF in a way that their sum 

equals approximately 1.5% Na20. The part of NaiO content obtained from Na2CC>3 equals 

0.5% with respect to GF total mass. The temperature of activation was 60°C. The results of the 

compressive strength of pastes obtained using NH-NC activator are shown in Figure 5.38. The 

presence of calcite was suggested as a result of the reaction of gradually liberated calcium 

from the opened-GF structure, due to the presence of low NH concentration at 60°C, with the 

free carbonate radical provided by Na2CC«3 salt, according to the suggested reaction: 

Na2C03 + Ca+2 + 20H' -»• 2NaOH + CaC03 (5.2) 

The progress of compressive strength development after 24 hours is very slow. Accordingly, 

steady state was reached during the activation process. Consequently, invariable compressive 

strengths were noticed with time, as clearly shown in Figure 5.38. 

In comparison with CH-NH and NH-NC activators, NH-NC activator gave compressive 

strength of half what was given by CH-NH activator. This result was expected as NC is 

soluble and may react with Ca ions, which may be gradually liberated from GF particles in a 

long-term reaction, as previously suggested by Equation 5.2 
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Figure 5.38 Development of compressive strength by NH-NC binary activator 

5.5.4 NaOH and Na2S04-based system (NH-NS) 

A binary mixture of both NaOH and Na2SC>4 (NS) was used to activate GF in a similar way to 

NH and NC, where their sum equals approximately 1.5% Na20 with respect to GF total mass. 

The part of Na20 content obtained from NS equals 0.5% with respect to GF mass. The 

temperature of activation was 60°C. The gradually liberated calcium ions from the opened-GF 

structure reacts with the free sulfate radical released by NS salt to form anhydrite (CS) 

according to the following reaction: 

,+2 Na2S04 + Ca"z + 2(OH)" -> 2NaOH + CaS04 (anhydrite) (5.3) 

The anhydrite (CS) may hydrate with time to give hemihydrates or even gypsum that may take 

part in the development of compressive strength with time, as confirmed later and as shown in 

Figure 5.39. 

In comparison with CH-NC, CH-NH, and NH-NC activators, NH-NS is actually efficient, as it 

gave higher compressive strength. However, its strength is lower than that given by 

CH-NH activator. This result was attributed to the alkali content of NH-NS, which was higher 

than that used in NH-NC, as well as to the efficiency of NH activator which is higher than that 

of CH and to the formation of anhydrite, which may form under the activation conditions, as 

explained by Equation 5-3. 
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Figure 5.39 Development of compressive strength by NH-NS binary activator 

5.5.5 Ca(OH)2 and K2C03-based system (CH-KC) 

The efficiency of this binary activator was tested at a temperature of activation of 60°C. The 

efficiency of this activator depends on the reversible reaction that gives KOH as the target 

activator, which can be obtained indirectly through the reaction of Ca(OH)2 and K2CO3, as 

follows: 

Ca(OH)2 + K2CO3 <-• 2KOH + CaC03 (5.4) 

The molar ratio of K2CO3 to Ca(OH)2 used in this test was 1.16. This molar ratio was 

formulated in such a way that it results in K20 equivalent to 1.5% Na20 with respect to GF 

weight, while the w/GF ratio was 0.35. Figure 5.40 shows that the development of 

compressive strength with time was very slow and the compressive strength obtained was very 

low in comparison to CH-NC activator, therefore KOH obtained during this reaction, as 

shown in equation 5-4, is not as efficient as NaOH. 
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Kinetic studies have indicated that recombination of K-ion with OH-ion is about 30% faster 

than Na-ion with OH-ion [CHELLIAH et al., 2002], and this perhaps is the primary reason for 

the effectiveness of NaOH over that of KOH. 
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Figure 5.40 Effect of CH-KC binary activator on compressive strength 

5.5.6 Ca(OH)2 and CaC03-based system (CH-CC) 

A mixture of 2.5% each Ca(OH)2 and CaCC>3, with respect to GF weight at a temperature of 

activation of 60°C, was used. The w/GF ratio was also 0.35. This low dosage of Ca(OH)2 was 

chosen to confirm the reactivity of GF at low dosage of Ca(OH)2 . Figure 5.41 shows that 

there is a gradual development in compressive strength with time comparable to CH-KC and 

CH-NC activators. The strength obtained was low in comparison to the results attained with 

the other combinations of activators. 
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Figure 5.41 Effect of CH-CC binary activator on compressive strength 
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5.5.7 Ca(OH)2 and Na2S04-based system (CH-NS) 

A binary mixture of 20% Ca(OH)2 and a definite amount of Na2S04 equivalent to 1.5% Na20 

were used. Equation 5-5, shown below, was taken into account. For that reason, this mixture 

can be considered as a quaternary mixture of activators (containing the reactants and products 

of Equation 5-5 at the same time). The temperature of activation was 60°C. 

Ca(OH)2 + Na2S04 <-• CaS04 + 2NaOH (5.5) 

Figure 5.42 shows CH-NS activator is highly efficient, and as expected, resulted in high 

compressive strength of about 32 MPa at 1 day and 40 MPa at 28 days. Compressive strength 

development, in comparison to the other mixture, is comparatively faster. It is important to 

note that this activator gave comparable results to what was obtained with 

NH-NS, as a good indication of the presence of NH in the mixture during the activation 

process. Therefore, Equation 5-5 is correct and correctly expressed the reaction occurring 

during the activation process. 
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Figure 5.42 Effect of CH-NS binary activator on compressive strength 

5.6 Ternary activators 

5.6.1 Ca(OH)2-NaOH-Na2S04-based system (CH-NS-NH) 

A ternary mixture of Ca(OH)2, Na2S04, and NaOH (CH-NS-NH), as designed in such a way 

that NaOH was equivalent to 1.5% Na20 and Ca(OH)2 content was 20% with respect to the 

total mass of GF by addition. Na2S04 was formulated in molar ratio so that half of the 

Ca(OH)2 theoretically reacts with the entire dosage of Na2S04 to form anhydrite. The 
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temperature of activation was 60°C and the w/b ratio was 0.35. To confirm the formation of 

anhydrite (CS), the activated pastes were tested after 18 hours of activation by XRD analysis 

(Figure 5.43). The results obtained are shown in Figure 5.43. According to Equation 5-5, this 

ternary activator can be considered a quaternary activator with CH-NS-NH-CS composition. 

The compressive strengths are significantly higher than those obtained with the other 

activators. The formation of CS was confirmed by XRD analysis, as shown in Figure 5.44. 

The development of compressive strength was fast, it was monitored at 2.5 hours and 18 hours 

where compressive strengths reached were about 8 and 64 MPa, respectively. While under 

humid curing, the compressive strength at 7 and 28 days were about 69 and 75 MPa, 

respectively. The existence of a trace of CH, confirmed by XRD analysis after 18 hours of 

activation, was believed to be responsible for the gradual increase in compressive strength 

noticed at later ages, as shown in Figure 5.43. 
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Figure 5.43 Effect of CH-NS-NH ternary activator on compressive strength 
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Figure 5.44 XRD patterns of the reaction of CH-NS-NH ternary activator and GF after 18 hours 

Figure 5.44 shows that there is formation of anhydrite mineral (Anh.), which is calcium 

sulfate (CS), as expected, especially since thermal treatment (60°C) used prevents the 

formation of gypsum or hemihydrates [FREYER, VOIGT, 2003]. As well, there is clear 

evidence for the formation of thenardite mineral (Then.), mainly in the form of sodium sulfate, 

which is a soluble mineral. Higher thenardite content is not preferable, as it affects the 

durability of the formed paste. Therefore, a higher portlandite content is recommended to 

compete with the formation of thenardite and to lead to anhydrite mineral formation. 

5.7 Comparison between different activator combinations 

This comparison illustrates the effect of different binary and ternary activators on the 

activability of GF due to the direct effect of such combinations on GF particles, as shown in 

Figure 5.45. In comparison with NH as a reference activator with a concentration of 1.5% 

Na20, the binary activators can be divided into two groups. The first group comprises different 

combinations of NH with NC, KC, and CC, which gives lower compressive strength that can 

be attributed to the chemically inactive CO3 radical. While the second group of binary 

activators comprises different combinations of NH with CH and NS, which gives higher 

compressive strength with respect to NaOH activator. This also can be attributed to the active 

SO4 and OH radicals. The best combinations of activators are those containing NH and CH or 

NH and NS or any of their binary or ternary mixtures, as previously shown in this part of the 

study and in Figure 5.45. 
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Figure 5.45 Comparison between different combinations of activators at 60°C 

5.8 Activated binary cementitious system 

5.8.1 Activated GF system with slag 

Different replacement levels of slag to GF were used to study the effect of slag replacement 

on the activability of GF. NaOH was used as the main activator in this part of the study with 

two concentrations of 1.5 and 3 % Na20 and with w/b ratio of 0.35 at 60°C for 18 hours. A 

series of slag replacement levels of 5, 10, 20, and 30% were tested up to 28 days activated by 

1.5 and 3% Na20. The results of the first series activated by 1.5% Na20 are shown in Figure 

5.46, from which the replacement level of 10% slag can be considered as the optimal 

replacement level. In addition, Figure 5.47 shows that all replacement levels of slag activated 

by 3% Na2<D gave better and comparable compressive strengths at later age of 28 days. 

95GF5S 90GF10S 80GF20S 70GF30S 

Slag replacement (%) 

Figure 5.46 GF pastes partially replaced with slag 
and activated by 1.5% Na20 at 60°C 
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Figure 5.47 Partially replaced GF mixtures with 
slag and activated by 3 % Na20 at 60°C 
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5.8.2 Activated GF system with fly ash 

According to the literature review [GUTIERREZ et al., 1993; KOUKOUZAS et al., 2006] and 

mineralogical composition of fly ash shown in Figure 4.9, it can be realized that fly ash 

contains significant proportion of crystalline compounds. Therefore, it needs higher activator 

concentration and temperature of activation to open and disintegrate its crystalline structure. 

For this reason, an initial concentration of 3% Na20 and a temperature of activation of 60°C 

were chosen. The results show that compressive strength increases with time, however, there is 

notable reduction in compressive strength with an increase in fly ash replacement level, as 

shown in Figure 5.48. To avoid such behavior, either the concentration of NaOH or the 

temperature of activation must be increased with the increase in fly ash replacement level to 

compensate the effect of replacement. The replacement level of 10% fly ash can be considered 

as the optimal dosage, which gives higher compressive strength with respect to the other 

mixtures. The result of this replacement level is comparable to that given by 10% slag 

replacement, as shown in Figures 5.47 and 5.48. 
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Figure 5.48 GF mixtures partially replaced with fly ash and activated by 3 % Na20, at 60°C 

5.8.3 Comparison between GF-slag and GF-fly ash systems 

These two systems are very promising as they provide an easy solution for the recycling of 

by-products in a sustainable system. The two systems of slag and fly ash activated by 

3% Na20 at 60°C were compared to each other at 1, 7, and 28 days. The addition of slag 

always increases compressive strength, while the addition of fly ash always decreases 

compressive strength due to its crystalline structure that needs extra energy input or higher 

activator concentration as opposed to that of slag, which needs less energy, as shown in Figure 
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5.49. The compressive strength of GF system with higher replacement level of slag is double 

that with fly ash, as shown in Figure 5.49. Therefore, partially replacing GF with slag is better 

than with fly ash at low NH concentration and temperature of activation. 
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Figure 5.49 Comparison between 1-day activated GF either with slag or fly ash 3% Na20 at 60°C 

5.9 Activated-GF mortars 

5.9.1 NaOH activator 

This part of the study is a complementary test to the hydraulic properties of GF, as shown in 

Chapter 4 (characterization). This test depends mainly on the fineness of GF and activator 

concentration. In this part, a series of mortars were made using GF, Ottawa sand, and NaOH 

activator, as shown in Table 5.7. A temperature of activation of 60°C was used along with 

3% Na20 activator concentration. Both values are considered as optimal temperature and 

concentration, as shown in the previously mentioned part of the study on paste. The reference 

flow value was taken as 25 ± 5 (as that used with ASTM C227) and any sample whose value 

was higher than this limit was rejected. 

A. Mixtures preparation 

These mortars were prepared in the same way as the paste was prepared in the previous part, 

except for sand, with Ottawa sand being added directly 30 seconds after GF addition to the 

activator-containing mixing solution. The total mixing time was kept at 6 minutes, as with the 

previously mentioned study on paste. This part is critical, since the optimum GF-to-sand ratio 

was determined. This ratio is important in formulating GF-to-aggregates ratio in concrete, as 

shown in Table 5.7 and Figure 5.50. The optimum sand-to-GF ratio was found to be 1.5, the 
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w/GF ratio was 0.348 and the molar concentration of NaOH as Na20 was 1.39 molar. Figure 

5.50 shows that the effect of sand-to-GF ratio can be easily visualized. This relation reflects 

the effect of this ratio on the binding capacity between the newly formed cementitious phases 

and aggregates. 

TABLE 5.7 MIXTURES CHARACTERISTICS OF THE MORTAR SAMPLES 
TESTED AT 60°C 

Sand/GF 

0.5 
1.0 
1.5 
2.0 
2.5 

(GF/(GF+sand))% 

66.67 
50.00 
40.00 
33.33 
28.57 

w/GF 

0.343 
0.344 
0.348 
0.365 
0.415 

Na zO 

3 
3 
3 
3 
3 

N a 2 0 
Molar 

1.41 
1.41 
1.39 
1.32 
1.17 

Flow* (cm) 

30.0 
28.5 
26.0 
21.5 
22.0 

* Target flow = 25 + 5 cm 

D1day D7days Q28days • 91 days 

(GF/(GF + Sand)) % 

Figure 5.50 Compressive strength of mortar for 1, 7, 28 and 91 days, activated at 60°C 

5.9.2 Ca(OH)2 activator 

Different additions of portlandite (CH) were added to GF. The effect of CH addition, as well 

as the effect of temperatures has been investigated. With CH activator, two temperatures of 

activation, three CH addition values, and three w/GF ratios were chosen based on data from 

the work done with NaOH. The effect of temperature, the percentage of added activator, and 

the concomitant w/GF ratios have been investigated, as shown in Table 5.8 and Figures 5.51 

and 5.52. Compressive strength increases with both temperature and with an increase in the 

percentage of CH added. The development of compressive strength can be attributed to the 
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solubility of CH, which increases with temperature where CH becomes more soluble, and 

consequently more OH ions are available, resulting in an increase in the pH of the system. The 

higher the pH, the greater the dissolution of the silicate network is. As well, the more CH is 

added, the more OH ions become available. This results in the formation of calcium-alumino 

silicate compounds and increase in compressive strength. By increasing the temperature from 

30 to 50°C, compressive strength increases to more than 250%. Therefore, these results 

indicate the effect of heat and concentration on adjusting desired compressive strength. 

TABLE 5. 8 MIXTURE CHARACTERISTICS OF MORTAR SAMPLES TESTED AT 
30 AND 50°C 

Ca(OH)2 

10 
20 
30 

Sand/GF 

1.5 
1.5 
1.5 

(GF/(GF+sand)) 
(%) 
40 
40 
40 

w/GF 

0.445 
0.474 
0.506 

CH 
(%) 
10 
20 
30 

Flow* (cm) 

30 
28.5 
25.5 

Target flow = 25 + 5 cm 
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18 hours, activated at 50°C 

5.10 Development of alkali-activated GF concrete (AAGFC) mixtures and some 

engineering properties 

Five concrete mixtures have been activated using two types of activators, namely, NH and 

CH. These concrete mixtures were activated at 70°C for 21 hours. The compressive strengths 

of these mixtures were then followed at different curing ages to assess the stability of these 

mixtures with time. 
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5.10.1 Scope of work 

The aim of this part of the study is to investigate the possibility of creating concrete mixtures 

using AAGFC. Assessing the stability of the resulting concrete, by testing compressive 

strength with time, is of great interest. The most convenient application for this type of 

concrete was found to be precast concrete. Therefore, the aims can be summarized as follows: 

i. Study of mechanical properties; 

ii. Study of the effect of single and double activators such as NH and CH; 

iii. Study of the effect of w/b ratio; 

iv. Study of the effect of GF-to-aggregate ratio. 

5.10.2 Mixture proportions and results 

The mix design of these mixtures is based on those used in studying the alkali-silica reaction 

in concrete, according to CSA A23.1-14A, with some modifications required to simulate field 

concrete, as given in Table 5.9 

Two groups of concrete mixtures with two different GF-to-aggregate ratios were used. The 

first group of concrete included mixtures CI, C2, and C3, while the second group of concrete 

included mixtures C4 and C5. The compositions of the two groups are presented in Table 5.9. 

Mixtures CI, C2, and C3 were tested for compressive strength until more than 50 days to 

assess the early age stability of these mixtures, as shown in Figure 5.53. As well, the later age 

stability of these mixtures was assessed for up to more than 800 days, and it was found that 

these mixtures are very stable at early and later ages, as shown in Figures 5.53 and 5.54. 

TABLE 5.9 MIX DESIGN FOR DIFFERENT ACTIVATED CONCRETE MIXTURES 

Concrete mix design (1 m ) 

Materials 

Glass Frit (kg) 
Water (kg) 

W/B 
Aime Cote Sand (kg) 

Aime Cote aggregate (kg) 
Added alkali, NazO (%) 

CH (%) 
SP, dry extract (%) 

Density 
g/cm3 

2.85 
1.00 

-
2.69 
2.69 

-
2.24 

-

CI 

451.2 
168.0 
0.37 
712 
1100 
2.0 
0.18 
0.12 

C2 

451.2 
178.0 
0.39 
712 
1070 
3.46 
0.55 
0.08 

C3 

427.36 
206 
0.39 
712 
894 

-
24.5 
0.71 

C4 

451.2 
203.04 

0.45 
712 

1001.57 
1 
-

0.12 

C5 

451.2 
203.04 

0.45 
712 

1001.57 
3.46 
0.18 
0.12 
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It is worth mentioning that the C2 concrete mixture gave the best strength development 

characteristics of the first group; consequently, concentration of 2% Na20 seems more 

efficient than 3.46% NaiO. As well, NH activator is more efficient than CH activator, as 

shown in Figure 5.54. 

The second group of concrete mixtures, C4 and C5 contain lower GF-to-aggregate ratio 

(higher W/B) than that used in first group and was tested up to 28 days, as shown in Table 5.9 

and Figure 5.55. Changing GF-to-aggregate ratio reduced compressive strength. This can be 

observed with mixture C5, which had the same composition as mixture C2 except for its low 

GF-to-aggregate ratio. As well, reducing NH concentration with this lower GF-to-aggregate 

ratio has notably reduced compressive strength, as shown in Figure 5.55. It is worth noting 

that the low concentration of NH (1% Na20) was not efficient enough to provide C4 concrete 

mixture with adequate strength to be tested at early ages, as shown in Figure 5.55. 
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The results showed that NH is confirmed as the best activator and its efficiency is greater than 

that of CH. It is not recommended to use a high percentage of CH, as compressive strength is 

not supported at higher CH dosages. The mixing method is critical and it has a remarkable 

effect on compressive strength. Concrete mixture has to be well homogenized in order to 

ensure good distribution of the activator and binder around the aggregates. 

Figure 5.A10 (Appendix A) shows some photos taken for the activated concrete mixture in the 

humidity chamber during curing time. Generally, the effect of type and concentration of 

activator, water-to-binder ratio, and GF-to-aggregate ratio have substantial effect on the final 

compressive strength and durability of the concrete and must be tested in detail in the future. 

5.11 Development of alkali-activated GF system at ambient temperature 

In this part of the study, four new non-traditional and confidential activators were 

proportioned and tested for their efficiency to activate 1:1 combination of GF and slag 

mixtures at ambient temperature without input heat. These activators are given different 

identifications such as ANH, TA, TCA, and QA, and they are created from definite 

combinations of different activators. The results of the activated mortars are shown in Figures 

5.56 and 5.57. Sand-to binder ratio of 2.25 was used with mortars fabricated with TA, ANH, 

and TCA, as shown in Figures 5.56. 

DTA EANH Q TCA • QA-1.75 BQA-2.25 HQA-2.75 

Curing time (days) 
Curing time (days) 

Figure 5.56 GF-S activated mortars at 
ambient temperature using new activators 

Figure 5.57 GF-S activated mortars at ambient 
temperature using compound activator 

TCA is the best activator, as it gives compressive strength nearly double of what are given by 

ANH and TA, as shown in Figure 5.56. According to these results, QA activator was 

formulated based on the results and compositions of ANH, TA, and TCA shown in Figure 
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5.57. The effect of sand-to-binder ratio was tested using QA activator. Three sand-to binder 

ratios of 1.75, 2.25, and 2.75 were tested. Figure 5.57 shows that the sand-to-binder ratio of 

2.25 is the best. Therefore, TCA and QA can be considered as the best activators capable of 

activating GF-S combinations at ambient temperature with a high strength. This part of the 

study will be started in separate project and large scale, as an extension to this work. 

5.12 Hypothetical studies 

5.12.1 Hypothesis for alkali-activated GF according to collision theory 

A. Kinetics and Arrhenius Equation 

Collisions between reacting species create an unstable state, which is required to 

initiate the disintegration of GF network. 

By changing the surrounding environment to conditions favoring the formation of 

unstable state (alkaline), GF particles are excited to a state of higher energy. 

The number of collisions increases with increasing temperature. 

Heterogeneous reactions (geochemical) involve more than one phase formation. 

Accordingly, the reaction of GF with NH and CH can be represented by the following 

equation: 

nNaOH + GF (Si, Al, Ca, F) Na-Al-Si + Na-Al-Ca-Si + NaF (5.6) 
• 

nCa(OH)2 + GF (Si, Al, Ca, F) Na-Al-Si + Na-Al-Ca-Si + CaF2 (5.7) 

As the reaction is a function of [OH] concentration, the reaction rate can be represented by the 

following equation: 

^ i = -k[OH]" (5.8) 
dt L J 

J d[OH] = J- k[OH]" dt (5.9) 
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When n = 0, the reaction is zero order, and the following equation can be obtained by 

rearranging and solving the integral 

[OH]=[OH\-kt (5.10) 

Where k is the reaction rate constant and t stands for time. When n = 1, the reaction is first 

order and the following equation can be obtained by rearranging and solving the integral 

-la 

\n[OH]=\n[OH]0-kt or [OH] = [OH]0e (5.11) 

B. Effect of temperature on reaction rates 

Experimentally, it has been found that reaction rates increase with temperature rise. This 

increase can be formulated as follows: 

k = Ae (5.12) 

This relationship is called the Arrhenius equation, where R is the gas constant, A is the 

pre-exponential frequency factor, and Ea is the activation energy representing the energy 

barrier needed, as shown in Figure 5.58. Consequently, the relationship between k and T is as 

follows: 

Fa 
hik = ]nA-— (5.13) 

RT 

A straight line should be produced by a plot of Ink versus 1/T, with the slope equal to: 

Ea d(lnk) Ea ^ , ̂  
— or \ / = — (5.14) 
* ii * 
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Energy 

products 

-•Reaction coordinates 
Figure 5.58 Activation energy and enthalpy of chemical reaction 

Activation energy, is the driving force for a chemical reaction to take place, and is therefore 

experimentally defined as the slope multiplied by -R, the intercept on the Ink axis is In A. 

A is the pre-exponential factor, or frequency factor, that is thought to relate to the entropy of 

the activated complex. A is assumed to be a constant that does not vary with temperature. 

Only a fraction of molecules has sufficient energy to react at a specified temperature. The 

distribution of kinetic energy amongst molecules and the required energy for molecules to 

react give rise to the activation energy. The activation energy quantitatively describes the 

effect of temperature on reaction rates. 

C. Confirmatory tests needed 

The main variable parameters are temperature, pressure, OH-concentration, OH/GF ratio, 

w/GF ratio, time of activation, and finally, grain-size distribution effect. During each test, 

pressure could be considered as a fixed parameter that depends on the temperature used. 

Therefore, the change in OH-concentration could be determined with time while keeping 

temperature, GF content, and w/GF ratio constant during the test. Changing the temperature, 

while keeping the other parameters constant, is the next step. These confirmatory tests will be 

done as an extension to this thesis, to widen the scope of the study. 
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5.13 Stoichiometry of GF and calcium hydroxide 

The stoichiometry of the reaction between GF having a simplified empirical formula of 

NC2.55S3.45A1.5 derived from the complex formula of N7.67C12.24S26.44An.55F7.28F and calcium 

hydroxide (CH) was tested. The symbol F denotes fluorite mineral (CaF2), where fluoride 

ions are present in the chemical composition and calculated as fluorite presented in its 

chemical composition, as shown in Table 4.1 (Chapter 4). 

According to the simple GF empirical formula, the reaction of one mole of GF and unkown 

moles of CH can be written as follows: 

NC2.55S3.45A1.5 + aCH + bH -> 3.45N0.29C„SAo.43Hm (5.15) 

where a = 1.32(3.45n - 2.55), b = 3.45m-0.243a, and n = C/S. Then m = 4.554(C/S) + 0.29b 

The reaction of GF and CH was previously studied in Chapter 4, as well as here in Chapter 5 

(refer to 5.3) where 20% CH was considered the optimum value that can react completely 

with 80% GF; that is 80 g of GF reacts completely with 83% of 20 g (16.6 g) of CH, as shown 

in Figure 5.35. Therefore, after transferring these values into molar ratios, 1 mole of GF reacts 

with about 1.6 moles of CH, and "a" = 1.6 (knowing that 80 g of GF equals 0.142 mol GF and 

16.6 g of CH equals 0.223 mol CH). This latter value is comparable to what was found in the 

reaction of slag with CH as examined by RICHARDSON [2002]. As well, n can be calculated 

from SEM of the activated mixture of GF and CH, which was estimated as 1.29. Therefore, m 

= 4.45-0.29b. It can be concluded from Table 5.3 that "b" depends on GF/CH ratio and 

temperature of activation, consequently m is a b-dependent variable. Therefore, the above 

equation can be written as follows: 

NC2.55S3.45A1.5 + 1-6CH + bH - • 3.45N0.29Ci.29SAo.43Hm (5.16) 

The variable 'm' can be calculated from the free water determined by drying and combined 

water determined by ignition, or by subtracting the free water from total added water. 
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5.14 Stoichiometry of GF and sodium hydroxide 

The stoichiometry of the reaction between GF and NaOH (N) was intensively tested in this 

chapter. Therefore, many data can be used to imitate the reaction of GF and N and to establish 

a scientific basis to model the reaction of GF and N. The following equation was supposed: 

NC2.55S3.45A1.5 + aNH + bH -> 3.45NhC„SA0.43Hm (5.17) 

where a = 1.29(3.45h - 1), b = 3.45m-0.225a, and n = C/S, then m = 0.225(C/S) + 0.29b 

From the work done on alkali-activated GF, the optimum N concentration was estimated to be 

1.5% with respect to total weight of GF. Therefore, 1 mole of GF reacts with 4.72 moles of N, 

then a = 4.72, consequently h = 1.35. From SEM the average C/S equal 0.62 where it ranges 

from 0.55 to 0.67. The average water-to-GF ratio equals 0.322, then the empirical coefficient 

b equals 47.7, consequently m equals 13.97, which means approximately 14. Therefore, the 

above-mentioned equation can be written as follows: 

NC2.55S3.45A1.5 + 4.72NH + 47.7H - • 3.45N1<35Co.62SAo.43H14 (5.18) 

In hydration products, the S/A, silica modulus, and C/S ratios are 2.32, 0.74, and 0.62, 

respectively. These ratios are important in modeling the hydration of cement in presence of 

GF. Therefore, this part can be considered as an introduction to hypothetical studies of 

hydration of cement in presence of GF, as well as the activation process of GF in presence of 

different activators. 

5.15 Conclusions 

GF is a highly amorphous material, which has a great potential for conversion into 

cementitious binder. This chapter has concentrated on choosing different inorganic activators 

with different combinations capable of performing safe GF activation. The best optimal 

activator concentrations were chosen. Different temperatures of activation were investigated. 

The best GF-to-sand ratio was found and different concrete mixtures were made. NaOH 
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activator and the temperature of 60°C were chosen as the best activator and optimal 

temperature of activation, respectively. 

Different inorganic activators have shown dissimilar behavior with GF. Sulfate-based 

activators have synergistically reacted with GF forming stable sulfate compounds, as 

confirmed by XRD-analysis. The presence of other mineral admixtures, such as slag and fly 

ash, improved the mechanical properties of the binders obtained. Therefore, partial 

replacement of GF with small amounts of these admixtures can results in great changes in 

physical and mechanical properties of the binders obtained. 

The mechanism of GF activation reaction with NaOH was assumed and confirmed by SEM-

EDS analysis. It has been shown that the outer particle surface of GF was attacked first by 

NaOH solution. Thereafter, melting of the particle's surface has taken place, which fused the 

particles together, forming the initial binding effect. Finally, rearrangement with 

recrystallization took place to produce the last cementing solid form. 

5.16 Future research 

The following are proposed for future research: 

i- Kinetics of the activation process and determination of activation energy according to 

ASTMC1074; 

ii- Improving the efficiency of the new activator capable of activating GF at ambient 

temperature; 

iii- Intensive work on the fabrication of concrete and determination of the parameters affecting 

the fabrication process, including w/b , sand-to-coarse aggregates, and GF-to-total 

aggregate ratios; 

iv- Durability studies of these types of activated concretes including scaling, freezing and 

thawing, permeability, and porosity of the system. 
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CHAPTER 6 

ALKALI-SILICA REACTION STUDIES ON MORTAR AND CONCRETE 

CONTAINING GF 

6.1 Introduction 

The use of supplementary cementitious materials to counter alkali-silica reactions in concrete 

is well documented in North America, where pioneering research in this area has been 

performed [CSA 23.2-27A and 28A; Bouzoubaa and Fournier, 2005]. As previously 

mentioned, the alkali content of GF is approximately 10% Na20eq. This alkali content is a 

matter of concern, making it the main issue when using GF in concrete. To fully investigate 

the effect of the alkali content of GF on expansion due to the alkali-silica reaction (ASR), 

different strategies have been considered. The main strategy in this chapter was to determine 

what effect the incorporation of different levels of GF in mortar and concrete, without any 

other mineral additives, has on ASR expansion. It was expected that this amount of alkalis 

would cause harmful expansion if higher replacement levels were used. The second strategy 

was to assess the effect of different ternary and quaternary mixtures on ASR expansion, and 

then choose the optimum mixtures for future work as recommended mixtures. Different as-is 

(normal), modified, accelerated, and long term-Canadian and American specification tests 

were used. Samples containing GF were subjected to normal, medium, and aggressive media 

in order to study the effect of such media on ASR expansion. Synergistic mixtures of GF with 

fly ash, slag, and silica fume were tested to set up a database of synergistic mixtures from 

which the best concrete mixtures could be formulated. Values observed from both the longer 

and accelerated tests show consistent results. A proposal for a new standard from the work 

done on the modified ASTM C227 to establish an accelerated test lasting less than one month, 

instead of the current length of 6 months, is presented. 

This part of the study is divided into two main tests: mortar bar and concrete prism tests, using 

Canadian (CSA) and American (ASTM) specifications. Mortar bar tests are subdivided into 

normal mortar bar (ASTM C227) and accelerated mortar bar (ASTM C 1260/CSA A23.2-25A) 

tests. A few modifications were made to these tests in order to study their effect on ASR 

expansion. 
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The most important cementitious systems used throughout this work are listed in Table 6.1. 

These mixtures were used in mortar and concrete in addition to other mixtures presented in the 

forthcoming sections that are not listed in Table 6.1. LADJI et al. [2004], LALDJI and 

TAGNIT-HAMOU [2006; 2007], and TAGNIT-HAMOU and LALDJI [2007] have 

mechanically tested the mixtures shown in Table 6.1, which were chosen for their satisfactory 

results. 

TABLE 6.1 MIXTURE COMPOSITIONS OF THE MOST FREQUENTLY USED 
CEMENTITIOUS SYSTEMS 

Mixtures 

Control 

B25GF 

B50GF 

T20GF5SF 

Q25GF30S5SF 

Q20GF25FA5SF 

Symbol 

CO 

B25GF 

B50GF 

TSF 

Qs 

Qfa 

Composition (%) 

100% cement (0.9% Na2Oeq) 

75% cement + 25% glass frit 

50% cement + 50% glass frit 

75% cement + 20% glass frit + 5% silica fume 

40% cement + 25% glass frit + 30% Slag + 5% silica fume 

50% cement + 20% glass frit + 25% fly ash + 5% silica fume 

6.2 Mortar Bar Test (ASTM C 227) 

This test was performed according to the American specification ASTM C227, which 

recommends that tested bars be left in their containers for up to 6 months (100% R.H., at 

38°C). The containers were previously shown in Figure 3.13. The length change 

measurements were monitored for three to six months and compared with the control sample. 

The specification limit is 0.1% linear expansion after 6 months. Two well-known types of 

aggregates representative of a range of effect from innocuous to deleterious were used, 

namely Ottawa sand and Spratt aggregate, respectively, in addition to moderately reactive 

aggregate, namely Aime Cote sand (as shown in Chapter 3). 

6.2.1 Mortar mixtures using Spratt aggregate 

A. GF binary mixtures 

Two replacement levels of 25 and 50% GF-binary systems made from CSA GU cement were 

used. The physical and chemical properties of the cement were given in Chapters 3 and 4. The 

readings were taken as the average of three bars. The control and binary mixtures containing 
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25% GF gave comparable results, placing them at the border of the specification limit, while 

the mixture containing 50% GF is still well below the specification limit. Based on the 

pozzolanic properties of GF, those results may be interpreted as follows: the GF-containing 

mixture is reacting with the released portlandite, which decreases the amount of leaching 

taking place. As a consequence, the GF-containing samples have the ability to maintain more 

alkali ions than the control samples, which suffer portlandite leaching that always contains 

alkalis. Therefore, portlandite leaching generally decreases the alkali content, especially in the 

control samples. As a consequence of alkali leaching, the effect of alkalis appeared to be less 

important than in the mixture containing 25% GF. The replacement level of 25% GF is not the 

optimum replacement level that should be used, as will be shown in this chapter. The results 

obtained from the 50% GF mixture confirm this interpretation. If the alkali content of GF were 

the main element responsible for the results obtained with 25% GF, a higher expansion with 

50% GF replacement would be expected. However, this was not the case. The higher the GF 

content, the higher the reduction in the ASR expansion obtained. This may also be due to the 

replacement effect. As the cement is replaced by half of the amount, the alkali content of 

cement has been reduced by half and therefore the expansion is reduced by half, as clearly 

shown in Figure 6.1. The expansion values of the 50% GF samples are nearly half of what was 

obtained for the control samples. This takes place only when GF is an inert material that does 

not supply the system with potentially deleterious alkali. This could also be taken as another 

proof that alkali content of GF is not available over the testing period (6 months). The 

unavailability of alkalis has been confirmed by accelerated and concrete prism tests, at 

approximately more than 2 years, as will be shown later in this chapter. 

B. GF-SF ternary mix 

Due to its extreme fineness and high glass content, condensed silica fume (CSF) is a very 

efficient pozzolanic material. The high specific surface area of CSF results is increasing water 

demand, which was compensated by using GF, which decreases water demand in mortar 

mixture. In this part of the study, a ternary mixture containing 20% GF and 5% silica fume 

(20GF5SF) was tested and compared with control and binary mixtures containing 25%, and 

50% GF. The effect of silica fume addition has revealed the importance of ternary mixtures 

and the synergistic effect among different supplementary cementitious materials (SCMs) that 
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improve the mitigating action against ASR expansion. The expansion of 20GF5SF mixture 

with time is lower than the binary mixture containing 25% GF, however, it gave slightly higher 

expansion than the binary mixture containing 50% GF. This implies that 50% GF results in 

lower expansion than the equivalent ternary mixture containing silica fume, as shown in Figure 

6.1. These results suggest that the 20GF5SF ternary mixture is not the optimum mixture that 

should be used, especially that the rate of expansion of the bars is such that the 0.10% limit 

may be reached within the next few months of testing. 
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C. GF-Pfa-CSF and GF-Slag-CSF quaternary mixtures (Qfa and Qs) 

The vast majority of fly ash used in concrete is low-calcium ash (ASTM class F), as was used 

in this mixture. Both physical and chemical properties of fly ash and slag are given in Chapter 

4. In this part of the study, two quaternary mixtures made up of slag and class F fly ash, were 

used, identified as Qs and Qfa, respectively, as shown in Table 6.1. These two quaternary 

mixtures were found to efficiently control ASR expansion in the test specimens (i.e. expansion 

< 0.02%) at 6 months), as shown in Figure 6.2. Again, the synergistic effect of such SCMs, 

referred to as co-additives (author's preference), is shown to be highly effective. 
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-0.06 J 

Figure 6.2 Mortar bar test (according to ASTM C227) of quaternary systems using Spratt (38°C, 100% 
R.H.) 

From the above-mentioned Figures 6.1 and 6.2, it can be concluded that a binary system of GF 

with replacement levels of more than 25% could be effective in mitigating the alkali-silica 

reaction (ASR). The same also applies to the ternary and quaternary mixtures investigated. 

However, the ternary mixture is slightly less effective than the binary with 50% GF, which is 

consequently less effective than the two quaternary mixtures. 

6.2.2 Mortar mixtures using Aime Cote sand 

A. Control and GF binary mixtures 

Aime Cote sand is river-bed sand that is less reactive than Spratt aggregate. Its physical 

properties were presented in Chapter 3 (Materials). According to ASTM C227, Aime Cote 

sand is a non-reactive aggregate whose reactivity is approximately 4 times less than that of the 

Spratt, as can be easily concluded from Figures 6.2 and 6.3. However, according to ASTM 

CI260, the accelerated mortar bar test (AMBT), Aime Cote sand is a reactive aggregate, as 

will be shown in the accelerated test (section 6.4). The expansion values of both the control 

and the binary mixtures with 25% GF are well below the specification limit (0.10% 

expansion), as shown in Figure 6.3. However, the expansion value of the binary with 25% GF 

mixture at 180 days is equal or even slightly higher than that of the control. The same 

argument that applies to the Spratt aggregate can be applied in this case: alkali leaching in 

control sample is also higher than that of the binary with 25% GF. 
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Figure 6.3 Mortar bar test (according to ASTM C227) for GF binary systems using Aime Cote 
sand(38°C, 100% R.H.) 

6.2.3 Mortar mixtures using Ottawa sand 

Ottawa sand has been used as an innocuous aggregate and as reference aggregate, according to 

ASTM CI09. Its physical properties and grain-size distribution were given in Chapter 3. 

A. GF binary and ternary (GF-CSF) mixtures 

It was expected that all mixtures containing Ottawa sand would give expansion values much 

lower than the ASTM expansion limit. This is due to the non-reactive character of such 

aggregate. The same mixtures that had been used with Spratt aggregate were used in this part, 

except that the Spratt aggregate was replaced by Ottawa sand. The expansion of the control 

mixture is higher than the binary mixture, which is slightly higher than that of the ternary 

mixture. This follows the same expansion trend as that of the Spratt aggregate, except for the 

actual expansion levels that have been observed. 
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Figure 6.4 Mortar bar test (according to ASTM C227) of the ternary system using Ottawa sand (38°C, 
100%R.H.) 

B. Binary and quaternary glass frit systems 

The same two quaternary mixtures that were made using Spratt aggregate were used in this 

part, except that the Spratt aggregate was replaced by the Ottawa sand. According to the non-

reactivity of he Ottawa sand, there is no major difference among the ASR expansion values of 

binary, ternary, and quaternary mixtures. This test is applicable and recommended for reactive 

aggregate in order to assess the combination of reactive aggregate and blended cements. 

Therefore, the presence of GF with non-reactive aggregate shows no relevant effect that 

requires full evaluation. The same applies to the use of the ternary and quaternary mixtures, 

as their effectiveness is highly remarkable in the case of the use of reactive aggregate only. If 

any alkali is released from GF, it will be very difficult to notice it when an innocuous 

aggregate is used. The small difference between the binary and two quaternary mixtures using 

the Ottawa sand is irrelevant, as expected. However, the control sample shows higher 

expansion than the other mixtures. The innocuity of Ottawa sand is not a given, as will be 

shown in the accelerated test (section 6.4). 

-173-



in c 
ra a 
x a> 
•_ , ra 

f 
< 

0.1 
0.09 
0.08 
0.07 
0.06 -I 
0.05 
0.04 
0.03 
0.02 
0.01 

0 
-0.01 4 
-0.02 

•"•"•••Control -O 

—&-Q20GF25FA5SF-O 

•B25GF-0 

•Q25GF30S5SF-O 

80 120 

Curing time (days) 

Figure 6.5 Control, binary and quaternary mortar bar mixtures using Ottawa sand (38°C, 100% R.H.) 

From Figures 6.4 and 6.5, it can be concluded that due to the absence of non-reactive 

constituents, most of the cementitious systems give comparable results that could be attributed 

to the non-reactivity of Ottawa sand. 

The drawback of this test is the leaching of alkalis due to the leaching of portlandite [RANC et 

al., 1994; WIGUM et al., 1997; MALVAR et al., 2002]. ROGERS and HOOTON (1991) 

showed that higher expansion always takes place when mortar bars are stored in containers 

without wicking material. However, when excessive condensation of water takes place on 

specimen surfaces, alkalis are removed from the concrete and the rates of reaction and 

expansion are reduced [RIVARD et al., 2003]. As a consequence, the expansion of control 

samples seems to be less than what it should be. As the active additives react with portlandite, 

its leachability decreases, and as a result, so does the leachability of alkalis. Therefore, active 

additive-containing mixtures seem to give higher expansion values compared to the expansion 

values of the control samples that undergo leaching of alkalis. The alkali content in the control 

samples should be increased by the external addition of alkalis, exactly as is done in the 

concrete prism test. This increase in alkali content could also be adjusted to reach 1.25% 

Na20eq or higher of total alkalis content in the mortar mixture based on the alkali content of 

the cement used. Therefore, an increase in Na20eq concentration can compensate alkali 

leaching. 
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6.3 Modified ASTM C227 mortar bar test using Spratt aggregate (accelerated test) 

Expansion due to ASR increases with the increase in alkalis concentration, pessimum grain 

size, and change in surrounding environment, such as temperature and humidity [SHAYAN et 

al., 1996; OBERHOLSTER AND WESTRA, 1981; GUDMUNDSSON et al., 1998]. Based 

on the literature and these facts, the reactivity has been increased according to changes in 

these parameters. The grade size proportions of Spratt aggregate, stated in Table 3.10, were 

modified in order to increase fine constituents. A mixture composed of two grade sizes: the 

first passed through a sieve of 316 urn and retained on a sieve of 160 um , while the other 

grade passed through a sieve of 1.25 mm and retained on a sieve of 630 um, were 

proportioned to 1:1. The water-to-binder ratio was 0.5. The binder-to-aggregate ratio remained 

the same as in ASTM C227, i.e. 1:2.25. The alkali content was changed through NaOH 

addition to the mixing water to increase its total content to 1.25 and 2.5% Na20eq for both the 

control (CO-1.25 and CO-2.5) and binary mixtures containing 50% GF (GF-1.25 and GF-2.5). 

As well, the curing temperature was changed from 38 to 60°C. These modifications clearly 

demonstrate the effect of curing temperature and leaching rate on expansion of the control 

mixtures containing those two alkali concentrations. The results of this test are shown in 

Figure 6.6. 
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Figure 6.6 Binary 50% GF mixture according to modified ASTM C227 using Spratt (60°C, 100% R.H.) 

Figure 6.6 shows that the leaching effect in the control sample with an alkali content of 1.25%> 

Na20eq (CO-1.25) is much greater than that in the control sample with an alkali content of 

2.5% Na20eq (CO-2.5). As well, expansion of the binary mixture containing 50% GF with an 
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alkali content of 2.5% Na20eq is much higher than the control mixture with an alkali content 

of 1.25% Na20eq. There is therefore a threshold value, after which the leaching effect has no 

significant effect on expansion. It can also be concluded that GF blended cement having the 

same alkali content as the control has a greater ability to retain alkalis. The control sample 

with an alkali content of 2.5% Na20eq gave expansion values higher than the binary mixture 

containing 50% GF and the same alkali content. This means that GF has the ability to retain 

alkalis in a non-harmful way. In other words, it consumed alkalis by forming new 

cementitious phases in which alkalis are part of the structure (chemically entrapped inside 

their structure), as confirmed in Figure 6.6 and later in this chapter. To demonstrate this 

assertion, the expansion values of the GF samples with 1.25 and 2.5% Na20eq are very 

comparable to each other and still lower than the control with 2.5% Na20eq. It is noted that 

maximum expansion was reached at 33 days. Therefore, these modifications could be 

extended as a proposal for a new specification based on the modifications made to ASTM 

C227. When using ASTM C227, it is highly recommended to use the modifications carried 

out on reactive aggregate and Portland cement through by its alkali content through external 

alkalis addition. To accelerate the reaction rate, high curing temperatures, as well as high ASR 

reactive surface area by increasing the fine constituents of the reactive aggregate, are 

recommended. 

6.4 Accelerated Mortar Bar Test (AMBT) CSA A23.2-25A 

This test method is commonly used for assessing the potential reactivity of aggregates, as well 

as the effectiveness of the cementitious materials. However, this method does not replace 

other similar lengthier test methods. This test was carried out in accordance with CSA A23.2-

25A (equivalent to ASTM CI260), in which the mortar bar samples have to be immersed in 

IN NaOH at 80°C; expansion data of the mortar can be obtained within as little as 16 days. 

The test method was developed because of the shortcomings of ASTM C227 and ASTM 

C289. It is the most popular test used today. In this part of the study, five aggregates were 

used (Spratt, Aime Cote, Ottawa, Mirabel, and LG aggregates). First, a comparison was made 

between different replacement levels of glass frit, and then between different mineral 

admixtures. Thereafter, a series of binary, ternary, and quaternary mixtures were prepared to 

determine the synergistic effect of GF with different mineral admixtures. 
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6.4.1 Mortar mixtures using Spratt aggregate 

A. Binary GF mixtures 

GF mixtures were tested to investigate the effect of different replacement levels of GF on 

ASR expansion. Replacement levels of 25, 50, 75, and 90% GF have shown that expansion 

decreases when the replacement level is increased. This result is in phase with the results 

obtained using ASTM C227, as shown in the following Figures 6.7 and 6.8. 
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Figure 6.7 Effect of different GF replacement 
levels on ASR expansion (80°C, IN NaOH) 
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Figure 6.8 Effect of different GF replacement 
levels on long-term ASR expansion (80°C, IN 
NaOH) 

This is further proof that the alkali content of GF is not deleterious; the incremental increase 

in GF content does not enhance ASR expansion. The difference between expansion of the 

control and 25% GF binary mixture can be attributed to either the optimized quantity of GF 

that should be used or other inherent properties that contributed to expansion, as shown later 

in this chapter. Accordingly, 25% replacement level of GF is not the optimum dosage of GF 

that should be used; the mortar bars containing this dosage react as if they only contained 75% 

cement and kept the same w/c ratio. Therefore, at early age, they are more porous and less 

compact than the control samples containing 100% cement, as confirmed later by pore 

analysis. Figure 6.8 shows that the 25% GF curve intersects with the control curve at about 19 

days, and then the expansion rate starts to slow down as an indication of the beginning of the 

mitigating action for this replacement level. The other replacement levels show lower 

expansion values at the beginning. This indicates the presence of a pessimum replacement 

value before which, there is a reverse action that negatively affects the microstructure of this 

system. It is worth noting that 90% GF-containing mortar bars are rigid enough to withstand 
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the severe conditions of this accelerated test. This is yet another proof that GF reacts as a 

cementitious binder and that the cement used (10%) has acted as an activator. 

Another test has been done on mortar bars containing 75% cement, with the remaining 25% 

being replaced by innocuous Ottawa sand to compare it with that containing 25% GF. If the 

expansions of these mixtures are co-parallel with little difference, then the previously 

mentioned explanation is correct. It is expected that the two mixtures will have a similar 

expansion trend. The results obtained show that the expansion behavior of the mixture 

containing 75% cement and 25% Ottawa sand is indeed similar to that containing 25% GF and 

75% cement, as shown in Figure 6.9. The main difference between the two curves can be 

attributed to the presence of Ottawa sand (25%), which may be responsible for decreasing the 

expansion values to be slightly lower than that with 25% GF. Nevertheless, in general, the 

trend of both expansion curves seems to be similar. This may be due to the effect of Ottawa 

sand that hinders and decreases the expansion of that mixture in a similar way, but earlier than 

the effect of 25% GF. This test confirms the above-mentioned discussion concerning the 

drawback effect of 25% GF at early ages, as well as its mitigating action against ASR 

expansion at later ages. 
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Figure 6.9 ASR expansion for a mortar mix with 75% cement and 25% GF or Ottawa sand Using 
Spratt (80°C, IN NaOH) 

B. Specific weight gain 

The specific weight hange with time, the weight change in gram over the volume change in 

cubic centimeter of the mortar bar samples of the control and three binary mixtures containing 
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25, 50, and 75% GF, was determined. The results are shown in Figure 6.10, from which it can 

be concluded that the specific weight gain change for the Spratt control mixture is higher than 

that of the other binary mixtures. The specific weight gain change with time for these mixtures 

decreases with an increase in GF content. The reduction in specific weight change can be 

arranged according to the gain values, as follows: 
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Figure 6.10 Specific weight gain for mortar mixtures with different GF levels using Spratt (80°C, IN 
NaOH) 

These results are entirely in accordance with corresponding expansion results. Therefore, this 

method needs to be verified using other mixtures, and if successful, it can be recommended as 

a helpful means of verifying the expansion data. The importance of Figure 6.10 lays in the 

supposition that there may be a threshold value, which can be taken as a reference, after which 

the tested sample can be considered as potentially deleterious compared to, and in accordance 

with, AMBT results. 

C. Simple analysis of GF-binary mixtures results 

Expansion values at 14 and 28 days for each GF replacement level were plotted, and the 

points that fit the linear curve were used to obtain lines presenting the best fit, as well as their 

equations. The two linear lines obtained intersected at a given point at which the expansion at 

14 days is equal to the expansion at 28 days. This point is obtained by solving the two 
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equations of best-fit lines at 14 and 28 days. This point has a replacement level of 91.8% GF 

at which the expansion value at 14 days is theoretically equal to that at 28 days. 

Experimentally, at a replacement level of 90% GF, the expansion value at 14 days was 

0.089% while at 28 days it was 0.094%. The difference between the two expansion values is 

only about 5%, as shown in Figure 6.11 

0 20 40 60 80 100 

(%) GF-replacement level 

Figure 6.11 Linear expansions against GF replacement levels using Spratt (80°C, IN NaOH) 

It is worth mentioning that the binary mixture containing 75% GF was excluded from the 

above calculation to serve as a verifier of calculation correctness. By substituting 75% into the 

first equation of 14-day expansion and into the second equation of 2 8-day expansion to predict 

expansion at these ages, the obtained values were 0.1374 and 0.2198%, respectively. The 

experimental expansion values of the mixture containing 75% GF corresponding to the same 

ages are 0.129 and 0.2044%, respectively. Therefore, the difference between the expected 

values and the predicted ones at 14 and 28 days are 6.5 and 7.5%, respectively. Therefore, the 

above equation gives reliable results. 

6.4.2 Comparison between the binary mixtures using Spratt aggregate 

A. GF against SF system 

A comparison between binary mixtures containing different GF contents with that containing 

condensed silica fume (CSF) at 14 days was conducted, and the efficiency sequence was 

determined, as shown in Figure 6.12: 

12% CSF > 90% GF> 75% GF > 10% CSF > 5% CSF > 50% GF > control > 25% GF 

-180-



Therefore, the expansion of the binary mixture containing 90% GF is comparable to that of 

the binary containing 12% CSF, while the expansion of the binary mixture containing 75% GF 

is comparable to that of the mixture containing 10% CSF. 

At later ages (28 days), the sequence shown in Figure 6.13 was: 

90% GF > 75% GF> 12% CSF > 50% GF >10% CSF >5% CSF > 25% GF > control 

Based on the 28-day expansion value, the binary mixtures containing 90 and 75% GF are 

more effective in reducing ASR expansion than the binary mixtures containing 10 and 12% 

CSF; therefore, it was expected to obtain efficient ternary mixtures containing GF-CSF. 
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Figure 6.12 Comparison between binary mixtures Figure 6.13 Comparison between binary mixtures of 
made from GF andCSF systems at 14 days (80°C, GF and CSF system at later ages (80°C, IN NaOH) 
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B. GF against fly ash (Pfa) system 

Comparing binary mixtures containing GF with those containing Pfa at 14 days, the efficiency 

sequence shown in Figure 6.14 was found to be: 

25% Pfa > 90% GF > 50% GF > control > 25% GF 

Therefore, among these mixtures, 25% Pfa is the most effective mixture at early age, while at 

later ages the sequence shown in Figure 6.15 was found to become: 

90% GF > 25% Pfa > 50% GF > 25% GF > control 
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The mixture containing 25% Pfa is known to be effective in controlling ASR expansion at 

early ages in the test; however, at later ages, the efficiency of 90% GF is greater than that of 

25% Pfa. Therefore, it was expected to obtain synergistic ternary mixtures of GF-Pfa at lower 

combination contents. 
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Figure 6.14 Comparison between binary mixture 
made from GF or Pfa systems at 14 days 

Figure 6.15 Comparisons between binary 
mixtures of GF or Pfa systems at 28 days 

C. GF against slag system 

Comparing binary mixtures of GF with those containing slag at 14 days, the efficiency 

sequence shown in Figure 6.16 was found to be: 

50% slag = 90% GF > 50% GF > control > 25% GF 

Therefore, the efficiency of 50% slag equals that of 90% GF at early ages, while at later ages, 

the sequence shown in Figure 6.17 was found to become: 

90%GF > 50% slag > 50%GF > 25%GF > 25%GF > control 

The efficiency of slag is substantial at high replacement levels (i.e. >50%), however, at later 

ages the efficiency of 90% GF is higher than that of 50% slag. Therefore, it was expected to 
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obtain efficient ternary mixtures containing GF-slag at higher dosages, which is not 

recommended. 

It is worth mentioning that the binary mixture containing 25% slag gave an expansion 

somewhat similar to that of the binary mixture containing 25% GF at later ages. Therefore, GF 

is an effective admixture at later ages. Although the binary mixture containing 25% GF 

showed undesirable results at early ages, it reversed its chemical behavior at later ages, as 

shown in Figure 6.17. The efficiency of the binary mixtures containing 25, 50, and 90% GF is 

persistent at later ages, as shown in Figure 6.8, as opposed to these binary mixtures containing 

CSF, Pfa, and slag, which seem to show increasing expansion with time. 
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Figure 6.17 Comparison between binary 
mixtures containing GF or slag systems at 28 
days 

D. Overall comparison of GF-CSF-Pfa-slag binary systems 

It has been found that 25% Pfa at 14 days is the most effective mixture among other mineral 

admixtures, as shown in Figure 6.18. The order of effectiveness of such mixtures is as 

follows: 

25% Pfa>50% S>90% GF>75% GF>10% CSF>5% CSF>50% GF>25% S>control>25% GF 

However, when comparing the same mixtures at 28 days, as shown in Figure 6.19, the order 

of effectiveness changes to become: 
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90% GF >75% GF>50% S>25% Pfa>50% GF>10% CSF>5% CSF>25% S>25% GF>control 

All GF-containing mixtures moved to a higher effectiveness order with respect to the control; 

this means that the effectiveness of GF increases both with an increase in its replacement level 

and with time. GF seems to react and show its effectiveness at later ages, as shown in Figures 

6.18 and 6.19. 
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Figure 6.18 Comparison of different binary mixtures Figure 6.19 Comparison of different binary mixtures 
containing different mineral admixtures containing different mineral admixtures 

The advantages of such binary mixtures are significant in designing different synergistic 

ternary and quaternary combinations. Such mix design depends mainly on knowing the 

pessimum percentage of each mineral admixture and taking advantage of such values when 

designing the synergistic diagrams of each ternary combination, as shown later in this chapter. 

6.4.3 Comparison between binary and ternary mixtures 

It is important to note that Spratt aggregate is one of the most reactive aggregates and it has 

been used as standard reactive aggregate in evaluating the effectiveness of many active 

additives in mitigating ASR expansion [CSA A23.2-14A]. Some ternary mixtures containing 

GF, CSF, Pfa, and slag were studied and compared with their binary mixtures over the short 

and long term. 

-184-



A. GF-CSF ternary mixtures 

Different ternary GF-CSF mixtures were tested at 14 days and at later ages to evaluate the 

effectiveness of GF-CSF ternary mixtures in controlling ASR expansion. A polynaphthalene-

based superplasticizer (SP) was used and expressed in percentage with respect to binder 

content, more specifically at 0.35% (dry extract). At fixed (5%)CSF and variable GF 

contents, expansion increases with the increase in GF content up to 35%. The presence of 

superplasticizer also increases expansion. These results are in accordance with results reported 

by [PERRY, GILLOT, 1985], [BONEN, DIAMOND, 1992], and [DIAMOND, 1997], where 

Diamond showed that silica fume can induce ASR rather than mitigate it, especially when 

used with alkali-based sulfonated superplasticizer such as our SP. In the case of SP, the 

sulfonated group of the superplasticizer is neutralized by alkalis. These alkali ions remain in 

the pore solution when the superplasticizer polymer chains are adsorbed into the cement 

hydration products. Hence, increase in OH" ion concentration results in an additional increase 

in expansion, with respect to the mixtures without superplasticizer. These observations require 

that other mixtures be evaluated to explain the reasons for such behavior. To interpret the 

effect of SP, the following procedure was proposed: the addition of 25% GF in mortar mixture 

decreases water demand, as shown in Chapter 4, and the addition of CSF increases water 

demand, they may thus adversely affect each other. As a result, any addition of 

superplasticizer increases pore formation, which decreases the impermeability of the system. 

This leads to a notable difference in their expansions. It may also be attributed to the 

condensed form of CSF (see Figure 4.4) that may be difficult to disperse by such quantity of 

SP. Thus, CSF lumps work as new centers of reactivity, leading to an increase in ASR 

expansion. The ternary system containing GF and CSF was expected to give the most efficient 

system in mitigating ASR expansion. Other mixtures were made to assess this system. A 

dosage of 5% CSF was chosen as fixed, a value that causes no significant workability loss. It 

is therefore very important to choose other replacement levels. As a preliminary observation, 

the 5% CSF that was mixed with different replacement levels of 20 and 35% GF seems to 

result in unoptimized ternary mixtures. The results of these mixtures are discussed in the 

following two points: 
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1- At 14 days, results show that the mixture containing 35% GF and 5% SF (35GF5SF) gave 

an expansion slightly lower than that of the corresponding binary containing 5% SF, while the 

mixture containing 20% GF and 5% SF gave an expansion value that is slightly lower than the 

corresponding binary of 10% CSF. It is worth noting that the addition of superplasticizer to 

the latter mixture (20GF5SF-SP) increased expansion with respect to the same mixture 

without superplasticizer, as shown in Figure 6.20. 

2- At later ages, the results show that the mixture with a high GF content gave the lowest 

expansion values. These results are in accordance with the previously mentioned results in 

6.4.2. It is also worth mentioning here that both ternary mixtures of 20 and 35% GF and 5% 

CSF gave comparable results at later ages, while the ternary mixture of 20% GF and 5% SF 

with SP gave much higher expansion value. All mixtures at later ages have surpassed the 

Canadian and American limits of 0.1 at 14 days, as shown in Figure 6.21. 
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Figure 6.20 Comparison between different binary Figure 6.21 Comparison among different binary 
and ternary mixtures made using GF-SF systems and ternary mixtures containing GF-SF system at 

later ages 

In addition to the previously mentioned explanation, another binary mixture containing 

5% CSF and the same amount of SP was prepared and tested for ASR expansion to verify the 

effect of SP and to investigate if the expansion is due to CSF or due to the presence of GF. 

This binary mixture is commercially available binary blended cement on the Canadian market, 

which contains nearly the same CSF replacement (5%). It was labeled Cem-SF, and its 

chemical composition is shown in Table 4.1. Cem-SF has been tested with and without the 

same percentage of SP, and results were compared with each other. It has been observed that 

the commercial binary cement (Cem-SF) without SP gave similar expansion values to those 
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obtained with the binary mixture containing 5% CSF (B5SF), while the other mixture with SP 

(Cem-SF-SP) gave a higher expansion value than the same commercial mix without SP, as 

shown in Figure 6.22. The difference in expansion is nearly the same as the difference 

obtained with the mixtures of 20GF5SF with and without superplasticizer. Thus, SP is mainly 

responsible for increasing expansion, so that this problem can be attributed to the presence of 

superplasticizer, as shown in Figure 6.22. This behavior, as previously discussed, has been 

reported by [PERRY, GILLOT, 1985], [MATSUKAWA, 1991], and [DIAMOND, 1997], 

who have attributed such behavior to the sulfonated groups of SP that are neutralized by alkali 

ions. The alkali ions derived from the superplasticizer remain in the solution when the 

superplasticizer polymer chains are absorbed into cement hydration products. Depending on 

the dosage, a considerable increase in the OH- ion concentration of the pore solution can be 

produced, leading to an increase in ASR expansion. 
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Figure 6.22 Commercial binary cement containing about 5% CSF with and without superplasticizer 

The importance of the other ternary GF-CSF mixture is to investigate the synergistic 

properties of this system. A large variation in the replacement values of both GF and CSF was 

used. Three ternary mixtures containing 40, 50, and 60% GF with corresponding dosages of 8, 

7, and 4% silica fume were tested, respectively. The most efficient mixture is that containing 

50% GF and 7% silica fume, which gives a 95% reduction in expansion with respect to the 

control mixture, as shown in Figure 6.23. Therefore, to assess the GF-CSF ternary system, it is 

recommended to use a variety of replacement levels. The other mixtures are also efficient, but 

their efficiency is lower than the optimal mixture, as shown in Figure 6.23. As a general 
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comparison of the different mixtures in the GF-CSF ternary system tested, and from Figure 

6.23, two different groups of GF-CSF ternary mixtures can be differentiated. The first group is 

characterized by a GF content equal to or lower than 35% with expansion values higher than 

the Canadian specification limit (> 0.10%). The second group is characterized by GF content 

higher than or equal to 40% that in combination with CSF contents ranging between 4 to 8%, 

gives ASR expansion values lower than the Canadian specification limit, as shown in Figure 

6.24. This means that there is a threshold value for GF under which undesired results will be 

obtained. This value seems to be around 40%) GF, as previously indicated. 

T40GF8SF 

2^S=T60GF4SF 

T50GF7SF 

20 30 40 50 60 

Curing time (days) Curing time (days) 

Figure 6.23 Comparison among different binary and Figure 6.24 Comparison between the most 
ternary mixtures in the GF-SF system at 14 days (80°C, efficient ternary mixtures in the GF-SF 
IN NaOH) systems at later ages (80°C, IN NaOH) 

It is highly recommended to use GF content higher than or equal to 40% with any CSF content 

that may vary from 4 to 8%. Such optimized combinations of GF and CSF can result in 

efficient mixtures that can control ASR expansion, even in the long term (28 days in the 

AMBT), as shown in Figure 6.24. 

B. GF-Pfa ternary mixtures 

The first ternary mixture of GF (30%) and class F fly ash (20% Pfa) was tested and compared 

with the other binary mixtures containing both GF and Pfa. It was found that this ternary 

mixture, T30GF20FA, yields comparable results to the binary mixture with 90% GF, which 

are still lower than the CSA specification limit (0.10% at 14 days). The expansion value of 

this ternary mixture at 14 days is still much lower than the binary mixture containing 50% GF. 

This ternary mixture has shown the synergistic effect of the ternary GF-Pfa system, especially 

.E c 
« .2 

2 £. 
4> Q. 

5 x 
< 0) 

0.45 
0.4 

0.35 
0.3 

0.25 
0.2 

0.15 
0.1 

0.05 
0 

0.2 

o £ . 0.15 -I 

—•—T20GF5SF-
SP 
B10SF 

—•—T20GF5SF 

„ .2 
en <S 

2 £ 
I * 
< a> 

0.1 

0.05 

8 10 12 14 0 10 

-188-



when compared to the binary mixture containing 25% GF, as shown in Figure 6.25 and 6.26. 

This ternary system resulted in a reduction in expansion of about 76% with respect to the 

control mixture, while the reduction in expansion in the binary mixture containing 

25% Pfa, with respect to the control sample, is about 89%. This means that this ternary 

mixture has a lower efficiency than the binary mixture with 25% Pfa. For this reason, other 

ternary mixtures of variable dosages were formulated and tested. These ternary mixtures are 

40% GF with 20% Pfa, 45% GF with 15% Pfa, and 40% GF with 15% Pfa, all of which are 

effective in controlling ASR expansion. The mixture containing 40% GF and 20% Pfa has 

shown itself to be the most efficient at early and later ages, as shown in Figures 6.27 and 6.28. 

It results in a reduction in expansion of approximately 88% with respect to the control. These 

results are similar to those found with the binary mixture containing 25% Pfa at early ages. It 

is worth noting that the binary mixture containing 25% Pfa gives large expansion at later age, 

while the ternary mixtures maintain a more stable level of expansion, as shown in Appendix. 
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C. GF-slag ternary mixtures (GF-S) 

Four ternary GF-slag mixtures (25% GF with 15% S, 15% GF with 25% S, 40% GF with 

20% S, and 30% GF with 30% S ) were tested and compared to the binary mixtures of GF and 

slag. It was found that, at 14 days, the T25GF15S ternary mixture containing 25% GF gave 

higher expansion values than the ternary mixture containing 15% GF (T15GF25S), while at 

later ages, the reverse was observed; therefore this suggests that, GF reacts at later ages while 

at early ages slag reacts faster than GF. Thus, the higher the GF and the lower the slag 

contents, the higher the expansion values at early ages and the lower the rate of expansion at 

later ages. As well, reversing the process will produce the opposite effect (higher expansion at 

later ages), as shown in Figures 6.29 and 6.30. The T30GF30S and T40GF20S ternary 

mixtures give lower expansion at early ages of 14 days, which is, however, higher than the 

binary B50S mixture with 50% slag. However, at later ages of more than 56 days, the 

T40GF20S ternary mixture gives the lowest expansion values. It is worth noting that, the 

B50GF binary mixture gives comparable expansion values to the T30GF30S ternary mixture 

at later ages, as shown in Figure 6.30. 

Figure 6.30 shows that the efficiency of the binary mixture containing 50% slag is higher at 

both early and later ages. However, when comparing all of these mixtures (binary and ternary) 

with the binary mixture of 50% GF, it was found that the B50GF binary mixture of 50% GF 

and the T40GF20S ternary mixture are the best mixture at later ages. Thus, the ternary 

mixtures of GF-slag can be used to formulate effective mixtures at both early and later ages. 
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Figure 6.29 Comparison between different binary and ternary mixtures containing GF-Slag systems 
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6.4.4 Synergistic diagrams 

Mixtures containing a single mineral admixture require high levels of replacement. 

The importance of drawing synergistic diagrams for ternary mixtures is to help formulate the 

best proportions for different ternary mixtures containing GF, CSF, Pfa, and slag in a way that 

ensures mechanical and ASR resistant mixtures that is to say durable mixtures. Three different 

ternary mixtures containing GF-CSF, GF-Pfa, and GF-slag were presented to show the effect 

of each combination on ASR expansion. Therefore, the efficient mixtures of each ternary 

system can be visualized in a practical way. An expansion of 0.10% at 14 days is selected as 

the decisive point to determine fail or pass criterion for the test in the case of the ternary 

mixtures containing GF-SF and GF-Pfa. However, in case of the ternary mixture using the 

GF-slag system, an expansion of 0.15% is selected as the decisive value, as all of the ternary 

GF-S mixtures have surpassed the 0.10% expansion limit. The GF-S ternary mixtures tested 

are not efficient enough to mitigate ASR expansion due to the need for higher replacement 

levels, which are impractical. Circles were chosen for mixtures passing the test while squares 

represent mixtures that failed the test; this representation is used throughout this part of the 

study. 

A. GF-CSF system 

ASR expansion readings for different GF-CSF binary and ternary mixtures at 14 days were 

taken and plotted to obtain the ternary synergistic mix diagram, as shown in Figure 6.31. As 
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previously mentioned, this diagram is very important in designing efficient concrete mixtures 

against ASR. The obtained synergistic diagram shows two important curves. The first curve 

(plain curve) represents the line between the lowest ellective replacement levels for each 

individual SCM, i.e GF and CSF. The second curve (dotted curve) represents the synergistic 

effect of these SCMs when used internary blends, which is above the theoretical combination 

of the GF-CSF line. The area between the theoretical effective line and the synergistic 

effective curve represents the area in which any ternary mixture will give an expansion lower 

than 0.10%, as shown in Figure 6.31. As the synergistic effective curve is above the 

theoretical effective line, this means that the effective combination of GF-CSF is attained 

either at high replacement levels of GF and CSF or in the intermediate region in this area, 

under the synergistic effective curve. For example, the mixture identified as T50GF7SF is an 

example of the most effective ternary blend of GF and CSF, as it results in a reduction of 

nearly 95% in expansion with respect to the control sample at 14 days. Figure 6.31 shows that 

the ternary mixtures containing between 7 and 8% CSF with GF replacement levels more than 

30% are efficient. Therefore, the effective use of CSF with GF can lead to the formation of a 

series of effective ternary mixtures containing GF-CSF that can greatly diminish the problem 

of ASR expansion, as shown in Figure 6.31. The order of effectiveness of the effective GF-

CSF ternary mixtures investigated is as follows: 

T50GF7SF > T40GF8SF > T60GF4SF > T25GF9SF 

This ternary system is effective and must be completely assessed by adding more points in the 

area under the synergistic effective curve and above it. 
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Figure 6.31 Performance of ternary blend combinations of GF-CSF system 

THOMAS and BLESZYNSKI (2000) have performed similar work on the efficacy of ternary 

combinations of silica fume and slag with Spratt aggregate, as mentioned in the literature 

review. The most effective mixture found among the combinations they investigated was 25% 

slag and 8% SF, which gives an expansion of 0.025%. This represents a 95.4 % reduction in 

expansion with respect to the control. Comparing this result with what was obtained in this 

part of the study, it was found that the most effective ternary combination of GF and silica 

fume is 50% GF and 7% SF, which gives an expansion of 0.019%, which represents a 95% 

reduction in expansion. The main difference with this mixture and others is the replacement 

level of GF, which is nearly double that of slag. As previously shown, the effective binary 

mixture containing GF has a replacement level of about 90% while the effective replacement 

level of slag is approximately 50% or more. Therefore, the GF replacement level is 

approximately twice that of slag and this explains the difference in the efficiency of their 

comparable replacement level. 

B. GF-Pfa system 

The GF-Pfa system trend is similar to that of the GF-CSF system, where the curve of 

synergistic effect of GF-Pfa ternary blends is above the theoretical effective combination line. 

The most important thing to notice here is that the summation of replacement levels of GF and 

Pfa is around 55%, which is very practical in comparison with 75% GF for short and long 

term. The synergistic effective curve is located above the theoretical effective combination 
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line, identical to what was found in the GF-CSF system, as shown in Figure 6.32. The most 

effective combination is that composed of 40% GF and 20% Pfa (written as T40GF20FA), 

which resulted in approximately 88% reduction in expansion with respect to the control 

sample. The order of effectiveness of the effective ternary mixtures investigated is as follows: 

T40GF20FA > T45GF15FA > T40GF15FA > T30GF20FA 

Figure 6.32 shows the potential of attaining an effective ternary mixture (i.e. against ASR) of 

GF and Pfa with a total replacement level lower than 50% summation of GF and Pfa. Also, 

this figure shows the synergistic interaction between GF and Pfa, which can be taken as a 

guideline for the formulation of any GF-Pfa ternary concrete mixture presenting lower 

concerns about the occurrence of ASR expansion. More points inside the area of effectiveness 

under the theoretical effective curve, to verify the feasibility of this diagram, are needed. As 

well, some concrete mixtures are also recommended to test these mixtures inside the diagram. 
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C. GF-Slag system 

The effective replacement levels of both GF (90%) and slag (50%) are quite high in their 

binary mixtures. Therefore, and as expected, this system is characterized by higher total 

replacement levels corresponding to the summation of GF and slag in their ternary mixtures. It 

is anticipated that efficient ternary mixtures will require high replacement levels that may be 
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impractical from an early durability point of view. Also, the Canadian specification limit of 

0.10 could not be applied where all of these mixtures surpassed this limit. For this reason, the 

American specification limit of 0.15% was taken as the limit for assessing these ternary 

mixtures, as shown in Figure 6.33. The effective ternary mixture in this diagram is composed 

of 40% GF with 20% slag (T40GF20S), which represents a total replacement level of 60% of 

the summation of GF and slag. The reduction in expansion due to use of this mixture is about 

92%. The order of effectiveness of the GF-S ternary mixtures is as follows: 

T40GF20S > T30GF30S > T15GF25S > T25GF15S 
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6.4.5 Comparison between different quaternary systems using Spratt aggregate 

Two quaternary cementitious systems were used, identified as Q20GF25FA5SF and 

Q25GF30S5SF. The composition of the first cementitious system was 20%> GF with 25% Pfa 

and 5% CSF, while the composition of the second cementitious system was 25% GF with 

30% S and 5% CSF. These systems were studied using ASTM C227 specification (refer to 

6.2) and have been selected as promising mixtures where they present effective mitigation 

against ASR expansion, the AMBT results of the system are shown in Figures 6.34 and 6.35. 

It can be shown in Figure 6.34 that the two quaternary mixtures produced lower expansion 

than the binary mixture containing 90% GF at 14 days. However, at later ages of over 100 

days, the binary mixture containing 90% GF mitigated ASR expansion as opposed to the two 
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quaternary mixtures, which expand with time surpassing the CSA specification limit (0.1%), 

as shown in Figure 6.35. 
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Figure 6.35 Performance of the quaternary 
systems at later ages 

6.4.6 Comparison between different systems using Ottawa sand 

A. Binary and ternary systems 

The physical properties of Ottawa sand were previously shown in Chapter 3. This type of sand 

is well known for the innocuousness of its ASR reaction. Therefore, it is expected that any 

mixture containing the Ottawa sand will result in low ASR expansion values at 14 days. The 

Ion-term reactivity of the Ottawa sand in the AMBT conditions was also tested. The results 

are shown in Figures 6.36 and 6.37, from which it can be seen that Ottawa sand is not resistant 

for longer time under the severe conditions of the accelerated test. The curves' behavior show 

the same trend as that previously shown with Spratt aggregate. Ottawa sand is showing low 

ASR expansion at 14 days. Expansion of the binary mixture containing 25% GF is slightly 

higher than that of the control with the Ottawa sand, with nearly equal ratio as that found 

between the comparable mixtures using Spratt aggregate. Therefore, this difference may not 

be due to ASR reactivity, but to another phenomenon that should be further investigated. At 

early ages, there was very low expansion; the ternary mixture containing 20% GF and 5% 

CSF showed effectiveness in suppressing even further that very low ASR expansion, as 

clearly shown in Figure 6.36. However, at later ages, there was substantial expansion in the 

control and ternary mixtures, while expansion was mitigated by the binary mixture containing 

25% GF. Figure 6.37 indeed shows that the ternary mixture containing 20% GF and 5% SF 

(T20GF5SF) surpassed the CSA specification limit of 0.1% after 80 days in the severe 
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conditions of the accelerated test (AMBT). Nevertheless, the binary mixture containing 25% 

GF performed well under these severe conditions and maintained a stationary expansion of 

about 0.05% until 140 days. 
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Figure 6.36 Comparison between Figure 6.37 Comparison between GF-binary and ternary 
GF-binary and ternary mixtures mixtures at later ages (silica gel formation confirmed with EDS 

B Binary, ternary, and quaternary systems 

The behavior of all mixtures containing the Ottawa sand depends on many factors, as the 

reactivity of aggregate at early ages is nearly negligible. There is no significant difference 

between the binary system of 25% GF, the quaternary of 20%GF25%Fa5%SF or the other 

mixtures in the short term, as shown in Figure 6.38. The most important factor for evaluating 

the mixture containing Ottawa sand is the long-term results. As mentioned above, the Ottawa 

sand results in much longer notable expansion at later ages. The sequence of the efficiency of 

the mixtures at 14 days, according to Figure 6.38, is as follows: 

25GF30S5SF > T20GF5SF > control > Q20GF25Fa5SF > B25GF 

It is worth noting that the Ottawa sand shows remarkable expansion in the long-term under the 

severe conditions of the accelerated test. Therefore, it is expected to result in a different 

efficiency order as that mentioned above. The order of efficiency at later ages is as follows: 

Q20GF25Fa5SF > B25GF > Q25GF25S5SF > T20GF5SF > control 
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From this sequence, it can be concluded that 25% GF is effective at later ages. The expansion 

value of the binary mixture containing 25% GF is located between the two quaternary 

expansion curves and shows stability with time, as shown in Figure 6.39. 
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6.4.7 Comparison between binary and ternary systems using Aime Cote sand 

The physical properties of Aime Cote sand were previously shown in Chapter 3. This type of 

sand is known for its moderate ASR reactivity level. Therefore, it was expected that 

noticeable ASR expansion values would be found for any mixture with Aime Cote sand at 14 

days. The ASR resistivity of Aime Cote sand with time was also tested. The results are shown 

in Figures 6.40 and 6.41, from which it can be seen that Aime Cote sand gives comparable 

expansion results to those found using Spratt aggregate at 14 days, but a lower value for the 

long-term test. It is worth noting that the addition of 25% GF decreased expansion to about 

58% and maintained the expansion slightly above the CSA specification limit, while the 

ternary mixture of 20% GF and 5% CSF lowered the expansion to the innocuous area of the 

graph (expansion < 0.10% at 14 days). At later ages, the expansion of 25%) GF is still lower, 

as with the other mixtures such as those containing Spratt or Ottawa aggregates. Therefore, 

the results are in accordance with each other. 
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Figure 6.40 Comparison between GF-binary and 
ternary mixtures using Aime Cote sand 

Figure 6.41 Comparison between GF-binary 
and ternary mixes at later ages using Aime Cote 
sand 

6.4.8 GF systems containing Mirabel aggregate 

The physical properties of Mirabel aggregate were previously given in Chapter 3. This type of 

aggregate is known for its moderate reactivity against ASR reaction. The ASR resistivity of 

Mirabel aggregate with time was tested, as well as the effectiveness of GF with Mirabel 

aggregate. Four mortar mixtures were tested: the control, two binaries containing 25 and 50% 

GF, and a ternary mixture (20% GF and 5% SF). The results are shown in Figures 6.42 and 

6.43, from which it can be seen that the control mixture containing Mirabel aggregate results 

in an expansion above the CSA specification limit. Also, the binary mixture containing 25% 

GF gave an expansion value slightly higher than that of the control, while at later ages it 

resulted in slightly lower expansion values than that of the control, in accordance with other 

results. On the other hand, the binary mixture containing 50% GF gave an expansion value of 

nearly 0.10% at 14 days and the ternary mixture gave an expansion value below 0.10%. The 

ASR reaction decreases with an increase in replacement level of GF. These results are 

accordance with each other and support the previously mentioned results. 
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6.4.9 GF systems containing LG aggregate 

LG sand is a fine aggregate that has been classified as a non-reactive aggregate. However, its 

reactivity is about 4 times that of Ottawa sand. Its physical properties were given in Chapter 3. 

The same mixtures used with Mirabel aggregate were also used with LG aggregate, that is the 

control, two binaries containing 25 and 50% GF, and a ternary mixture of T20GF5SF (20% 

GF and 5% SF), as shown in Figure 6.44. The control and the binary containing 25% GF were 

superposed and the expansion values (of approximately 0.037%) are much lower than the 

specification limit, but still higher than those of the binary mixture containing 50% GF and the 

ternary mixture containing 20% GF and 5% CSF. As well, the expansion of the binary mixture 

containing 50% GF is slightly higher than that of the ternary mixture. Therefore, the binary 

mixture containing 50% GF and the ternary mixtures containing 20% GF and 5% CSF may 

have the same effectiveness at 14 and 28 days, as shown in Figures 6.44 and 6.45. Expansion 

results in the presence of different replacement levels of GF using LG aggregate show the 

same trend as that of the same GF mixtures containing different aggregates. 
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6.4.10 Comparison between 25% GF binary mixtures containing different aggregates 

The behavior of the binary mixture containing 25% GF depends on the type of aggregate used, 

as illustrated in Figures 6.46 and 6.47. From Figure 6.46 (.e. for expansions up to 14 days), 

three categories can be easily classified according to the expansion values. For an expansion 

of less than 0.10%, four mixtures (belonging to Ottawa and LG aggregates) are classified 

according to their ASR expansion reactivity, which is less than 0.10%, as follows: 

B25GF-LG > Control-LG > B25GF-0 > Control-0 

The 25% GF binary mixture containing LG aggregate (B25GF-LG) is higher than its control 

without GF. The same trend was found when Ottawa sand (B25GF-0) was used. The 

expansion of LG aggregate is higher than that of Ottawa sand in all of their mixtures. 

For an expansion between 0.10 and 0.20%, three mixtures (belonging to Aime Cote and 

Mirabel aggregates) are classified according to their ASR expansion reactivity, which is 

higher than 0.10% and lower than 0.20%, as follows: 

B25GF-M > B25GF-A > Control-M 

Altogether, the 25% GF binary mixtures containing both Mirabel and Aime Cote aggregates, 

B25GF-M and B25GF-A, respectively, have similar expansion value, while the control 

mixture containing Mirabel aggregate had a slightly lower expansion than above binary 

mixtures, as shown in Figure 6.47. 
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In the last category, three mixtures were found (belonging to Aime Cote and Spratt 

aggregates), which are characterized by expansion values above 0.40% and lower than or 

equal to 0.50%. These mixtures are classified according to their ASR expansion reactivity, in 

the following order: 

B25GF > Control > Control-A 

The most important thing to notice here is that the control containing Aime Cote aggregate 

(Control-A) has nearly the same expansion value as that of the control containing Spratt 

aggregate, the opposite of what was obtained according to ASTM C227. This can also be 

taken as another drawback of ASTM C227 specification. 
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Figure 6.46 Comparison between different types of Figure 6.47 Comparison between different types 
aggregates containing 25% GF at 14 days of aggregates containing 25% GF without Spratt 

aggregate at 14 days 

Based on the he 28-day expansion values, all binary mixtures containing 25% GF resulted in 

expansion values lower or similar to those corresponding to the controls made with the same 

type of aggregate, as shown in Figures 6.47 and 6.48. For example, the 25% GF binary 

mixture with Spratt aggregate has lower expansion value than that of the control with Aime 

Cote at later ages. 
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6.4.11 Comparison between 50% GF binary mixtures containing different aggregates 

In this comparison, three types of aggregates, which are characterized by high, moderate, and 

low reactivity, were selected. These aggregates were Spratt, Mirabel and LG aggregates, 

respectively, as shown in Figure 6.50. As it was mentioned previously that 25% GF is not the 

optimum replacement level that should be used, therefore the expansion of all mixtures with 

all types of aggregates made with 25% GF gave higher expansions than the control mixtures 

made with the corresponding aggregates. The expansion values of the binary mixture 

containing 50% GF with all types of aggregate are lower than their corresponding control 

mixture. Therefore, the expansion value decreases with an increase in GF replacement level. It 

is important to note that the difference between the expansion value of the binary mixture 

containing 50%> GF and its control mixture increases with an increase in reactivity of the 

aggregate used in these mixtures, as shown in Figure 6.50. 
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Curing time (days) 

Figure 6.50 Comparison between three types of aggregates containing 50% GF 

6.4.12 Comparison between 20%GF5%SF ternary mixtures containing different aggregates 

The ternary mixture containing 20% GF and 5% SF show the same trend shown by the binary 

mixture containing 50% GF binary mixtures using the same aggregates. The expansions of the 

ternary mixtures containing all types of aggregates are lower than those of the corresponding 

control mixtures, as shown in Figure 6.51. The expansion of the ternary mixture containing 

Spratt aggregate gives comparable results to the control mixture containing Mirabel aggregate. 

As well, the expansion of the ternary mixture containing Mirabel aggregate gives comparable 

expansions as the ternary mixture containing Aime Cote aggregate. The control mixture 

containing LG aggregate also gives comparable results to the ternary mixture with the same 

aggregate. The difference in expansion between the ternary mixture and the control mixture 

with the different tested aggregates increases with an increase in reactivity of the aggregate 

used, as shown in Figure 6.51. The expansion value of the ternary and the control mixtures 

containing Ottawa sand are the same. 
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Figure 6.51 Comparison between different types of aggregates containing the ternary binder of 25% 
GF and 5% SF (T20GF5SF) 

6.5 Simple analysis 

The following data, which represent reduction in expansion due to the presence of GF with 

and without supplementary cementitious materials, SCMs (CSF, Pfa, and slag), were 

calculated from the previous results and classified into the parts described in the following 

paragraphs. 

6.5.1 Different binary GF systems 

The effect of different GF replacement levels on reduction in expansion due to ASR reaction, 

at different curing times, was investigated. It was found that all replacement levels at all 

curing times increased the reduction in expansion, except for the replacement level of 25% GF 

at 14 days, as shown in Figure 6.52. This anomaly has been attributed to the porosity of the 

system that seems to be more porous at 14 days than the control itself, whereas at later ages 

the pozzolanic and hydraulic reactions contribute to reducing this porosity. Thus, once these 

reactions become more effective, the residual expansion decreases, therefore the expansion 

rate decreases with respect to the control and finally the reduction in expansion becomes more 

significant, as seen in Figure 6.52. These results only confirm the innocuousness of GF in 

mortar. According to specified limit of 0.10% for the AMBT test when used to evaluate the 

efficacy of SCMs against ASR (CSA A23.2-27A), the reduction in expansion required to pass 

this test limit is 75.2%. Figure 6.52 shows that the binary mixture containing 90% GF has 
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passed this limit at both the 14- and 28-day period test, while the binary mixture containing 

75% GF has passed this limit at 28 days only. 
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Figure 6.52 Reduction in ASR expansion at 14 and 28 days and at different GF replacement levels 

6.5.2 Different ternary GF-CSF systems 

The higher efficiency of these systems is attributed to CSF due to its extreme fineness and 

high glass content, which are responsible for its high pozzolanic reactivity at early ages. GF-

CSF are the most efficient systems, resulting in a higher reduction in expansion due to ASR 

reaction, where the maximum reduction obtained is 95% at 14 and 28 days, as shown in 

Figures 6.53 and 6.54. Also, the different combinations of these systems give stable reduction 

in expansion with time contrary to the GF-slag systems. It can also be observed that the 

minimum recommended replacement level of GF in these systems (based on the limited 

numbers of combinations tested) is no less than 40% GF. The maximum total replacement 

level in these systems is 64%, which is composed of 60% GF and 4% CSF and which gives 

90% reduction in expansion at 14 and 28 days. However, the mixture containing 50%) GF and 

7% CSF results in 95% reduction in expansion at 14 and 28 days, which is very comparable 

with the mixture that is composed of 40% GF and 8% CSF that results in 92% reduction in 

expansion at 14 days. Therefore, the most recommended mixture from these systems is that 

with 40%) GF and 8% CSF, which has a much lower replacement level of 48%). 
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6.5.3 Different ternary GF-Pfa systems 

The presence of Pfa with GF in their ternary systems greatly affected the reduction in 

expansion due to ASR reaction. The synergistic interaction between GF and Pfa is the main 

reason for such a phenomenon. Most of the GF-Pfa ternary mixtures are very efficient in 

reducing ASR expansion. Figures 6.55 and 6.56 show the effect of varying the replacement 

level of both of GF and Pfa on reducing expansion due to ASR reaction. The most effective 

mixture in this ternary system, which is composed of 40% GF and 20% Pfa, is comparable 

with the 90%o GF binary mixture at 14 and 28 days. Moreover, the efficiency of this ternary 

mixture in reducing ASR expansion increases with time. All of these ternary mixtures passed 

the 14-day CSA specification limit (0.10%), which corresponds to a 75.2%> reduction in 

expansion with respect to the control, as shown in Figures 6.55 and 6.56. 
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6.5.4 Different ternary GF-slag systems 

The main drawback of these systems is that the effective binary mixture of both GF and slag is 

significantly high in replacement levels compared to Pfa and CSF. Therefore, it was expected 

that the efficient mixtures derived from the combination of these systems would require much 

higher replacement levels to produce a comparable reduction in expansion. Figures 6.57 and 

6.58 show the effect of varying the replacement level of both of GF and slag on reducing 

expansion due to ASR reaction. The most effective mixture in this ternary system, that passed 

the proposed limit (0.15%), is composed of 40% GF and 20% slag, and is comparable to the 

effective mixture in the GF-Pfa ternary systems at 14 and 28 days. However, the efficiency of 

this ternary mixture in reducing ASR expansion decreases with time contrary to the GF-Pfa 

systems. In general, the efficiency of these systems increases with an increase in replacement 

level, especially that of the GF. The maximum reduction in expansion produced by the most 

efficient mixture in this system is 92% at 14 days and 80% at 28 days, as shown in Figures 

6.57 and 6.58, respectively. 

and slag and slag 

Figure 6.57 Reduction in ASR expansion at 14 Figure 6.58 Reduction in ASR expansion at 28 
days and at different GF-slag replacement levels days and at different GF-slag replacement 

levels 

6.6 General comparison between some of the most important tested systems 

In this comparison, different binary, ternary, and quaternary systems were compared with each 

other to highlight the efficiency of each mixture in reducing ASR expansion. Figure 6.59 

shows that the most effective mixtures in this comparison are the binary mixture containing 

-208-



25% Pfa, the binary containing 90% GF, and the main quaternary systems of Q25GF305SF 

and Q20GF25FA5SF which give comparable results to each other at both 14 and 28 days. The 

efficiency of 50% slag decreases with time while that of 50% GF increases with time, 

therefore they can complement each other in their mixtures 
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Figure 6.59 Reduction in ASR expansion at 14 and 28 days for different systems 

6.7 Conclusions on mortar bar testing 

Based on the results reported before, the following conclusions can be derived: 

ASTM C227 has many drawbacks, including long period of time to obtain results, alkali 

leaching in the control mixture due to humidity of the testing conditions and to the small 

cross-sectional area of the tested mortar bars. All of these factors lead to an overall low 

expansion value from the control mixtures compared to the blended mixtures. It is also highly 

recommended, when planning to use ASTM C227, to increase the amount of alkali to an extent 

that guarantees a sufficient level of alkalis in the cementitious system to disregard alkali 

leaching. The recommended percentage of alkali in cement is above 1.25%, according to the 

previously mentioned results in this part of the study. 

The increase in surface area of the reactive constituent, as well as alkali concentration when 

ASTM C227 specification test is applied, increases the rate of the reaction. Thus, this 

modification has led to a contraction of testing time from 180 days to about 33 days, as shown 

in the modified ASTM C227 test. This modification can successfully lead to a proposal for a 

new standard, as a new modification to ASTM C227. 
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CSA A23.2 25A (equivalent to ASTM CI260) is a highly recommended test for evaluating the 

effectiveness of any cementitious material. According to this test, the addition of GF decreases 

the ASR expansion, despite its high alkali content. The negative effect of the binary containing 

25% GF with respect to the control in the case of Spratt aggregate use was attributed to the 

disturbance in the permeability of the system, as proven later in this chapter. This test is 

suggested to continue until the stability of the expansion with time or at least up to 28 days 

instead of 14 days. 

The long-term preventive action of GF is evident and can be taken as a benefit in case of use of 

ternary mixture of GF and silica fume to synergistically interact as a dual mixture that works at 

early and later ages. Therefore, the mixture of GF and silica fume can form synergistic 

mixtures in a way that guarantees short- and long-term ASR reaction prevention. 

A replacement value of about 91% GF is the measured and calculated optimum binary GF 

replacement level that should produce the same lower ASR expansion value at both 14 and 28 

days. 

The successfully obtained synergistic ternary diagrams of GF with silica fume, fly ash, and 

slag are very promising. The ternary mixtures of GF and slag are impractical due to their 

higher effective replacement levels. For this reason, the American specification limit of 0.15% 

concerning ASR expansion was chosen instead of the Canadian specification limit of 0.1%. 

The importance of the synergistic ternary diagrams resides in their use as a guide for designing 

different ternary GF-based concrete binder to ensure minimum risk of the occurrence of ASR 

expansion. A synergistic quaternary diagram was suggested to be carried out to see how it will 

look like, as a proposal for a new research work. 

6.8 Concrete Prism Test (CPT) CSA A23.2-14A 

This test has been conducted according to CSA A23.2-14A (in 100% R.H. at 38°C, equivalent 

to ASTM CI293) from which ASR expansion results in a 2-year period were obtained and the 
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specification limit of 0.04% for expansion after two years of testing was applied. The use of 

CPT for SCMs is covered by CSA A23.2-28A, which specifies the use of 14A for CPT with 

SCMs. CSA A23.2-14A specification is also a popular test, as is the accelerated mortar bar 

test. According to CSA A23.2-27A, the results from accelerated mortar bar test (AMBT) is 

not sufficient and it has to be supported with CPT results. As well, the CPT specification limit 

is much more important than the specification limit of AMBT. 

This test is the most reliable and realistic test and has been used for several years. Different 

combinations of reactive aggregates and cementitious systems were prepared in a way similar 

to actual concrete. This test is categorized as a long-term test. It extends over two years in 

order to evaluate any cementitious system in combination with reactive aggregates, while it 

extends over one year for evaluating an aggregate. As previously mentioned in Table 6.1, the 

most important cementitious systems were tested and the results are given in this part of the 

study. These cementitious systems were investigated using the CPT test to obtain further 

confirmation of what has already been done using the accelerated mortar bar test (AMBT), to 

determine the compatibility and type of relation between the AMBT and CPT tests. The 

importance of this test originates from its similarity with real concrete used in the field. It can 

also be classified as a decision-making-based test from which any concrete mixture can be 

excluded from any future use according to test results obtained. 

In this part of the study, one coarse aggregate (Spratt) and two fine aggregates (Ottawa and 

Aime Cote sands) were used. For this reason, there are two identification for their control 

samples, CO and CA stand for the control mixtures with Ottawa and Aime Cote sands, 

respectively. The symbol "Na" stands for alkali added to cement to increase its alkali content 

to 1.25% Na20eq. Aime Cote sand was used only with one control mixture to compare its 

expansion with the other control mixtures containing Ottawa sand. The mixture composition 

of the binary, ternary, and quaternary binder compositions are the same as those binders used 

in the accelerated mortar bar test, as mentioned earlier in this chapter in Table 6.1. 

The mix design of the concrete mixtures tested in this part has been described in detail in 

Chapter 3. According to CSA A23.2-14A, the concrete samples were made using Spratt 
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aggregate as coarse aggregate and Ottawa sand as fine non-reactive aggregate, as well as 

another control mixture made up of Spratt coarse aggregate and Aime Cote sand, as 

previously mentioned. The physical properties of these aggregates were given in Chapter 3. 

It is worth mentioning here that when calculating the amount of NaOH that must be added to 

the concrete mix water, it was assumed that GF is free of any alkalis. Therefore, the amount of 

added alkali was calculated with respect to the amount of cement used, in such a way that 

0.86% Na20eq of the cement was increased to 1.25% Na20eq. Each concrete mixture was done 

twice, one with added free alkali and the other without any alkali except for that of the cement 

itself, in order to determine the effect of the alkali of GF alone apart from any added free 

alkali. Therefore, the number of tested mixtures was doubled. The mixtures containing CSF 

were also divided into two groups: one with SP superplasticizer (with and without alkali) and 

the other without SP (with and without alkali). Hence, the mixtures containing CSF were 

quadrupled. The CPT was extended to two years according to CSA specification. Therefore, 

the mixtures used with both added alkali and superplasticizer are identified by "Na" and "SP", 

respectively. The ternary and quaternary mixtures are identified by T and Q, respectively. Qfa 

and Qs are used when either fly ash or slag is used in the quaternary mixtures, respectively. 

The binary mixtures with 25 and 50% GF are identified as GF25 and GF50, respectively. 

In the AMBT test results, it has been shown that the binary mixture containing 25% GF gives 

a higher expansion than the control made up of Spratt, Mirabel or even Ottawa aggregates. It 

has also been concluded that, as Ottawa sand is innocuous and nearly inert at early ages under 

AMBT test conditions, therefore, the expansion of the 25% GF mixture containing Ottawa 

sand cannot be attributed to ASR reaction, but to another phenomenon that was discussed in 

detail in the AMBT test using Spratt aggregate. Moreover, it was expected that the binary 

mixture containing 25% GF using Spratt aggregate in concrete mixture would give lower 

expansion than the control (in this case the expectation was correct). This expectation was 

attributed to the difference in the total size between mortar bar and concrete prism, as well as 

to the test conditions. Moreover, the major effect of porosity on the expansion of mortar bar is 

a minor effect in case of concrete prism. In fact, the CPT test has confirmed the expectation, 

as will be shown in this part of the study. 
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6.8.1 Comparison between different GF binary mixtures 

Two GF replacement levels were tested to study the effect of replacement level on ASR 

expansion. The two replacement levels of GF were 25 and 50% (with and without added free 

alkali). It was found that GF mixtures give lower expansion values than those of the control 

mixtures, as shown in Figure 6.60 and Figures 6A.1-6.A3 (Appendix 6.A). This indicates the 

suppressing effect of GF against ASR reaction. Expansion decreases with the addition of GF 

in a similar way to what was found in the AMBT test. Therefore, the replacement level of 

25% GF could be used in manufacturing of concrete. Figure 6.60 shows that the 25 and 50% 

GF binary expansion curves surpassed the CSA specification limit (0.04% after 2 years); 

however, they still give lower expansions than that of the control mixtures, indicating the 

absence of a deleterious effect of GF with time at up to 2 years. It is worth noting that the 

binary mixtures containing 50% GF give lower expansion than that containing 25% GF, as 

shown in Figure 6.60 and Figure 6.A3 (Appendix 6.A). Therefore, the efficiency of GF 

against ASR expansion increases with an increase in GF content in a similar way to these 

results obtained in mortars. 

Curing time (days) 

Figure 6.60 Binary concrete mixture after 2 years containing 25 and 50% GF, with and without alkalis 
(Spratt aggregate and Ottawa sand) 
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6.8.2 Comparison between different GF ternary mixtures 

Because of its extreme fineness and high glass content, CSF is a very efficient pozzolanic 

material that, when properly formulated in ternary mixtures with GF, can give valuable 

results. This ternary system includes 5% CSF and 20% GF with and without added alkali, as 

well as with and without SP superplasticizer, forming a set of four groups, as shown in Figure 

6.61 and Figures 6.A4-6.A7 (Appendix 6. A). The role of superplasticizer is to disperse CSF in 

the mix and thus increase its efficiency. However, results obtained were the opposite of what 

was expected with respect to the positive role of superplasticizer, where the addition of 

superplasticizer to the ternary mixture of GF and CSF increased expansion. This unexpected 

behavior has been discussed previously under the AMBT test heading. It was shown that CFS 

is responsible for such behavior. Therefore, the presence of GF does not explain such 

behavior, whether in mortar or concrete. The behavior of the concrete mixtures (with and 

without alkali, and with and without SP) was tested and compared to each other up to 2 years, 

as shown Figure 6.61 and Figures 6.A4-6.A7 (Appendix 6.A) . There is a direct correlation 

between the results obtained from the AMBT test and the CPT test, and the curves from both 

tests show similar trends. As previously discussed in the synergistic diagrams for GF-CSF 

systems, the 20% GF and 5% CSF mixture is located under the theoretical effective 

combination line in the negative interaction area indicating the inadequateness of this ternary 

mixture. Therefore, the other ternary GF-CSF mixtures will be covered in an extended part of 

this research, as recommended future work. The importance of this research is that the effect 

of added alkali was tested by comparing the mixture with added alkali to that mixture without 

added alkali. In this way, the effect of added alkali could be estimated. The effect of both 

added alkali and SP was studied in the ternary and quaternary concrete mixtures as will be 

shown in the following part of the study. 
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Figure 6.61 Comparison between control and GF-ternary concrete mixtures with and without alkali 
(Spratt aggregate and Ottawa sand) 

It is worth mentioning that the effect of SP is noticeable after one year,as shown in Figure 

6.A6 (appendix 6.A), while at two years, the two ternary mixtures containing SP have almost 

equal expansion values, greater than the Canadian specification limit (0.04% after two years), 

as shown in Figure 6.A7 (Appendix 6.A). 

6.8.3 Comparison between different GF-quaternary mixtures 

Quaternary systems are amongst the best solution for many of the concerns related to 

durability. The use of quaternary mixtures has shown promises as one of the most effective 

solutions for the recycling of by-products while resolving potential durability concerns, in 

both the short and long terms. In this part of the study, the efficiency of the GF-Pfa and GF-

Slag quaternary mixtures was investigated. The compositions of the two cementitious systems 

are the same as those tested using the AMBT test, which were identified as Q20GF25PFa5SF 

and Q25GF30S5SF. Therefore, the importance of this part is not only to show the efficiency 

of these quaternary mixtures but also to show the similarities between results for the two tests 

(AMBT and CPT tests), as well as to assess the compatibility between each after one and two 

years. 
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A. Comparison between different GF-Pfa quaternary mixtures 

As mentioned before, the composition of this quaternary cementitious binder is identical to the 

one used in the AMBT test, which is 20% GF, 5% SF, and 25% Pfa. This system has shown 

results supporting those obtained from the AMBT test, thus confirming compatibility between 

the two tests (AMBT and CPT tests). Figure 6.62 and Figures 6.A8-6.A11 (Appendix 6.A) 

show the difference between the control and quaternary mixtures with and without both alkali 

and superplasticizer. The effect of superplasticizer is obvious where the samples containing 

superplasticizer and added alkali give almost no expansion after two years, while those 

without superplasticizer and added alkali give very low expansion values that are still well 

below the CSA specification limit (slow expansion rate), as shown in Figures 6.A8-6.A11 

(Appendix 6.A). These results can be ascribed to the synergistic interaction between the 

components of the quaternary system that diminish the negative effect of SP on CSF. Figures 

6.A10 and 6.A11 (Appendix) also shows the effect of superplasticizer after the one and two-

year tests with respect to the control curves. The mixtures containing SP with and without 

added alkali still give undetectable expansion values and the readings are below zero, which 

indicates the presence of shrinkage in the first year, as shown in Figure 6.A10 (Appendix 

6.A). After two years, expansion starts to become detectable in the mixtures with added alkali, 

while the mixture with SP and without added alkali still reads zero, as shown in Figure 6.62 

and Figure 6.A11 (Appendix 6.A). 
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Figure 6.62 Comparison between control and GF-Pfa quaternary concrete mixtures with and without 
alkali after two years (Spratt aggregate and Ottawa sand) 
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B. Comparison between different GF-slag quaternary mixtures 

As mentioned before, the composition of this quaternary cementitious system is identical to 

the one used in the AMBT test that is 25% GF, 30% slag, and 5% CSF. Figure 6.63 and 

Figures 6.A12-6.A15 (Appendix 6.A) show the difference between the control and quaternary 

mixtures with and without both added alkali and superplasticizer. This system has also shown 

supporting results to those obtained in the AMBT test, in a way similar to the GF-Pfa 

quaternary system. This system seems to be slightly more efficient than the GF-Pfa quaternary 

system where it gives lower expansion values after one and two years, as shown in Figures 

6.A14 and 6.A15 (Appendix 6.A). The samples containing superplasticizer give slightly 

higher expansion values than the system with fly ash. This phenomenon can be attributed to 

the reactivity difference between fly ash and slag in long-term reactions, as well as to the total 

replacement level of slag system, which is 60%, while that of fly ash is 50%. The GF-slag 

quaternary system is characterized by its high alkali tolerance and large capacity to intake the 

free alkalis in the system. From the experimental work presented earlier in the document, it 

has been shown that both GF and slag can be easily activated using alkalis to form new 

cementitious products that have improved properties. These systems have been shown to solve 

many problems related to concrete durability by changing their composition and their ratios 

with respect to each other, this assertion will be verified in future research. The results show 

that the quaternary samples with and without alkali give a lower expansion that is well below 

the CSA specification limit. The quaternary mixtures with and without both alkali and 

superplasticizer give almost no expansion in a steady state starting from one year to up to two 

years, as well-illustrated in Figures 6.A14 and 6.A15 (Appendix 6.A). The mixtures with and 

without added alkali and with superplasticizer give nearly no expansion at one year while at 

up to two years the mixture with both alkali and superplasticizer shows a small expansion that 

is still comparable to the mixtures that do not contain any superplasticizer. It is important to 

note that the expansion given by the mixtures from this quaternary system is still far from the 

CSA specification limit (0.04%). Comparing this system with that of fly ash, it could be 

concluded that the quaternary system with slag tested is slightly more efficient than that with 

the fly ash system tested. It is to be noted, however, that the total SCMs contents were 

different, i.e. 60% for QS and 50% for Qfa.. 
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Figure 6.63 Comparison between GF-slag quaternary concrete mixtures with and without both alkali 
and superplasticizer after two years (Spratt aggregate and Ottawa sand) 

This part of the study has shown the importance of using a well-formulated quaternary system 

on the ASR expansion at short and long terms. Therefore, for alkali-bearing systems, the well-

formulated quaternary mixture seems to be a good solution to any concern related to their 

alkali content. Consequently, the use of quaternary system is highly recommended. It is then 

important to evaluate this system in much more detail. 

6.8.4 Comparison of 19 concrete mixtures after one and two years 

Table 6.2 shows the main difference between the concrete mixtures tested according to CSA 

CPT specification conditions. These mixtures vary from different control mixtures containing 

Spratt aggregate as an essential component, which represents coarse aggregate (reactive 

ingredient), to either Ottawa or Aime Cote sands, which represent the fine non-reactive 

aggregates. However, in reality, Aime Cote sand is much more reactive than Ottawa sand; 

hence it is possible that the mixtures containing Aime Cote sand, will have more reactive sites, 

and will then give lower expansion values than the mixtures with Ottawa sand and this 

expectation can be more or less confusing. To interpret this expectation, the following was 

used to prove results. It is worth mentioning that the CSA specification considers this test 

reliable if the expansion of the control sample after one year is between 0.12 and 0.23% and 

between 0.15 and 0.29% after two years. Table 6.2 shows that the expansion results of the 

control mixture containing Ottawa sand (0.301%) are higher than those of the control mixture 

-218-

j"~" 100 Jon 300 400 500 600 700 800 



containing Aime Cote sand (0.209%). Since the ASR reaction is clearly a surface-area-

dependent phenomenon, one would first think that the ASR expansion would increase linearly 

with aggregate fineness. However, there exists an aggregate size at which maximum 

expansion occurs; this is called the pessimum size. From the above-mentioned results and 

from the fact that Aime Cote sand is more reactive than Ottawa sand, it is found that the 

concrete mixture with Aime Cote sand likely contains more reactive sites while maintaining 

the same alkali content, undergoing what is called a dilution effect. This effect takes place 

when the surface area of the reactive species increases to a certain value, after which there is 

no significant effect caused by any addition of alkalis due to the higher surface-to-alkali ratio, 

which suppresses expansion. In the case of Ottawa sand, the reverse is true, this means that the 

surface area of the reactive sites is lower. This leads to a concentration of alkalis around the 

Spratt aggregate, exacerbating expansion. Such phenomenon was reported in the literature 

[GRATTAN-BELLEW et al., 1998; ZHANG et al., 1999; KURODA et al., 2000; RAMYAR 

et al., 2005]. Therefore, many factors affect ASR expansion such as, the surface area of the 

reactive species, the Si02/Na20 ratio formed in ASR gel products, humidity and curing 

temperature, the presence of SCMs, and many other factors. Another explanation may be that 

the reactive silica-to-alkali ratio (Si02 /Na20) is quite high at the reaction sites (dilution 

effect) and the total quantity of gel likely to be formed is so small that it is not able to swell in 

the same way as when the Si02/Na20 ratio is low. The widely distributed reaction sites tend to 

limit expansion both by altering the composition of the gel and by distributing the gel almost 

homogeneously in the concrete so that the swelling effect is weakened. 

Table 6.2 summarizes the expansion values recorded from the CPT test after one and two 

years. It shows the main differences between tested mixtures, as well as the effect of SP 

superplasticizer on different mixtures after one and two years. It is clear that the addition of 

SP has no detrimental impact on expansion for the ternary and quaternary concrete mixes 

tested, with the exception of the T20GF5SF mixture. 
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TABLE 6.2 CPT TEST RESULTS FOR 19 CONCRETE MIXTURES AFTER ONE 
AND TWO YEARS 

Concrete 
mixtures 

Control-A+ 
ControB-
Control 
B25GF+ 
B25GF 

B50GF+ 
B50GF 

T20GF5SF+ 
T20GF5SF 

Q25GF30S5SF+ 
Q25GF30S5SF 

Q20GF25FA5SF+ 
Q20GF25FA5SF 

CPT expansion (%) 
Without SP 
lyr 

0.209 
0.301 
0.218 
0.157 
0.129 
0.095 
0.072 
0.042 
0.026 
0.010 
0.009 
0.015 
0.004 

2yrs 
0.248 
0.348 
0.283 
0.226 
0.205 
0.157 
0.141 
0.094 
0.033 
0.020 
0.020 
0.028 
0.020 

With SP 
lyr 

-

-

-

-

-

-

-

0.0527 
0.046 
0.0097 
0.0061 
0.0072 
0.0062 

2yrs 
-

-

-

-

-

-

-

0.092 
0.086 
0.013 
0.001 
0.010 

0.0004 

Concrete mixes 
with SP 

-

-

-

-

-

-

-

T20GF5SF+ 
T20GF5SF 

Q25GF30S5SF+ 
Q25GF30S5SF 

Q20GF25FA5SF+ 
Q20GF25FA5SF 

CPT = concrete prism test, (+) for added alkali, SP stands for superplasticizer 
Control-A+ = Control mixtre with Aime Cote sand and added alkali 
Control-+ = Control mixtre with Ottawa sand and added alkali 

6.8.5 Compressive strengths after two years for some concrete mixtures 

Concrete cylinders were cast for compressive strength determination for some of the concrete 

mixtures made a part of this study. They were cured under the same conditions of concrete 

prism test (38°C and 100% R.H.) and were set aside for two-year compressive strength test 

(average of 3 samples). Test results are shown in the following histogram shown in Figure 

6.64, in which compressive strength trend results are to some extent comparable to expansion 

results, which help judge the precision of CPT test results. The two quaternary mixtures with 

either slag or fly ash gave higher compressive strengths than the other mixtures (binary, 

ternary and control). It was planned to extract the pore solution, but due to difficulty in 

extracting pore solutions from these concrete samples after two years, a series of paste 

mixtures with the same binder compositions was fabricated for pore solution analyses, as will 

be shown. 
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Figure 6.64 Compressive strengths of the main cementitious system-based concretes at two years 

6.9 Comparison between accelerated mortar bar and concrete prism tests 

A brief comparison is shown in Table 6.3 in which results of the CPT test after one and two 

years, as well as results of the AMBT test after 14 and 28 days, are presented. Expansion 

levels of less than 0.10% at 14 days were used to evaluate effective mortar mixture 

combinations, while a threshold expansion level of 0.040% at 2 years was used to evaluate 

concrete mixture effectiveness. A good correlation was established between the AMBT test at 

14 days and the long-term CPT test using the Canadian reactive Spratt aggregate, as shown in 

figure 6.65. As expected, and as discussed in this chapter, the expansion of the binary mixture 

containing 25% GF in the AMBT test is not due to the presence of GF. Therefore, a series of 

GF mixtures with different GF replacement levels were made to confirm the mitigating action 

of GF. It was however confirmed that the presence of 25% GF in concrete did not enhance 

ASR expansion but rather suppresses it, as shown in the above-mentioned Figure 6.60. Figure 

6.65 showed the correlation between CPT results at 2 years and AMBT test results at 14 days. 

Compared with Figure 6.66, showing CPT results at 2 years and AMBT test results at 28 days, 

it can be observed that all points were shifted to the right (higher expansion). However, the 

two quaternary mixtures are still located in the innocuous region (under the specification 

limits of the CPT and AMBT tests). 
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Figure 6.65 Comparison of 14-day mortar bar expansion and 2-year concrete prism expansion 
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Figure 6.66 Comparison of 28-day mortar bar expansion and 2-year concrete prism expansion 

6.10 Comparative analysis 

The effect of added alkali on concrete mixtures, as well as the effect of different replacement 

levels on each system has been assessed. The derived data were obtained from Table 6.3 from 

which the reduction in expansion for each concrete mixture with respect to the control mixture 

was calculated, as shown in Table 6.4. This analysis, showed the effect of replacement level 

on reduction in expansion due to cement replacement by GF-based supplementary 

cementitious material (GF-based SCMs). The effect of alkali added to the cement to increase 
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the equivalent alkali content to 1.25% with respect to GU cement used according to CSA 

specification, was clearly shown in this part of the study. 

A. Effect of replacement level and added alkali on ASR expansion 

Table 6.4 represents the reduction in expansion due to cement replacement by GF-based 

systems (binary, ternary, and quaternary GF systems). It is interesting to note that Table 6.4 

shows the combination effect of different elements: effect of replacement level, effect of 

added alkali, effect of superplasticizer, and finally the effect of time on ASR expansion. The 

maximum reduction was obtained for both quaternary systems at one and two years. Nearly no 

effect of the presence of both alkali and SP can be seen. The ternary mixture without alkali 

was affected by SP where the reduction in expansion after two years, without SP, was 88% 

while with SP, it was 70%. In the presence of alkali, the presence or absence of SP produces 

no effect, as shown in Figures 6.67 to 6.69. 

TABLE 6.4 REDUCTION IN CPT EXPANSION IN PRESENCE AND ABSENCE 
BOTH OF ALKALI AND SP 

Different GF-based 
SCM with and 
without alkali 

B25GF 
B25GF+ 
B50GF 

B50GF+ 
T20GF5SF 

T20GF5SF+ 
Q25GF30S5SF 

Q25GF30S5SF+ 
Q20GF25FA5SF 

Q20GF25FA5SF+ 

Reduction in expansion (%) 
Without SP 

1 year 
41 
48 
67 
68 
88 
86 
96 
97 
98 
95 

2years 
27 
35 
50 
55 
88 
73 
93 
94 
93 
92 

Wit] 
1 year 

-
-
-
-

85 
85 
102 
103 
103 
102 

hSP 
2years 

-
-
-
-

70 
73 
100 
96 
100 
97 

+ stands for added alkali 
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Figure 6.67 Reduction in expansion of the main cementitious system-based concretes at 1 and 2 years, 
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Figure 6.68 Reduction in expansion of the main cementitious system-based concretes at 1 and 2 years, 
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Figure 6.69 Reduction in ASR expansion measured using the CPT test at one and two years, in 
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Alkali addition has an accelerating effect on expansion of concrete and its effect varies 

considerably according to the cementitious system used. Significant differences between the 

binary, ternary, and quaternary systems can be seen, though in many systems with slag, added 

alkali has an insignificant effect, which seems instead to diminish the effect of alkali, that is it 

reduces ASR expansion (consumption of alkali in the alkali-activated slag reaction). 

6.11 Specific mass changes 

The specific weight changes of the concrete prisms of different cementitious systems, which 

are control, 25, and 50% binary mixtures, were determined. As the volumes of the tested 

concrete prism samples were determined (as a function in measured length and cross-sectional 

area), the change in weight of each concrete prism was also determined at the same moment 

for expansion of concrete prisms. Therefore, change in the specific mass can be easily 

followed during each testing time. Specific mass change (Sm) in the concrete prisms is very 

low compared with that in the mortar bars due to the large difference in volume of each type 

of sample, where the concrete prism has a volume about 12 times that of the mortar bar. The 

significance of this suggested test is attributed to its ability to show the total change in specific 

mass (mass/volume) of the tested concrete prism during the entire test. The results obtained 

from this test are promising, as seen in Figure 6.70, where the trend of Sm curves for the 

control, 25, and 50% GF binary mixtures are identical to these curves shown in Figure 6.60. 
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Therefore, this test monitors both the change in mass and volume of the tested sample during 

the entire test period. 

100 200 700 800 900 300 400 500 600 

Curing time (days) 

Figure 6.70 Specific mass changes of concrete prisms under CPT test conditions 

6.12 Pore solution chemistry 

As a well-established fact, the alkali aggregate reaction is essentially a reaction between the 

hydroxyl ions in the pore solution of a mortar or concrete and the siliceous (or other alkali-

susceptible) minerals in the aggregate. Study of the pore solution chemistry of mature cement 

pastes, mortars, and concretes has been possible in recent years through the development of 

pore solution-expression techniques, as that shown in Figure 3.17. The study of the pore 

solution chemistry of cement pastes, mortars, and concretes is still at an early stage. However, 

the data accumulated so far are already able to help explain some of the phenomena associated 

with alkali aggregate reactions and also to suggest questions to be answered by further work. 

In addition, the information yet to be determined in order to tie the pore solution data directly 

to the problems of alkali-aggregate reactions, is the level of hydroxyl ion concentration 

necessary to cause damaging alkali-aggregate reactions with different aggregates and 

combinations of aggregates. Therefore, different pastes were mixed to simulate the 

environment of the pore solution in different cementitious systems. These cementitious 

systems, identical to those used in concrete, were used to investigate the relation between the 

pore chemical composition and the corresponding expansion in the corresponding concrete 

prism. 
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6.12.1 Chemical analysis of pore water 

The same curing temperature of 38°C and water-to-binder ratio (w/b) of 0.5 were used. The 

samples were prepared and placed in sealed plastic containers and cured for 3, 7, 28 and 180 

days. At the time of each test, samples were squeezed to extract pore solutions out of the 

blended cement pastes with an appropriate pore solution expression device as shown in Figure 

3.17, followed immediately by chemical analysis of the clear solution. The chemical analysis 

included determination of Na+, K+, Ca+2, and OH" (by acid-base titration) ions concentrations, 

as well as pH, as described in detail in Chapter 3. The results are shown in Figures 6.71-6.74. 

The compositions of the cementitious mixtures were shown in Table 6.1. It is also worth 

noting that the volume of extracted pore solution depends on the type of cementitious system 

used. As a general observation, the binary mixture containing 25% GF gives the minimum 

volume of extracted solution, while the quaternary mixture Qs (25GF30S5SF) gives the 

maximum volume. This volume is more than double that given by 25% GF mixture, at all 

testing ages. Figure 6.71 shows K-ion concentration in each tested mixture. The difference in 

K-ion concentration is due to replacement level, which reduces the concentration of K-ions, 

and the reduction in concentration was directly proportional to the replacement level used. 

Therefore, the sequence of the K-ion concentrations in descending order is as follows: 

CIO > B25 >Tsf > B50 > Qfa> Qs 

The volume of extracted solution decreases with time, which is also responsible for the 

gradual increase in concentration with time noted in Figure 6.71. Also, this gradual increase 

can be attributed to continuous hydration and release of K-ions from cement grains. 

On the other hand, Na-ion concentration behaves in a different way, whereas, the mixtures 

containing GF give much higher Na-ion concentration than the control mixture, as shown in 

Figure 6.72. The mixtures containing 25% and 50% GF give the highest Na concentration. 

The sequence of Na-ion concentration in each mixture is as follows, in descending order: 

B25 > B50 > Tsf > Qs > Qfa > CIO 
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The previous concrete prism test (CPT) results for the same binders showed that the binary 

mixtures with 25 and 50% GF with and without added alkali have lower expansion than the 

control with and without alkali. Concrete prism expansion results showed that all the mixtures 

containing GF give lower expansion than the control mixture, as shown in Figure 6.70. 

Therefore, Na-ions are not available, to the same extent, in the pore solution of the GF-

containing mixtures, as it is in control pore solution during the concrete prism test (2 years). 

The volume of extracted solutions from the binary mixtures with 25 and 50% GF is lower by 

half that of the control, despite the fact that extra pressure was applied to recover as much 

pore solution as possible from the sample. Accordingly, due to the high squeezing pressure, 

some amount of the GF internal Na-ion may be squeezed out, which was estimated to be about 

6.5% in the case of the binary mixture containing 25% GF. This estimated value is lower in 

the other mixtures. The estimation method used to calculate the amount of alkali depends on 

the volume of extracted solution, original volume, amount of cement, and the amount of alkali 

inGF. 

Figures 6.72 and 6.74 clearly show that Na released from GF maintain pH level higher than 

the threshold value required to control expansion with Spratt aggregate and this explains the 

lower efficacy of B25GF, B50GF, and T20GF5SF 

Comparison between volumes of extracted solution from each mixture was carried out. It was 

observed that the extracted volumes were not equivalent, where the mixtures containing 25 

and 50% GF give the minimum pore solution volumes, nearly half, under the same pressure 

and even higher, as shown in Figure 6.75 and 6.76. Therefore, and as mentioned previously, 

significant difference in Na-ion concentration in the mixtures containing 25 and 50% GF and 

in the control mixture can be attributed to the difference in extracted pore volumes, as well as 

to the applied squeezing pressure. Moreover, it was observed that the volume of extracted 

solution from the binary mixture containing 25% GF at 6 months is nearly half of that 

extracted from Qs and Qfa mixtures, as well as the control. This test can also be taken as 

concrete proof of the degree of fixation of alkalis in GF structure. 

OH-ions originate from the hydrolysis of Na and K oxides, as well as from the partial 

hydrolysis of Ca(OH)2. Therefore, the concentration of OH-ion is comparable to the 
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summation of Na- and K-ions, as shown in Figure 6.73. The pH was affected by the difference 

in OH-ion concentration, as shown in Figure 6.74. 
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6.12.2 Conductivity of expressed pore solution 

The electrical conductivity of each extracted pore solution was measured and plotted against 

curing time. In accordance with previous results, the conductivity of B25GF, B50GF, and Tsf 

mixtures is higher than that of the control mixture, which is also higher than that of Qfa and 

Qs quaternary mixtures, as shown in Figure 6.77. Therefore, the two quaternary mixtures are 

the best among these mixtures. The conductivity results are not only influenced by the 

concentration of the soluble ions in the squeezed pore solutions, especially the mono-valence 

ions, but are also influenced by the volume of pore water extracted. 

QB25 BB50 STsf DCO DQs DQfa 

3d 7d 28d 180d 

Curing time (days) 

Figure 6.77 Electrical conductivity of expressed pore solutions with time 

Quaternary mixtures of Qfa and Qs have the lowest conductivity due to their lower average 

content in mono-valence ions in comparison to other mixtures, as previously shown in Figures 

6.71 and 6.72. Also, these quaternary mixtures have lower K-ion content, which is about 1.5 

times more conductive than Na-ion [SNYDER et al., 2003]. Furthermore, this test requires 

more precautions to avoid misinterpretation of results. The volumes of extracted solutions and 

the difference between those volumes must be reported to assess the effect of this difference 

on results. The gradual reduction in volume with time is also due to the progress of hydration 

with time. The hydration of binary mixtures containing 25 and 50% GF seems to consume 

more water than the other mixtures, as they give less volume of extracted pore water, which 

was discussed in studying the stoichiometry of GF with NaOH and Ca(OH)2 (refer to 5.13). 

Consequently, an important question related to extracted pore water arises: is it mainly 
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composed of only pore water or pore water and chemically combined water, because of 

applied pressure? This part of pore solution chemistry needs further verification tests. 

6.13 Pore-size distribution analysis 

Porosity and microstructure are two important structural characteristics of hydrated cement 

pastes. Both influence the mechanical properties of materials, as well as the transport 

behaviour of water and aggressive agents. A better control of the development and evolution 

of microstructure during hydration and setting is still needed to improve these properties. 

Microstructure is mainly characterized by the specific surface area, pore-size distribution, 

tortuosity, and pores connectivity. However, characterization of the porosity in this micropore 

range is so far poorly described because most of the existing methods are invasive and 

disturbing. The microstructure of Portland cement pastes is complex and, in many respects, 

has not been characterized quantitatively. The main hydration product, calcium silicate 

hydrate (C-S-H), has a complex internal pore structure with a high specific surface area. As 

cement grains recede due to hydration, stable hydrates may or may not form within the 

boundaries of the original cement particles. Different types of intrinsic pores exist in cement 

paste and concrete: gel pores and capillary pores. Mercury intrusion porosimetry (MIP) has 

been used to assess the porosity of different cementitious systems. The composition of the 

different cementitious systems investigated and their pore compositions are given in Table 6.5 

and Figure 6.B1-6.B12 (Appendix 6.B); from which significant information can be extracted 

such as total porosity, average pore radius, total cumulative volume, and total specific surface 

area. Table 6.5 shows that the total cumulative volume of the control samples increases with 

increasing water-to-binder ratio because of increased porosity. Also, the total cumulative 

volume decreases by replacing fly ash with slag and maintaining the same replacement level 

and W/B ratio of 0.35, due to the slow early pozzolanic reactivity of fly ash in comparison 

with that of slag, particularly at 28 days. The average pore radius increases with an increase 

in porosity of the system. The most important thing to note is that 50% GF mixture has lower 

porosity than that of 25% GF, which partially explains why an increase in GF replacement 

decreases ASR expansion. Therefore, the importance of this part of the study is that it explains 

ASR expansion phenomena in a way that supports the assumption of increased porosity in the 

binary mixture containing 25% GF and its role in ASR expansion. 
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TABLE 6.5 PORE COMPOSITIONS OF DIFFERENT CEMENTITIOUS SYSTEMS 
CURED AT 38±2°C FOR 28 DAYS 

Mixtures 

Control 
Control 
Control 
B25GF 
B50GF 

T20GF5SF 
T20GF5SF 
T25GF15S 
T25GF15S 

T20GF15FA 
T20GF15FA 

Q20GF25FA5SF 
Q25GF30S5SF 

w/c 

0.4 
0.45 
0.5 
0.5 
0.5 
0.35 
0.5 
0.35 
0.45 
0.35 
0.40 
0.5 
0.5 

Total 
cumulative pore 
volume (mm3/g) 

153.97 
166.27 
181.31 
178.81 
129.44 
95.27 
137.39 
96.89 
171.72 
110.22 
144.48 
168.48 
137.29 

Total 
porosity 

(%) 

25.68 
27.19 
28.38 
28.04 
21.68 
15.67 
20.33 
16.85 
25.68 
18.33 
22.89 
24.22 
20.77 

Average 
pore 

radius 
(urn) 
0.035 
0.040 
0.070 
0.060 
0.040 
0.022 
0.030 
0.019 
0.052 
0.020 
0.037 
0.010 
0.004 

6.13.1 Comparison between the main binary, ternary, and quaternary mixtures 

As pozzolanic reactivity depends on the nature of pozzolanic materials used and on their 

physical and chemical properties, they consequently have different rates of pozzolanic 

reactivity, that is to say, reaction with free lime. Silica fume is the most reactive and well-

known pozzolanic material, while slag and class F fly ash are of moderate reactivity. On the 

other hand, GF, the main material of the current study, shows advanced pozzolanic reactivity. 

The pore size distribution in a series of paste mixtures are shown in Figures 6.78 and 6.79. 

The quaternary mixtures definitely have higher SCMs replacement levels that need additional 

time to react with free lime compared to the ternary and binary mixtures. For that reason, their 

mixtures gave slightly higher values in the coarser pore sizes (some of them are located in the 

area of air-entrained pores), which are located on the right side, than what is obtained with GF 

binary mixtures and even with the control. The mixtures shown in Figures 6.78 and 6.79 have 

different total cumulative volumes, which are classified in a descending manner as follows 

(forW/Bof0.5): 

Control 0.5 > B25GF > Qfa > Qs = Tsf > B50GF 
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These mixtures have nearly the same order with respect to specific volumes and some 

insignificant difference in order with respect to relative volumes. With respect to the overall 

total porosity, they may have the same order as that with total cumulative volumes, as 

previously shown in Table 6.5 and as shown in Figure 6.79. It is well noted that the mixtures 

of T20GF5SF, Q20GF25FA5SF, and Q25GF30S5SF have pore sizes located in the area of 

less than 10 nm with the highest relative volumes. Therefore, the ternary and quaternary 

mixtures have a great effect on the refinement of the pore system. It is also noted that the same 

mixtures of T20GF5SF, Q20GF25FA5SF, and Q25GF30S5SF have pore sizes located in the 

area of large pores, but with a relative volume of less than 2% of the total pore volume, as 

shown in Figure 6.78. 

It is well established that the incorporation of pozzolanic materials such as FA, slag or SF 

affects the porosity and pore size distribution of cement paste. At normal curing temperature, 

the partial substitution between 10% and 70% (by mass) of cement with FA is reported to 

increase the porosity and pore size of the paste during the early stages of hydration [POON et 

al., 1997; PANDEY AND SHARMA, 2000; FRIAS AND SANCHEZ DE ROJAS, 1997; 

HASSAN et al., 2000] and up to a curing period of 28 days. As hydration continues beyond 

28 days, this effect is much reduced as more additional calcium silicate hydrate gel is formed 

and therefore the presence of FA in a cement paste is beneficial [PANDEY AND SHARMA, 

2000; FRIAS, SANCHEZ DE ROJAS, 1997; HASSAN et al., 2000]. The incorporation of SF 

is reported to positively contribute to the short and long-term properties of paste or concrete, 

i.e. reducing porosity. These properties include strength and porosity [HASSAN, 2000]. Also, 

the incorporation of slag is reported to densify the cementitious matrix lowering the capillary 

porosity [HOOTON, 2000] 
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Figure 6.78 Pore size distribution as a function of specific volume (cementitious systems cured at 38°C 
for 28 days) 
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Figure 6.79 Pore size distribution as a function of relative volume(cementitious systems cured at 38°C 
for 28 days) 

Therefore, the use of mineral admixtures resulted in pore-size and grain-size refinement, 

which leads to lower permeability, and consequently, reduction of the migration of alkalis 

towards the reactive aggregate. Also, mineral admixtures reduce the Ca(OH)2 content of the 

cement paste, as a consequence reducing the pH and increasing the compactness of the 

cementitious matrix due to the formation of new extra C-S-H with improved properties. It is 

also important to mention that the the mixture containing 25% GF, at the same water content 

when compared with the mixture containing 50% GF, gives a system with a higher porosity 
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even in comparison with control mixture, as shown in Figure 6.80. This result possibly 

explains why the mixture containing 25% GF gives higher accelerated mortar bar expansion at 

early ages in comparison with the control mixture. Therefore, the use of 25% GF with the 

same water content as with the control mixture causes an increase in the coarser pores and 

leads to significant mortar bar expansion at early ages. 
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Figure 6. 80 The effect of using GF (replacement of OPC) on the pore system of the GF-binary system 

The highlighted area shown in Figure 6.78 is of great importance as it is the area of the 

particular features characteristic to different cementitious materials. There are indeed 

particular pore radius ranges with higher relative volumes specific to definite cementitious 

systems, as shown in Figure 6.81 and as follows: 

- At the range of 500-600 nm, the Q25GF30S5SF quaternary system gives higher 

relative pore volume, which is somewhat similar to that obtained from the B25GF 

binary and T20GF5SF ternary systems give nearly the same volume. However, the 

control, B50GF binary, and Qfa quaternary systems give lower relative pore volumes, 

nearly less than half of what are given by the preceding mixtures. 

- At the range of 500-400 nm, the control and Q20GF25FA5SF quaternary systems give 

the same relative pore volumes (i.e. quite low) as that given in the previous pore range. 

The other systems give higher relative pore volumes. 
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At the range of 400-350 to 250-150 nm, the different cementitious systems behave the 

same: the Qs, B25GF, and T20GF5SF systems give higher relative pore volumes, 

while control, Q20GF25FA5SF and B50GF systems give lower values. 

At the range of 150-100 nm, all mixtures, except the binary B50GF system, give 

nearly the same (i.e. quite high) relative pore volumes. 

At the range of 100-50 to 20-10 nm, all mixtures behave about the same and give 

higher relative pore volumes in comparison to the range of 600-100 nm. 
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Figure 6. 81 The effect of different cementitious system on the relative volume of different pore 
radius 

6.14 Microstructure analysis 

An understanding of the performance of Portland cement-based materials requires knowledge 

at the microstructural level: SEM with EDS unit is one of the most powerful microstructural 

analyzing tools used for evaluating the development of microstructure change in cementitious 

matrix due to the presence of different cementitious materials. The same mixtures used in pore 

water extraction and pore-size distribution experiments were used in this part of the study. 

SEM/EDS microstructural analyses for different mixtures are shown in Figures 6.B13-6.B40 
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(Appendix 6.B). Special interest was shown towards the sample taken from mixtures used for 

pore water extraction, which were cured at 38 ± 2°C for different curing ages. 

6.14.1 C/S ratio in C-S-H from different cementitious mixtures 

The hydration products of the ternary and quaternary systems have a higher binding affinity 

towards alkalis than those of Portland cement. The typical C/S ratio of C-S-H in Portland 

cements is about 1.75 [THOMAS et al, 2003; HONG AND GLASSER, 2002; FAUCON et 

al., 1997], as previously shown, but reduced ratios are observed when mineral admixtures are 

used. The potential surface charge on C-S-H depends on its C/S ratio. When the C/S ratio is 

high, the surface charge of C-S-H is positive, then anions, with negative charges, are adsorbed 

on the C-S-H polymer; while when C/S ratio is lower than 1.3, the surface charge of C-S-H 

becomes negative and alkali cations, with positive charges, are captured in the C-S-H structure 

[MONTEIRO et al., 1997]. Therefore, alkali binding appears to be sensitive to the C/S ratio in 

the C-S-H gel, where it decreases as this ratio increases; therefore, there is a link between C-

S-H composition and sorption of alkali. Different C/S ratios in different C-S-H gels from the 

previous mixtures tested at curing temperature of 38°C for 28 days and 6 months were 

examined. 

A number of paste specimens with different cementitious matrices and a fixed water-to-binder 

ratio of 0.50, as shown in Table 6.6, were fabricated and cured at 38°C in a closed system (140 

ml cylindrical sealed-plastic containers) to prevent evaporation or interaction with 

surrounding environment. The C/S ratios in the initial materials were calculated, as shown in 

Table 6.6. Hence, the cementitious materials evaluated can be classified in decreasing order of 

C/S as follows: 

Control > B25 > TSF > B50 > Qs > QFa 

2-mm thin-sections were cut at the middle of the sample height, vacuum dried and metalized 

with Au-Pd coat. The average C/S ratios from 3 different analyzed areas of the same sample 

were calculated, as shown in Table 6.6. These calculated values were plotted against the C/S 

value calculated from the chemical analysis. The other mixtures, whose compositions are 
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previously mentioned in Table 6.5, were also tested and their results are shown in Figures 

6.B13-6.B40 (Appendix 6.B). 

TABLE 6.6. DIFFERENT C/S RATIOS CALCULATED FROM AVERAGE AREA 
ANALYSIS FOR EACH MIXTURE 

Average C/S ratio (out of area analysis) 

Identification 

Control 
B25 
TSF 
B50 
QS 
QFa 

initial products 

2.88 
2.05 
1.8 
1.4 
1.3 

1.02 

hydrated products 
28 days 

3.6 
2.54 
1.86 

2 
1.42 
1.48 

180 days 
3.71 
1.93 
1.8 
1.53 
0.8 
0.74 

A list of figures representing area analysis for different C-S-H formed in different tested 

mixtures can be found in Figures 6.B41-6.B46 (Appendix 6.B). Total C/S ratios for different 

mixtures were calculated from the elemental area analysis of each mixture, as shown in 

Appendix. C/S ratios at 28 days and 180 days were plotted against the composition of each 

mixture and presented in Figure 6.82. The results show a reduction in C/S ratio with an 

increase in replacement level, which is always accompanied by an increase in silica content. 

For this reason, the initial C/S ratio for the total materials in each mixture (calculated from 

their chemical composition) was calculated and plotted against the C/S obtained from the 

elemental area analysis done on these hydrated materials in each mixture. A linear relationship 

between the initial C/S in unhydrated materials and the final C/S in the hydrated materials was 

obtained, as shown in Figure 6.83. and from which two mathematical equations were derived 

(28 and 180 days). These equations can be developed and integrated into an overall equation, 

which estimates the future C-S-H composition from the initial chemical composition and 

hydration conditions. This part of the study provides new ideas for future investigation of how 

to characterize a new source of supplementary cementitious material to reach potential 

utilization. 
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6.15 Conclusions 

Finally, in this part of the study, an inter-correlation between results from the alkali-activated 

GF (Chapter 5) and alkali-silica reaction studies (Chapter 6) can be established. The alkali 

content of GF is not that much a matter of concern if GF is well formulated with other mineral 

admixtures. GF can be used alone, but with higher replacement level. Considerable work has 

been done on GF; most of tests related to ASR reaction in mortar and concrete have been 

conducted. Insightful microscale analysis including microprobe analysis and pore size 

distribution contributes directly to interpretation of results obtained from ASR expansion tests. 
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The drawback observed with binary mixture with 25% GF in the accelerated mortar bar test is 

attributed to the total porosity of that binary system, which is confirmed by studying its pore 

system and microstructure, which was completely different from that of the binary mixture 

with 50% GF, as previously shown. This difference was attributed to the free water in the 

binary mixture containing 25% GF, as this dosage decreases water demand, therefore, keeping 

the same w/b ratio increases total porosity. The different microstructural properties of 50% GF 

binary mixture was first attributed to the optimum dosage of GF, which seems to match the 

replacement level of 50% GF. The newly formed C-S-H has promising features that 

chemically entrap alkalis inside its structure, though it does not look like physical adsorption, 

as proved by SEM-EDS analysis. The increase in pore alkalis due to the presence of GF is 

attributed largely to the alkalis from the cement itself as the mixture with GF gives lower 

volume of pore solution than that given by the control mixture. Therefore, dilution is another 

factor that has to be taken into account. The difference in pore solution volumes is attributed 

to the nature of the newly formed phases that consume large quantity of water. As well, this 

test can be taken as another proof of the stability of alkalis inside the structure, which needs 

extremely high pressure to squeeze alkalis out of the C-S-H structure. The results obtained 

from the accelerated mortar bar test carried out on the binary mixture containing 90% GF 

were promising. This binary mixture reduced ASR expansion largely in the short and long 

term under very severe conditions. The cement used in this mixture (10%) served as an 

activator. Despite the presence of Spratt aggregate, which is highly reactive, expansion was 

reduced in the long term to more than 88%. Therefore, the inorganic soluble salts present in 

cement work as a combination of a group of activators that favors the presence of external 

heat input, which is the case in precast concrete (our unpublished fieldwork). 
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General Conclusions 

Spent pot-liner waste produced by aluminium smelters accumulates with time into a 

considerable amount threatening the Canadian environment, especially that of Quebec. A 

new-engineered material, known as Glass frit (GF), has been developed through the chemical 

treatment of such waste. GF being more than 99% amorphous possesses strong binding 

potential as cement. When ground to cement Blaine and combined with an alkaline activator, 

it hydrates and becomes an effective hydraulic binder enabling its use in highly durable 

concretes. When mixed with cement, GF participates indirectly in reducing CO2 emission. 

When optimally mixed with other mineral admixtures, it gives synergetic mixtures, which 

withstand ASR reaction. The technology of engineering new cementitious materials is 

promising and it has many future applications. 

The aim of the present study was to evaluate GF as a clinkerless binder and as a new 

cementitious material. Therefore, this research work has been divided into two main parts: in 

the first part GF was evaluated as a clinkerless binder while in the second part GF was 

evaluated as a new cementitious material mainly its effect on ASR expansion due to its alkali 

content. 

This research work has instigated with some characterization tests related to GF powder, 

pastes, and mortars. These tests were, then, followed by intensive work done on GF as a 

clinkerless binder using different activators and temperatures of activation. A trial to convert 

GF into a new binder (clinker-free) using a chemo-thermal activation process was undertaken. 

Different paste, mortar, and concrete mixtures have been fabricated and evaluated. Different 

combinations of GF-slag and GF-fly ash were activated to investigate the beneficial effect of 

their presence. At the same time and in parallel with the first part, intensive ASR expansion 

studies have performed to evaluate the effect of alkali content of GF on the alkali-silica 

reaction (ASR) in mortar and concrete, especially when an alkali-active constituent exists. 

Different Canadian and American test methods with and without modifications were applied 

using different GF-based cementitious materials. 
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The initial characterization tests have proved that GF is an amorphous powder, which reacts 

with hydrated lime and sodium hydroxide as both pozzolanic and hydraulic material, 

respectively. The mortar mixture with 50% GF as partial replacement to cement has shown 

effective resistance to the deterioration due to sulfate attack. The rheological properties of GF 

pastes are highly affected by GF content. The flowability of GF pastes decreases with an 

increase in GF content. 

Due to its higher amorphicity and chemical composition, GF has a great potential for 

conversion into cementitious binder. Choosing different inorganic activators with different 

combinations capable of performing safe GF activation was undertaken. The best optimal 

activator concentrations were chosen. Different temperatures of activation were investigated. 

The best sand-to-GF ratio of 1.5 was found and different concrete mixtures were made. NaOH 

activator, with a concentration varies from 1.5 to 3% Na20 and the temperature of 60°C were 

chosen as the best activator concentration and optimal temperature of activation, respectively. 

The best sand-to-GF ratio of 1.5 was found and different concrete mixtures were made. 

Different inorganic activators have shown dissimilar behavior with GF. Sulfate-based 

activators have synergistically reacted with GF forming stable sulfate compounds, as 

confirmed by XRD-analysis. The presence of other mineral admixtures, such as slag and fly 

ash, improved the mechanical properties of the binders obtained. Therefore, partial 

replacement of GF with small amounts of these admixtures can results in great changes in 

physical and mechanical properties of the binders obtained. 

The mechanism of GF activation reaction with NaOH was assumed and confirmed by SEM-

EDS analysis. It has been shown that the outer particle surface of GF was attacked first by 

NaOH solution. Thereafter, melting of the particle's surface has taken place, which fused the 

particles together, forming the initial binding effect. Finally, rearrangement with 

recrystallization took place to produce the last cementing solid form. 

In the second part of the study, GF has been assessed as a new cementitious material. Since 

GF has high alkali content, therefore; different tests and specifications related to alkali silica 
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reaction (ASR) to evaluate the effect of GF alkali content on ASR expansions were used. 

Some of these specifications have many advantages, while the others have some drawbacks. 

For example, ASTM C227 specification has many drawbacks, including long period of time to 

obtain results, alkali leaching in the control mixture due to humidity of the testing conditions 

and to the small cross-sectional area of the tested mortar bars. All of these factors lead to an 

overall low expansion value from the control mixtures compared to the blended mixtures. It is 

also highly recommended, when planning to use ASTM C227 specification, to increase the 

amount of alkali to an extent that guarantees a sufficient level of alkalis in the cementitious 

system to disregard alkali leaching. The recommended percentage of alkali in cement is above 

1.25%, according to the results obtained during this study. The modification done on ASTM 

C227 specification has led to a contraction of testing time from 180 days to about 33 days. 

This modification can successfully lead to a proposal for a new standard, as a new 

modification to ASTM C227. 

However, and according to CSA A23.2 25A specification, the addition of GF decreases the 

ASR expansion, despite its high alkali content. This test method should be taken with more 

caution due to the effect of a high concentration of NaOH solution used in this method. The 

successfully obtained synergistic ternary diagrams of GF with silica fume, fly ash, and slag are 

promising. The importance of the synergistic ternary diagrams resides in their use as a guide 

for designing different ternary GF-based concrete binder to ensure minimum risk of the 

occurrence of ASR expansion. 

As well, CSA A23.2-14A (equivalent to ASTM CI293) has many advantages. Moreover, it is 

also a popular test, as is the accelerated mortar bar test. Different 19 concrete mixtures were 

evaluated for their efficiency to mitigate ASR expansion in 2 years. These concrete mixtures 

have included different control, binary, ternary, and quaternary-based cementitious binders. 

The ASR expansion studies were carried out for these mixtures in presence and absence of 

added alkali. The results have shown that the presence of GF did not enhance ASR expansion 

in concrete mixtures with high and low GF contents with respect to the control mixtures. The 

GF-based ternary and quaternary mixtures have shown improved results. 
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The use of GF in the binary and ternary systems tested has shown limited efficacy in 

controlling ASR expansion. The GF did not enhance expansion due to ASR; however, it did 

not reduce expansion to a level similar to that obtained with a material of similar nature 

(ground granulated blast-furnace slag). This is likely attributed to some alkali contribution by 

the GF to the pore solution. Consequently, higher replacement levels (in binary systems) of 

combination with other SCMs (in ternary and quaternary systems) are needed. 

Microstructural studies have shown that 50% GF binary mixture seems to be the optimum GF 

dosage. The newly formed C-S-H has promising features that chemically entrap alkalis inside 

its structure, though it does not look like physical adsorption, as proved by SEM-EDS analysis. 

The increase in pore alkalis due to the presence of GF was attributed to the alkali squeezed 

with the C-S-H. 

Finally, the alkali content of GF is not that much a matter of concern, if GF is well formulated 

with other mineral admixtures (with intensive precautions and investigations). The inorganic 

soluble salts present in cement can be considered as a combination of a group of activators 

that favors the presence of external heat input, which is the case with precast concrete. The 

presence of GF with cement supported with an optimized input heat has the both advantages 

of GF, namely, it reacts both as a hydraulic and pozzolanic binder. Therefore, this work can be 

considered as a fruitful introduction to the engineering properties and chemistry of GF, as the 

major or minor constituent, in concrete. 
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Recommendations 

Despite the systematic investigation reported in this thesis, more extensive study is still 

needed to establish a fine-tuned guideline for the development of new engineered 

supplementary cementitious materials (ESCMs) designated for "green" concrete. Concrete 

that satisfies the most basic requirements such as workability, compressive strength, scaling 

resistance, freeze-thaw resistance, and resistance to chloride penetration may not provide good 

resistance to sulfate attack or even corrosion of steel reinforcement used in that concrete. 

Approving any new ESCM requires extensive research to assess potential durability exposures 

that go beyond one particular application. The following research program can be 

recommended in the near future: 

Experimental work should be extended to assess potential durability of concrete made 

using activated GF binder. Other concrete mixtures should be fabricated to study the 

effect of GF-to-coarse aggregate ratio as well as the effect of changing GF-to-water ratio 

on fresh and hardened properties of these mixtures. 

Experimental work should be also extended to establish other activators, which may also 

be composed of a group of activators, capable of activating GF without need for external 

thermal effect. Testing of resulting binder in paste, mortar, and concrete would then be 

required as a second step. 

It is significant to study the kinetics of the reaction of GF with different activators; this 

study is important in establishing a mathematical model capable of predicting the 

physical and chemical properties of the hydrated cementitious material. 

Studying ASR expansion in alkali-activated GF mortar and concrete in the short and 

long term is highly recommended in presence and absence of active aggregate. The 

effect of temperature of activation and concentration of activator on ASR expansion 

should be investigated. 
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Other points are needed to extend the area of effectiveness in the synergistic diagrams 

and to cover most of the efficient mixtures that can be used safely in mortar and 

concrete. 

The efficient ternary mortar mixtures in the accelerated mortar bar test should be tested 

in concrete prism test to assess the expansion behavior of these mixtures in long-term 

concrete testing. 

Further tests are still needed to evaluate the efficiency of the quaternary system in 

suppressing ASR expansion in concrete prism test. 

Further studies of pore-solution expression technique are still needed to investigate the 

effect of applied pressure on extracted volume of pore water and concentration of ions in 

this volume, as well as to determine whether the extracted pore water is only pore water 

or pore water and combined water, using available techniques. 

Further experimental studies are needed to determine a manner of fixing alkalis in C-S-

H matrix of GF-based systems. 
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Figure 5.A 3 Compressive strengths of 7 and 28-day samples activated at 80°C 
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Figure 5.A 9 Formation of alumino-silicate hydrate polymer 
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Figure 5.A 10 Activated CI, C2, and C3 concrete mixtures 

5. B A proposal for a new method to determine the pozzolanic activity 

A new method for quantitative determination of pozzolanic activity using XRD analysis was 

established. In this method different calibration curves of the dry mixtures of different 

concentrations of hydrated lime (CH) with fixed amount of GF at different temperatures (20-

80°C), based on the intensities of the mean peak of CH, were drawn. Then, to these dry GF-

CH mixtures known amount of water has to be added followed by homogeneous mixing and 

curing at a temperature equivalent to the temperature used in creating the calibration curve for 

24 hours. Consquently, the mixture has to be ground and weighed followed by vacuum and 

oven dry to avoid carbonation, to remove humidity and to be weighed again to calculate free 

water. At that time, final grinding is necessary to carry out another XRD analysis. From which 

the intensity of the remaining CH is calculated and the amount of unreacted CH can be 

estimated by extrapolation from the calibration curve (CH-intensity) corresponding to the 

accelerating temperature. This method was tested using different cementitious materials and 
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calibrated with different differential and thermogravimetrical methods (DTA and TGA). It 

was found that this method is reliable and it gives reproducible results. This method and its 

results will be published in detail in different papers. 

Appendix 6A. Concrete Prism Test (CPT) CSA A23.2-14A 

Curing time (days) 

Figure 6.A 1 Binary concrete mix after 2 years containing 25%GF with and without alkali 

Figure 6.A 2 Binary concrete mix after 2 years containing 50%GF with and without alkali 
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Figure 6.A 3 Comparison between 25 and 50 % binary GF concrete mix with and without alkali 

Figure 6.A 4 Comparison between control and GF-ternary concrete mixtures with and without alkali 
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Curing time (days) 

Figure 6.A 5 Comparison between control and GF-ternary concrete mixtures with 
and without both alkali and superplasticizer 

Figure 6.A 6 Comparison between control and GF-ternary concrete mixtures with 
and without both alkali and superplasticizer after one year 
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Figure 6.A 8 Comparison between control and GF-Pfa quaternary concrete mixtures with and without 
alkali after two years 
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Figure 6.A 13 Comparison between GF-slag quaternary concrete mixtures with and without both alkali 
and superplasticizer, after two years 
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Figure 6.A 14 Comparison between GF-slag quaternary concrete mixtures with and without both alkali 
and superplasticizer, after one year 
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Appendix 6.B Pore-size distribution and microstructure analysis 
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Figure 6.B 1 Pore size distribution as a function of relative volume 
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Figure 6.B 2 Pore size distribution as a function of specific volume 
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Figure 6.B 3 Pore size distribution as a function of relative volume 
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Figure 6.B 4 Pore size distribution as a function of specific volume 
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Figure 6.B 5 Pore size distribution as a function of relative volume 
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Figure 6.B 6 Pore size distribution as a function of specific volume 
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Figure 6.B 8 Pore size distribution as a function of specific volume 
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Figure 6.B 12 Pore size distribution as a function of relative volume 
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Figure 6.B 13 Control mixture with w/c ratio of 0.5 at 28 days 

Figure 6.B 14 Control mixture with w/c ratio of 0.5 at 28 days 

-279-



S * i ! S . •, ' * - . if 

Figure 6.B 15 Control mixture with w/c ratio of 0.5 at 6 months 
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Figure 6.B 16 Elemental spot analysis for the control mixture, with 
w/c ratio of 0.5, showed that Ca/Si ratio is 1.75, at 28 days 

Figure 6.B 17 Binary mixture containing 25% GF at 28d 
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Figure 6.B 18 Binary mixture containing 25% GF at 6 months 
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Figure 6.B 19 Binary mixture containing 50% GF cured at 38°C for 28 days 
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Figure 6.B 20 Binary mixture containing 50%> GF cured at 38°C for 28 days, showed CH particles 
swallowed by new GF agglomerate 
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Figure 6.B 21 
dissolution of GF 

mixture containing 50% GF cured at 38 C for 6 months, showed compete 
CH particles with very condensed structure 
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Figure 6.B 22 Spherical agglomeration of GF with high alkali content of the binary 
mixture containing 50% GF cured at 38°C for 6 months with C/S of 1.42 
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Figure 6.B 23 Microstracture development and closure of the pores of the binary mixture containing 
50% GF cured at 38°C for 6 months 
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Figure 6.B 24 Microstructure development of the binary mixture with 50% 
months 
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Figure 6.B 25 Microstructure development of the ternary mixture containing 20% GF and 5% SF with 
w/c ratio of 0.35, cured at 38°C for 28 days 
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Figure 6.B 26 Microstructure development of the ternary mixture containing 20% GF and 5% SF 
cured at 38°C for 28 days 
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Figure 6.B 27 Microstructure development of the ternary mixture containing 20% GF and 5% SF 
cured at 38°C for 28 days 
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Figure 6.B 28 C-S-H formed from reaction of GF, silica fume and CH, giving Ca/Si ratio of 0.92, at 28 
days 
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Figure 6.B 29 Microstructure development of the ternary mixture contaning 20% GF and 5% SF 
cured at 38°C for 6 months 
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Figure 6.B 30 Microstxucture development of the temaury mixture containing 20% GF and 5% SF 
cured at 38°C for 6 months 
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Figure 6.B 31 Small Spherical agglomeration embedded in the ternary GF and SF matrix 
with high alkali content cured at 38°C for 6 months, with C/S of 1.38 
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Figure 6.B 32 Ternary mixture of 25%GF and 15% FA with water-to-cement ratio of 0.35, cured: 
38°C for 28 days 
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Figure 6.B 33 Coverage of the fly ash particle by reaction product in the quaternary GF-FA-SF 
system at 38°C for 28 days 
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Figure 6.B 34 Polymerization reaction attacking portlandite crystals and covering the surface of the 
quaternary GF-FA-SF system at 38°C, at 6 months 
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Figure 6.B 35 Complete polymerization reaction and complete covering of the surface of the 
quaternary GF-FA-SF system at 38°C, at 6 months 
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Figure 6.B 36 Ternary GF-slag mixture with water cement ratio of 0.35 at 28 days 
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Figure 6.B 37 Microstructure development of the GF-slag-silica fume quaternary mixture cured at 28 
days, at38°C 
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Figure 6.B 38 Microstructure development and formation of polymerization sites of the GF-slag-
silica fume quaternary mixture cured at 28 days, at 38°C 
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Figure 6.B 39 Microstructure development and propagation of polymerizing sites of the GF-slag 
silica fume quaternary mixture cured at 6 months, at 38°C 
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Figure 6.B 40 Microstructure development and start of surface covering of the GF-slag-silica fume 
quaternary mixture cured at 6 months, at 38°C 
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Figure 6.B 41 Control mixture at 28 days and 6 months 

-288-



28 days 6 months 

Figure 6.B 42 Binary mixture with 25% GF at 28 days and 6 months 

28 days 6 months 

Figure 6.B 43 Binary mixture with 50% GF at 28 days and 6 months 

28 days 6 months 

Figure 6.B 44 Ternary mixture with 20%GF5%SF at 28 days and 6 months 
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Figure 6.B 45 Quaternary mixture with 20%GF25%FA5%SF at 28 days and 6 months 

28 days 6 months 

Figure 6.B 46 Quaternary mixture with 25%GF30%S5%SF at 28 days and 6 months 
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