18 research outputs found

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Evaluation of different chemicals to control Erysiphe betae the causal pathogen of sugar beet powdery mildew

    Get PDF
    Survey on sugar beet plantations at Minia and Assiut governorates, Egypt revealed that powdery mildew disease was the most epidemic threat on sugar beet plantations.  It was noticed that the highest Area Under Powdery Mildew Progress Curve (AUPMPC) value was detected in Abnob locality, Assiut governorate while the lowest one was found in Maghagha locality, Minia governorate. Data revealed that five months’ post collection conidia of Erysiphe betae failed to infect sugar beet leaves cultivar FD.0807. Results of conidial germination showed that the percent germination in darkness was lower than in light. Also a high percentage of germinating conidia formed appressorium on dry glass slides. The examination of powdery mildew infected sugar beet leaves using scanning electron microscopy showed that the fungus penetrates the epidermis of the leaves by the haustoria which are folded in many patches forming a complex web almost completely covers the leaf. Field experiment was conducted to evaluate three chemical compounds containing plant macronutrients, along with five fungicides against powdery mildew disease. Results showed that sodium bicarbonate achieved the best disease control among the macronutrient-containing compounds followed by calcium chloride and potassium silicate, respectively. Sodium bicarbonate achieved the highest total soluble solids (TSS) percentage and root weight at all rates of application followed by calcium chloride, while potassium silicate achieved the least TSS % and root weight. Concerning fungicides, Bellis 38%WG gave noticeable result in disease reduction followed by Collis 30% SC and Tilt 25% EC, respectively. The results showed that the highest TSS % and root weight were detected in the roots of sugar beet plants treated with Bellis 38% fungicide followed by Collis 30%. Meanwhile, the lowest significant of TSS % and root weight was detected after treatment with Permatrol 99%

    Mechanical characteristics of MHD of the non-Newtonian magnetohydrodynamic Maxwell fluid flow past a bi-directional convectively heated surface with mass flux conditions

    Get PDF
    In engineering and manufacturing industries, stretching flow phenomena have numerous real-world implementations. Real-world applications related to stretched flow models are metalworking, crystal growth processes, cooling of fibers, and plastics sheets. Therefore, in this work, the mechanical characteristics of the magnetohydrodynamics of the non-Newtonian Maxwell nanofluid flow through a bi-directional linearly stretching surface are explored. Brownian motion, thermophoresis, and chemical reaction impacts are considered in this analysis. Additionally, thermal convective and mass flux conditions are taken into consideration. The mathematical framework of the existing problem is constructed on highly non-linear partial differential equations (PDEs). Suitable similarity transformations are used for the conversion of partial differential equations into ordinary differential equations (ODEs). The flow problem is tackled with the homotopy analysis method, which is capable of solving higher-order non-linear differential equations. Different flow profiles against various flow parameters are discussed physically. Heat and mass transference mechanisms for distinct flow factors are analyzed in a tabular form. The outcomes showed that both primary and secondary velocities are the declining functions of magnetic and Maxwell fluid parameters. The heat transfer rate rises with the cumulative values of the Brownian motion and thermal Biot number. In addition, the mass transfer rate decreases with the rising Schmidt number, Brownian motion parameter, and chemical reaction parameter, while it increases with the augmenting thermophoresis parameter. It has been highlighted that streamlines in the current work for Maxwell and Newtonian models are in fact different from one another

    Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: numerical approach

    No full text
    Abstract The current article aims to examine the magnetohydrodynamics (MHD) impact on the flow of MgO–Ag/water-based hybrid nanoliquid with motile microorganisms and the fluid is allowed to flow over a Riga plate subject to slip effects and activation energy. Furthermore, the presence of a uniform heat source/sink is also addressed in the energy equation. In addition to this, the thermophoresis effect is highlighted in the concentration equation. From the present proposed model, we get a non-linear system of the governing equations. The obtained system of partial differential equations (PDEs) is converted to the dimensionless system of ordinary differential equations (ODEs) using the similarity transformation. The obtained high non-linear system of equations has been solved numerically, using the parametric continuation method (PCM). In the present analysis, the main motivation is to highlight the heat transfer rate of MgO–Ag/water-based hybrid nanofluid flow over a Riga plate. The second motivation of the present research is to highlight the impact of slip conditions on the velocity, energy, and mass profiles. From the graphical analysis, it is depicted that the slip conditions reduce the velocity, energy, and mass outlines. From the present analysis, we concluded that volume friction reduced the flow profile while increasing the temperature of the fluid flow over a Riga plate. All the parameters of the present research are highlighted in velocity temperature and concertation of the fluid. In addition to this in all the figures we have compared the hybrid nanofluid with mono nanofluid and the also the comparison between slip and no-slip conditions have carried out through graphs for velocity, temperature, and concentration

    Molecular and Morphological Characterization of Anisakis simplex in Frozen and Smoked Herring and Mackerel Fish species in Egypt

    No full text
    Food-borne zoonoses are of serious public health concern, with a high risk on human health in both developed and developing countries. Thus, this study aimed to determine the prevalence of zoonotic anisakis larvae in smoked imported herring fish (Clupea harengus) and frozen mackerel (Scomber scomberus) from Assiut and Menoufia governorates, respectively in Egypt. All herring specimens were heavily infected with Anisakis larvae, while 9 out of 15 mackerel fish were infected. A total of 434 Anisakis larvae were collected from stomach, abdominal cavity, liver, between skin, muscles and gonads of 45 herring fish. In frozen mackerel, number of detected larvae was 78. Sequencing and phylogenetic analysis of internal transcribed spacer rDNA (ITS-rDNA) ribosomal DNA confirmed that the Anisakis larvae belonged to Anisakis simplex species. Furthermore, by employing light and scanning electron microscope, the morphological characters of Anisakis larvae were also determined. These findings highlight the importance of detecting health hazards in seafood products for helping in the management and prevention of anisakiasis.

    Brownian and thermal diffusivity impact due to the Maxwell nanofluid (graphene/engine oil) flow with motile microorganisms and Joule heating

    No full text
    Nanofluids have many applications in industries as well as engineering such as biomedicine, manufacturing, and electronics. Nanofluid is used for improvement of thermal and mass transmission. Based on the aforementioned applications, in the present study, a two-dimensional Maxwell nanofluid with thermal radiation effect on the existence of motile microorganisms over a vertically stretchable surface is explored. The consequence of heat absorption, the efficiency of heat flux in a porous medium, viscous dissipations, and Joule heating impacts are considered. The Brownian and thermophoretic diffusion effects have been evaluated. In addition, the binary chemical reaction is taken into account to evaluate the magnetohydrodynamics (MHD) mixed convection flow. Graphene nanoparticles are suspended in so-called engine oil (base fluid). The proposed liquid model depends on the governing nonlinear equations of velocity, temperature, the concentration of nanoparticles, and motile gyrotactic microorganisms. In order to transform highly nonlinear partial differential equations into nonlinear ordinary differential equations, an appropriate similarity transformation is exploited. For the solution of the present study, the homotopy analysis method-technique in Mathematica-12 is used. The fluctuation of velocity, temperature, concentration, and gyrotactic microorganisms’ characteristics for numerous flow parameters is discussed in detail. Some important fallouts of the existing study are that the Maxwell liquid parameter, Eckert number, and magnetic parameter lessen the nanoliquid velocity. But the fluid temperature becomes higher for growing estimates of the Brownian motion and thermophoretic factors. The radiation and chemical reaction parameters have declining impacts on the solutal profile. The motile microorganism profile shows a decrement in bioconvection Lewis and Rayleigh numbers. The nanofluid thermal profile is improved but the nanofluid velocity declined through the augmentation of volume fraction. Also, the coefficient of skin friction and Nusselt number are obtained versus various flow parameters

    The Biogenically Efficient Synthesis of Silver Nanoparticles Using the Fungus Trichoderma harzianum and Their Antifungal Efficacy against Sclerotinia sclerotiorum and Sclerotium rolfsii

    No full text
    Silver nanoparticles (AgNs) are known as a promising alternative tool to control fungal diseases. AgNs were biologically synthesized using Trichoderma harzianum filtrate as an ecofriendly approach. The presence of AgNs was confirmed by changing the color to brown, followed by UV-Vis spectroscopy, transmission electron microscopy (TEM), and Energy-dispersive spectra (EDS). TEM studies showed that the size of AgNs average was 31.13 nm and the shape was spherical. In vitro assays of AgNs showed a significant inhibitory effect on the growth of Sclerotinia sclerotiorum (S. sclerotiorum) and Sclerotium rolfsii (S. rolfsii). The percentage inhibition on mycelial linear growth, dry weight, and sclerotia formation of S. sclerotiorum and S. rolfsii at 100−L were 87.8, 82.7, 96.4, 52.8, 55.1, and 85.4%, respectively. The obtained results suggested that the biosynthesized AgNs have antifungal activity against S. sclerotiorum and S. rolfsii. Foliar spray of bean and sunflower plants with AgNs caused a decrease in disease severity, which promoted the plant protection against S. sclerotiorum and S. rolfsii, respectively. Substantially, this study will extend our understanding of the AgNs antifungal action for suppressing fungal diseases
    corecore