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In engineering and manufacturing industries, stretching flow phenomena have
numerous real-world implementations. Real-world applications related to
stretched flow models are metalworking, crystal growth processes, cooling
of fibers, and plastics sheets. Therefore, in this work, the mechanical
characteristics of the magnetohydrodynamics of the non-Newtonian
Maxwell nanofluid flow through a bi-directional linearly stretching surface
are explored. Brownian motion, thermophoresis, and chemical reaction
impacts are considered in this analysis. Additionally, thermal convective and
mass flux conditions are taken into consideration. Themathematical framework
of the existing problem is constructed on highly non-linear partial differential
equations (PDEs). Suitable similarity transformations are used for the conversion
of partial differential equations into ordinary differential equations (ODEs). The
flow problem is tackled with the homotopy analysis method, which is capable of
solving higher-order non-linear differential equations. Different flow profiles
against various flow parameters are discussed physically. Heat and mass
transference mechanisms for distinct flow factors are analyzed in a tabular
form. The outcomes showed that both primary and secondary velocities are the
declining functions of magnetic and Maxwell fluid parameters. The heat transfer
rate rises with the cumulative values of the Brownian motion and thermal Biot
number. In addition, the mass transfer rate decreases with the rising Schmidt
number, Brownian motion parameter, and chemical reaction parameter, while
it increases with the augmenting thermophoresis parameter. It has been
highlighted that streamlines in the current work for Maxwell and Newtonian
models are in fact different from one another.
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1 Introduction

The fluids that differ from Newtonian fluids in behavior and
characteristics in the sense of not obeying Newtonian’s law are
termed as non-Newtonian fluids, which include honey, paste,
ketchup, and grease lubricant. There are many applications of the
non-Newtonian fluid flow in modern industries and technology
such as printing technology, biological solution, polymer, braking
and damping devices, production of foods, and reduction agents in
dragging. These fluids are considered to be the most effective in heat
transmission phenomena (Ogunseye, Salawu, Tijani, Riliwan,
Sibanda; Salawu and Ogunseye, 2020). Sharma and Shaw (2022)
calculated the nanofluid flow over an expanding surface by assuming
viscous dissipation and non-linear radiation and have concluded
that the drag force has been augmented by an upsurge in the
magnetic factor. Kumar and Sahu (2022) inspected the non-
Newtonian fluid flow past an elliptical rotary cylinder through a
laminar flow stream and have investigated the flow phenomenon
numerically. Khalil et al. (2022) inspected the influences of
fluctuating fluid properties of the double-diffusive model over the
dissipated non-Newtonian liquid flow on a stretched surface. Sneha
et al. (2022) appraised the magnetohydrodynamic (MHD) radiated
nanoliquid flow toward a stretchy and shrinking sheet subject to the
impact of carbon nanotubes and concluded that the velocity of the
fluid declined, while the temperature had an upsurge with growing
values of the magnetic parameter. Hu et al. (2022) used non-
Newtonian fluids in a square channel to discuss the
polydispersal, migration, and formation chain of particles. Islam
et al. (2020) inspected the impacts of the MHD radiated micropolar
fluid flow in a channel with the influence of hybrid nanoparticles.
Waini et al. (2022) investigated the thermally radiative flow across
an extending sheet by using magnetic field effects.

The branch of science that deals with magnetic characteristics of
electrically conducting materials is termed as
magnetohydrodynamics (MHD). This field of science provides a
basis for many scientific, industrial, and technological applications
such as liquid metals, cooling systems for automobiles, cooling of
electronic chips, and production of chemicals. Sohail et al. (2020)
inspected the MHD Casson fluid flow and entropy production,
subject to variable heat conductivities past a non-linear bi-
directional stretched surface, and deduced that the upsurge values
of the magnetic factor have supported concentration and thermal
profiles. Reddy et al. (2022a) used the MHD fluid flow with a porous
medium to use the influence of radiation, thermal, and velocity slips
and highlighted that the width of the boundary layer weakened with
the growth in slip and heat factor parameters. Mishra et al. (2022)
numerically explored the Williamson MHD nanofluid flow, subject
to variable viscosities over a wedge. Reddy et al. (2016) debated the
effect of thermal radiation over the MHD nanoparticle-based liquid
flow past an extending surface and compared their results with a fine
agreement to those results established in the literature. Bejawada and
Yanala (2021) inspected Soret and Dufour impacts upon the time-
dependent MHD liquid flow past an inclined surface placed
vertically. Reddy et al. (2022b) scrutinized the influence of

different slip effects over the MHD liquid flow past a stretchy
sheet subject to Soret and Dufour effects. Sandeep et al. (2022)
discussed the influence of the non-linearly radiated MHD hybrid
nanofluid fluid flow using a heat source and concluded that the fluid
flow declined and the thermal flow had an upsurge with a growth in
the magnetic factor. Sandeep and Ashwinkumar (2021) studied the
impact of different nanoparticles’ shapes upon the MHD fluid flow
over a thin movable needle. Ashwinkumar et al. (2021) explained a
2DMHD hybrid nanoparticle flow using two different geometries of
a cone and plate and proved that the flow and temperature
incrimination are more visible in the case of the plate than that
in the case of the cone. Mabood et al. (2022) inspected the influence
of the non-linearly radiated 3D time-based MHD hybrid nanofluid
flow. Readers can further study about the impact of MHD on mass
and heat transmission in Sulochana et al. (2018), Alshehri et al.
(2021), Mabood et al. (2021), Bejawada et al. (2022), Kumar et al.
(2022), and Nalivela et al. (2022).

The mass and thermal flow problems with the impact of
chemical reactions play a pivotal role in numerous fluid flow
models. They have captivated more consideration due to its
widespread utilization in many engineering and natural
phenomena such as refrigeration, aerodynamic extrusions, and
human transpiration. Sharma and Mishra (2020) documented the
MHD nanoliquid flow using an internal thermal source. Singh et al.
(2021) numerically solved the flow of a liquid past an enlarging sheet
with the impact of chemical reactions and concluded that an upsurge
in the stretching factor declined the diffusivities of heat and mass.
Khan et al. (2021) discussed the bioconvection micropolar
nanoparticle flow past a thin needle subject to binary chemical
reactions and highlighted that mass diffusion declined with an
upsurge in the chemical reaction factor and Brownian motion.
Kodi et al. (2022) inspected the MHD Casson nanofluid flow
past a vertically placed permeable plate subject to the impact of
thermal diffusivity and chemical reactions. Kumar and Sharma
(2022) discussed the influences of Stefan blowing on a fluid flow
past a rotary disc subject to chemical reactions. Raghunath et al.
(2022) inspected the time-dependent MHD flow of a liquid over an
inclined permeable plate using magnetic impacts and chemical
reactions.

Brownian motion and thermophoretic effects are responsible for
controlling mass and thermal diffusivities subject to concentration
and temperature gradients. Both these effects have numerous
applications in different areas of science such as aerosol
technology, nuclear safety phenomena, atmospheric pollution,
aerospace technology, and hydrodynamics. Irfan (2021)
considered the collective influence of Brownian and thermal
diffusivity over the nanoparticle flow past a sheet with varying
thickness, subject to slip conditions, and concluded that the
augmentation of the Brownian number and thermophoresis
factor has an upsurge in thermal profiles. Upreti et al. (2022)
described the Casson fluid flow past a Riga plate subject to the
effects of microorganisms. Saleem et al. (2022) studied the motion of
water carrying three different types of nanoparticles subject to
thermophoretic effects and the Brownian motion. Kiyani et al.
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(2022) inspected the MHD micropolar nanoparticle flow past an
exponentially radiated surface using thermal radiations, Brownian
motion, and thermophoretic effects upon the fluid flow system.
Mehta and Kataria (2022) inspected theMHD fluid flow through the
shrinking surface along with thermal radiations. Tayyab et al. (2022)
have numerically studied the three-dimensional rotary nanoliquid
flow subject to bio-convective activation energy.

The boundary-layer flows of nanofluids caused by stretched
surfaces have attracted researchers’ attention recently (Andersson
et al., 1994; Xu and Liao, 2009; Prasad et al., 2012; Mukhopadhyay,
2013). Their enormous significance in engineering and industrial
applications has been the key driver behind this. These uses are
particularly common in extrusion operations, paper and glass fiber
manufacture, electronic chip manufacturing, paint application,
food preparation, and the transfer of biological fluids. There is
not a single constitutive connection between stress and the rate of
strain that can be used to investigate all non-Newtonian fluids. The
diversity of these fluids, their constitutive behavior, and
simultaneous viscous and elastic properties make it nearly
impossible to distinguish between effects resulting from a fluid’s
shear-dependent viscosity and effects resulting from the fluid’s
elasticity. A few mathematical models have been explained that
closely match the experimental findings (Wu and Thompson,
1996). The Maxwell model is utilized for relaxation time in
some highly concentrated polymeric fluids.

In this work, the authors have considered to present a semi-
analytical solution of the Maxwell fluid flow over a bi-directional
stretching sheet. Additionally, the thermal convective and mass flux
conditions are taken into consideration. The mathematical
framework of the existing problem is constructed on highly non-
linear PDEs. Suitable similarity transformations are used for the
conversion of PDEs into ODEs, which is presented in section 2. The
flow problem is tackled with a homotopy analysis method, which is
capable of solving higher-order non-linear differential equations,
presented in section 3. The convergence of the HAM technique is
also shown in section 4. Different flow profiles against various flow
parameters are discussed physically, as shown in section 5. Finally,
the concluding remarks are presented in section 6.

2 Model formulation

We consider the steady, laminar, and incompressible three-
dimensional flow of a Maxwell fluid over a bi-directional linearly
extending surface. The surface stretches along x and y directions
and with velocity vw(x) � by, where both a and b are constants. A
magnetic field of strength B0 is applied normal to the fluid flow. The
surface temperature is denoted by Tw, Tf represents the reference
temperature, and T∞ shows the ambient temperature. In addition,
the surface concentration is denoted by Cw and C∞, showing the
ambient concentration. Brownian motion, thermophoresis, and
chemical reaction impacts are considered in this analysis.
Additionally, the thermal convective and mass flux conditions are
taken into consideration, as shown in Figure 1. Under the
aforementioned suppositions, the principle equations are as
follows (Bilal Ashraf et al., 2016; Dawar et al., 2021):
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FIGURE 1
Geometry of the flow problem.
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with boundary conditions, given as follows (Bilal Ashraf et al., 2016;
Dawar et al., 2021):

u � ax, v � by, w � 0, DB
zC

zz
( ) + DT

T∞

zT

zz
� 0,−k zT

zz
( ) � −h Tf − T( ), at z � 0,

v → 0, u → 0, C → C∞, T → T∞ as z → ∞ .

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭

(6)

In the aforementioned equations, u, v, andw are the velocity
components; x, y, and z are the coordinate axes; σ is the
electrical conductivity; ρ is the density; λ is the relaxation
time; B0 is the magnetic field strength; Cp is the specific heat;
k is the thermal conductivity; DB is the Brownian diffusion
coefficient; DT is the thermophoretic coefficient; T is the
temperature; C is the concentration; k1 is the chemical
reaction coefficient; h is the heat transfer coefficient; and a
and b are the velocity constants.

The similarity transformations are defined as follows (Bilal
Ashraf et al., 2016; Dawar et al., 2021):

v � ayg′ η( ), u � axf′ η( ), w � − ��
a]

√
g η( ) + f η( )( ),

θ η( ) � T − T∞
Tf − T∞

,ϕ η( ) � C − C∞
Cw − C∞

�, η � z

��
a

]

√
.

⎫⎪⎪⎬⎪⎪⎭ (7)

The leading equations are transformed by using similarity
transformations defined in (7):

f‴ η( ) + 1 +Mβ( ) f η( )f″ η( ) + g η( )f″ η( )( ) − f′ η( )( )2 −Mf′ η( )
+β 2f η( )f′ η( )f″ η( ) + 2g η( )f′ η( )f″ η( )−

f‴ η( ) f η( )( )2 − f‴ η( ) g η( )( )2 − 2f‴ η( )g η( )f η( )( ) � 0,

(8)
g‴ η( ) + 1 +Mβ( ) f η( )g″ η( ) + g η( )g″ η( )( ) − g′ η( )( )2 −Mg′ η( )
+β 2g″ η( )f η( )g′ η( ) + 2g″ η( )g η( )g′ η( )−

g‴ η( ) f η( )( )2 − g‴ η( ) g η( )( )2 − 2g‴ η( )f η( )g η( )( ) � 0,
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1
Pr
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(10)
ϕ″ η( ) + Scf η( )ϕ′ η( ) + Scg η( )ϕ′ η( ) + Nt

Nb
θ″ η( ) − ScKϕ η( ) � 0,

(11)
with boundary conditions given as follows:

f 0( ) � 0, f′ 0( ) � 1, g′ 0( ) � α, g 0( ) � 0, θ′ 0( ) � γ θ 0( ) − 1( ),
Ntθ′ 0( ) +Nbϕ′ 0( ) � 0, g′ ∞( ) � 0, f′ ∞( ) � 0, θ ∞( ) � 0,ϕ ∞( ) � 0.

{ }
(12)

The embedded parameters are discussed as follows:
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(13)

Here, M is the magnetic factor, β is the Deborah number, Sc is
the Schmidt number, α is the stretching constant, Pr is the Prandtl
number, K is the chemical reaction factor, γ is the thermal Biot
number, Nt is the thermophoresis factor, and Nb is the Brownian
motion factor.

The Nusselt, Sherwood, and density numbers are defined as
follows:

Nux���
Rex

√ � −θ′ η( )∣∣∣∣η�0, Shx���
Rex

√ � −ϕ′ η( )∣∣∣∣η�0, (14)

where Rex � xuw(x)
] is the local Reynolds number.

3 HAM solution

For an analytical simulation of the existing model, the
HAM technique is considered. The initial guesses are given as
follows:

f0 η( ) � 1 − e−η , g η( ) � α 1 − e−η( ), θ0 η( ) � γ

γ + 1
e−η ,ϕ0 η( ) � − γ

1 + γ

Nt

Nb
e−η .{ }
(15)

The linear operators are taken as follows:

Lf η( ) � f‴ − f′, Lg η( ) � g‴ − g′, Lθ η( ) � θ″ − θ, Lϕ η( )
� ϕ″ − ϕ, (16)

with the following properties:

Lf [1 + [2 exp η( ) + [3 exp −η( )( ) � 0,
Lg [4 + [5 exp η( ) + [6 exp −η( )( ) � 0,

Lθ [7 exp η( ) + [8 exp −η( )( ) � 0,
Lϕ [9 exp η( ) + [10 exp −η( )( ) � 0,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (17)

where [i(i � 1, 2, 3, . . . , 10) are the constants.
R ∈ [0 1] shows the entrenching factor, and - shows the

auxiliary parameter. Then, the zero-order problems are
constructed as follows:

1 − A( )Lf f η;A( ) − f0 η( )[ ] � AZfNf f η;A( ), g η;A( )[ ], (18)
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(24)
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Nθ θ η;A( ), f η;A( ), g η;A( ), ϕ η;A( )[ ] � 1
Pr

z2θ η;A( )
zη2

+ g η;A( ) zθ η;A( )
zη

+f η;A( ) zθ η;A( )
zη

+Nb
zθ η;A( )

zη

zϕ η;A( )
zη

+Nt
zθ η;A( )

zη
( )2

,

(25)

Nϕ ϕ η;A( ), f η;A( ), g η;A( ), θ η;A( )[ ] � z2ϕ η;A( )
zη2

+

Scf η;A( ) zϕ η;A( )
zη

+ Scg η;A( ) zϕ η;A( )
zη

+ Nt

Nb

z2θ η;A( )
zη2

− ScKϕ η;A( ). (26)

For A � 0 and A � 1, we obtain the following:

f η; 0( ) � f0 η( ), f η; 1( ) � f η( )
g η; 0( ) � g0 η( ), g η; 1( ) � g η( )
θ η; 0( ) � θ0 η( ), θ η; 1( ) � θ η( )
ϕ η; 0( ) � ϕ0 η( ), ϕ η; 1( ) � ϕ η( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭. (27)

Using the Taylor series, we obtain the following:

f η;A( ) � f0 η( ) + ∑∞
Χ�1

fΧ η( )RΧ as fΧ η( ) � 1
Χ!

zΧf η;A( )
zAΧ

∣∣∣∣∣∣∣∣A�0,
(28)

g η;A( ) � g0 η( ) + ∑∞
Χ�1

gΧ η( )RΧ as gΧ η( ) � 1
Χ!

zΧg η;A( )
zAΧ

∣∣∣∣∣∣∣∣A�0.
(29)

θ η;A( ) � θ0 η( ) + ∑∞
Χ�1

θΧ η( )RΧ as θΧ η( ) � 1
Χ!

zΧθ η;A( )
zAΧ

∣∣∣∣∣∣∣∣A�0.
(30)

ϕ η;A( ) � ϕ0 η( ) + ∑∞
Χ�1

ϕΧ η( )RΧ as ϕΧ η( ) � 1
Χ!

zΧϕ η;A( )
zAΧ

∣∣∣∣∣∣∣∣A�0.
(31)

The Χ th-order deformation problems can be written as follows:

Lf fΧ η( ) − λΧfΧ−1 η( )[ ] � ZfR
f
Χ η( ), (32)

Lg gΧ η( ) − λΧgΧ−1 η( )[ ] � ZgR
g
Χ η( ), (33)

Lθ θΧ η( ) − λΧθΧ−1 η( )[ ] � ZθR
θ
Χ η( ), (34)

Lϕ ϕΧ η( ) − λΧϕΧ−1 η( )[ ] � ZϕR
ϕ
Χ η( ), (35)

fΧ 0( ) � f′
Χ 0( ) � f′

Χ ∞( ) � 0,
gΧ 0( ) � g′

Χ 0( ) � g′
Χ ∞( ) � 0,

θ′Χ 0( ) − γ θΧ 0( ) − 1( ) � θΧ ∞( ) � 0,
Nbϕ′

Χ 0( ) +Ntθ′Χ 0( ) � ϕΧ ∞( ) � 0,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, (36)

Rf
Χ η( ) � fΧ−1‴ η( ) + 1 +Mβ( ) ∑Χ−1

n�0
fΧ−1−j η( )fΧ−1″ η( )( ) + ∑Χ−1

n�0
gΧ−1−j η( )fΧ−1″ η( )( )⎛⎝ ⎞⎠

−∑Χ−1
n�0

fΧ−1−j′ η( )fΧ−1′ η( )( ) −MfΧ−1′ η( ) + β 2∑Χ−1
n�0

fΧ−1−j η( )∑n
l�0
fΧ−l′ η( )∑l

p�0
fl−p″ η( )⎡⎢⎢⎣

+2∑Χ−1
n�0

gΧ−1−j η( )∑n
l�0
fΧ−l′ η( )∑l

p�0
fl−p″ η( ) + ∑Χ−1

n�0
fΧ−1−j η( )∑n

l�0
fΧ−l η( )∑l

p�0
fl−p‴ η( )

−∑Χ−1
n�0

gΧ−1−j η( )∑n
l�0
gΧ−l η( )∑l

p�0
fl−p‴ η( ) − 2∑Χ−1

n�0
gΧ−1−j η( )∑n

l�0
fΧ−l η( )∑l

p�0
fl−p‴ η( )⎤⎥⎥⎦,

(37)

Rg
Χ η( ) � gΧ−1‴ η( ) + 1 +Mβ( ) ∑Χ−1

n�0
fΧ−1−j η( )gΧ−1″ η( )( ) + ∑Χ−1

n�0
gΧ−1−j η( )gΧ−1″ η( )( )⎛⎝ ⎞⎠

−∑Χ−1
n�0

gΧ−1−j′ η( )gΧ−1′ η( )( ) −MgΧ−1′ η( ) + β 2∑Χ−1
n�0

fΧ−1−j η( )∑n
l�0
gΧ−l′ η( )∑l

p�0
gl−p″ η( )⎡⎢⎢⎣

+2∑Χ−1
n�0

gΧ−1−j η( )∑n
l�0
gΧ−l′ η( )∑l

p�0
gl−p″ η( ) + ∑Χ−1

n�0
fΧ−1−j η( )∑n

l�0
fΧ−l η( )∑l

p�0
gl−p‴ η( )

−∑Χ−1
n�0

gΧ−1−j η( )∑n
l�0
gΧ−l η( )∑l

p�0
gl−p‴ η( ) − 2∑Χ−1

n�0
gΧ−1−j η( )∑n

l�0
gΧ−l η( )∑l

p�0
gl−p‴ η( )⎤⎥⎥⎦,

(38)

Rθ
Χ η( ) � 1

Pr
θΧ−1″ η( ) +∑Χ−1

n�0
gΧ−1−j η( )θΧ−1′ η( )( ) +∑Χ−1

n�0
fΧ−1−j η( )θΧ−1′ η( )( )

+Nb∑Χ−1
n�0

θΧ−1−j′ η( )ϕΧ−1′ η( )( ) +Nt∑Χ−1
n�0

θΧ−1−j′ η( )θΧ−1′ η( )( ),
(39)

FIGURE 2
-− curves for -f , -g, -θ , and -ϕ.

TABLE 1 Comparison of the present results of −θ(0) with the published results.

Pr Chen (1998) Present results

1.0 −0.58199 −0.58199

3.0 −1.16523 −1.16523

10.0 −2.30796 −2.30796

TABLE 2 Impacts of Nb, Nt, and γ on Re
−1
2

x Nux .

Nb Nt γ Re
−1
2

x Nux

0.2 0.210766

0.4 0.210788

0.6 0.210794

0.8 0.210799

0.1 0.160788

0.3 0.180956

0.5 0.200321

0.7 0.220112

0.2 0.512715

0.4 0.516953

0.6 0.701836

0.8 0.787086
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Rϕ
Χ η( ) � 1

Pr
ϕΧ−1″ η( ) + Sc∑Χ−1

n�0
fΧ−1−j η( )ϕΧ−1′ η( )( ) + Sc

× ∑Χ−1
n�0

gΧ−1−j η( )ϕΧ−1′ η( )( ) + Nt

Nb
θΧ−1″ + −ScKϕΧ−1 η( ),

(40)
where

λΧ � 0,Χ≤ 1,
1,Χ> 1.{ (41)

TABLE 3 Impacts of Nb, Nt, Sc, and K on Re
−1
2

x Shx.

Nb Nt Sc K Re
−1
2

x Shx

0.2 0.232872

0.4 0.213886

0.4 0.203379

0.6 0.193220

0.1 0.232172

0.3 0.232196

0.5 0.232297

0.7 0.233299

0.1 0.132872

0.2 0.112196

0.3 0.092297

0.4 0.083299

0.2 0.532872

0.4 0.332196

0.6 0.232297

0.8 0.133299

FIGURE 3
Influence of β on f′(η).

FIGURE 4
Influence of M on f′(η).

FIGURE 5
Influence of β on g′(η).

FIGURE 6
Influence of M on g′(η).
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FIGURE 7
Influence of Nb on θ(η).

FIGURE 8
Influence of Nt on θ(η).

FIGURE 9
Influence of γ on θ(η).

FIGURE 10
Influence of Nb on ϕ(η).

FIGURE 11
Influence of Nt on ϕ(η).

FIGURE 12
Influence of Sc on ϕ(η).
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4 HAM convergence

The factors -f, -g, -θ , and -ϕ are called auxiliary factors,
regulating the homotopic convergence. At the 23rd order of
approximations, convergence regions for primary velocity,
secondary velocity, temperature, and concentration distributions
are shown in Figure 2. The convergence area of f″(0) is
−2.1≤ -f ≤ 0.0, g″(0) is −2.25≤ -g ≤ 0.2, θ′(0) is −2.1≤ -θ ≤ 0.0,
and ϕ′(0) is −2.25≤ -ϕ ≤ 0.2.

5 Results and discussion

The physical investigation of the flow of the Maxwell fluid with
the occurrence of the magnetic effect past an extending surface is
explored in this section. With the occurrence of the thermal and
mass diffusivity, the role of heat and mass transport is analyzed.
The HAM procedure is used for the simulation of the existing
model. Impacts of various flow parameters on flow distributions of
the nanofluid are computed and discussed. Table 1 shows the
validation of the present results with the published results. Here, a
close relation between both the results is found, and we can
validate our present analysis. The influences of Nb, Nt, and γ

on the Nusselt number Re
−1
2

x Nux are investigated in Table 2.
Table 2 shows that by increasing Nb, Nt, and γ, Re

−1
2

x Nux also
increases. In Table 3, the variation in Sherwood number Re

−1
2

x Shx
versus flow constraints such as Nb, Nt, Sc, and K is examined. In
this analysis, it is observed that greater Nb, Sc, and K values
decrease Re

−1
2

x Shx, while increasing Nt augments Re
−1
2

x Shx. Figures
3, 4 display variations in the primary velocity distribution of the
nanofluid via the increasing Maxwell fluid factor β and magnetic
parameter M, respectively. It is detected that the primary velocity
distribution declines with growing values of β. Incidentally,
increasing values of β correspond to the higher viscosity of the
fluid, which, consequently, reduces the velocity of the fluid flow.
Thus, the velocity distribution declines with the increase in β.
Additionally, β � 0.0 corresponds to the Newtonian fluid.
Thereafter, it is found that the Newtonian fluid is less viscous

FIGURE 13
Influence of K on ϕ(η).

FIGURE 14
Streamlines for the Newtonian fluid.

FIGURE 15
Streamlines for the Maxwell fluid.
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than the non-Newtonian fluid. Figure 4 is drawn to determine the
role of the primary velocity distribution against augmenting values
of M. In this observation, a decreased performance in the primary
velocity distribution is found for the increasingM value. With the
increasing magnetic field, the Lorentz force shows a retarding
behavior against the flow behavior. Therefore, the Lorentz force
opposes the fluid motion, which, consequently, decreases the
boundary layer thickness and velocity distribution of the fluid
flow. Furthermore, the increase in the magnetic parameter shows
an upsurge of frictional forces between particles of fluids. This
explains why velocity distribution is lower for higher magnetic
factors. The effects of β andM on secondary velocity distributions
are analyzed in Figures 5, 6. Since, the surface stretches linearly
along both x− and y− directions. Therefore, similar impacts of the
Maxwell fluid parameter β and magnetic parameter M are also
found along the secondary velocity distribution. Figures 7–9 are
plotted for the assessment of nanoliquid temperatures against
increasing values of Nb, Nt, and γ. The consequence of Nb on
an energy profile is shown in Figure 7. An increase in the nanofluid
temperature is examined for expanding the values ofNb. Brownian
motion refers to the movement of particles; therefore, an increased
production of heat occurs, which raises the energy profile. Figure 8
shows the effect of Nt on the temperature distribution. Figure 8
describes that the nanoliquid temperature is enhanced for
intensifying values of Nt. In the case of thermophoresis, liquid
elements are quickly transformed from the hot region to the cold
region with a rising the thermophoresis parameter Nt which,
consequently, shows a surge in the temperature distribution.
The outcome of the nanoliquid temperature for increasing
values of the thermal Biot number γ is observed in Figure 9. In
this figure, the increasing behavior in the temperature distribution
due to γ is observed. For greater values of γ, the heat transfer
coefficient is enhanced because the heat transfer coefficient is
directly related to the thermal Biot number γ. Therefore, the
temperature distribution of the nanoliquid increases for the
higher thermal Biot number γ. Figures 10–13 are displayed to
discuss variations in the nanoliquid concentration distribution
with respect to expanding values of Nb, Nt, Sc, and kr. The result
ofNb on the concentration distribution is shown in Figure 10. It is
examined that, a rise in Nb reduces the nanofluid concentration
distribution. As Nb increases, the concentration gradually falls.
The explanation behind this is because higher values of the
Brownian parameter enhance fluid particle collisions and lower
the viscosity of nanofluids. Figure 11 explains the role ofNt on the
concentration distribution. In this figure, it is perceived that
enhancing values of Nt increase the nanofluid concentration
distribution. This is because the thermodiffusion coefficient and
the thermophoresis parameter are closely related. Increased
diffusion coefficients are implied by higher values of Nt, which
intensify the concentration distribution. The impact of Sc on the
concentration distribution is discussed in Figure 12. It is observed
that the nanofluid concentration is lower with the expansion of the
Schmidt number Sc. The Schmidt number Sc is the ratio of
momentum diffusivity and mass diffusivity. So, the mass
diffusivity of the fluid decreases with the increase of the

Schmidt number Sc. This is because the Schmidt number and
mass diffusivity are inversely related to each other. Thus, a
decrease in mass diffusivity decreases the concentration
distribution. The consequence of K on the concentration
distribution is shown in Figure 13. It should be noted that the
growth in the values of K decays the nanofluid concentration.
Furthermore, it can be perceived that molecular diffusivity is lower
for higher chemical reactions. Therefore, a lower molecular
diffusivity decreases the boundary layer thickness and
concentration distribution of the nanoliquid. Figures 14, 15
show streamline patterns of Newtonian and Maxwell fluids,
respectively. It should be noted that the analysis streamlines for
Maxwell and Newtonian models in the current study are indeed
distinct from one another.

6 Conclusion

This article examines the 3D flow of a Maxwell nanofluid across
a bi-directional stretching surface with magnetic field applications.
In this approach, the effects of Brownian motion, thermophoresis,
and chemical reactions are taken into account. The conditions for
mass flux and thermal convection are also taken into account. The
modeled problem is solved using the HAM technique. The HAM
convergence is also demonstrated. Simulations and detailed
discussions are carried out to determine the effects of various
physical factors on flow profiles and quantities of interest. Key
findings of the current problem are as follows:

• The magnetic and Maxwell fluid parameters determine the
decreasing functions of primary and secondary velocities.

• The thermophoresis parameter, Brownian motion parameter,
and thermal Biot number are the enhancing functions of the
temperature distribution.

• The thermophoresis parameter has an enhancing effect on the
concentration distribution, whereas Brownian motion, the
Schmidt number, and chemical reaction parameters have a
decreasing effect.

• The Nusselt number rises as the thermal Biot number,
thermophoresis parameter, and Brownian motion
parameter rise.

• The Sherwood number increases with the increasing
thermophoresis parameter, while decreasing with the
increasing Schmidt number, Brownian motion parameter,
and chemical reaction parameter.

• It has been noted that the analysis streamlines forMaxwell and
Newtonian models in the current study are indeed distinct
from one another.
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Nomenclature

Symbol names

a and b positive constants

C concentration of the fluid

DB Brownian diffusivity

Lf, Lg, Lθ, and Lϕ linear operators -f, -g, -θ , and -ϕ and auxiliary
parameters

M magnetic term

T temperature

u, v, andw velocity components

x, y, and z coordinates

Greek letters

σ electrical conductivity

α stretching parameter

Subscripts

w at the surface

B0 magnetic field

f0, g0, θ0, and ϕ0 initial guesses

K chemical reaction parameter

[1 − [10 arbitrary constants

Pr Prandtl number

Sc Schmidt number

uw(x) � ax stretching velocity along the x− direction

vw(x) � by stretching velocity along the y− direction

β Deborah number

ρ density

∞ free stream
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