759 research outputs found

    Rethinking tourism destinations: collaborative network models for the tourist 2.0

    Get PDF
    In the increasingly saturated tourism market, an effective tourism destination management is essential to support competitive and sustainable growth. The topic becomes interesting in light of the spread of the collaborative network (CN) organisational models and the massive diffusion of web 2.0 and mobile technology. The formers have proven to give concrete opportunities of development in many industrial sectors, the latter has been changing the way tourists experience a destination. Even if several case studies of CNs in tourism are known, a comprehensive study of how tourism destinations can benefit of CN models and enabling technologies is not present; especially in the effort to help tourism destinations in setting up services able to actively support each phase of the tourist 2.0 lifecycle. In this paper we highlight how CN models are able to support the tourism destination management in order to gain competitiveness for local areas, to improve flexibility in services provision and to give tourists the possibility to live an augmented tourism experience. Furthermore, a review of the most suitable forms of collaborative network for tourism destination and their ways to actively support the augmented experience of the tourist 2.0 are proposed

    Estudio experimental a escala de planta piloto del proceso de valorización termoquímica de residuos plásticos urbanos

    Full text link
    Tesis por compendio[ES] La presente Tesis Doctoral se ha centrado en la demostración de la viabilidad técnica de un proceso de valorización de residuos plásticos de tipo poliolefínico a una escala de planta piloto y en un entorno industrial (TRL 7). Los residuos plásticos objeto del estudio han sido plásticos post-consumo de tipo film segregados de la corriente mezclada de residuos sólidos urbanos (RSU), también usualmente denominada fracción resto o fracción "todo uno". La realización de la presente Tesis Doctoral se enmarca dentro del programa "Ayudas para la formación de doctores en empresas - Doctorados Industriales" del Ministerio de Economía, Industria y Competitividad y está integrada en el marco de una línea de investigación estratégica para la empresa URBASER S.A (empresa líder en gestión de residuos sólidos urbanos en España y con presencia en más de 20 países). Dicha línea estratégica comprende el paso del residuo al recurso bajo el concepto de economía circular. En este contexto, la Tesis Doctoral se centra en el estudio experimental del proceso de pirólisis prestando especial atención a la puesta en marcha y operación de la instalación experimental y a la caracterización de los materiales de partida y de los productos obtenidos. Las principales tareas desarrolladas y resultados obtenidos en esta investigación se han plasmado en una serie de publicaciones científicas que han permitido presentar la Tesis Doctoral en el formato de "Compendio de artículos". En el primer capítulo se aborda la problemática actual de la generación de residuos plásticos urbanos, en particular del plástico tipo film, y se evalúan las diferentes alternativas existentes para su gestión sostenible, estableciendo el interés del estudio realizado y los objetivos perseguidos. El segundo capítulo corresponde a la publicación "Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the implementation of circular economy strategies", en la que se caracterizan las materias primas de interés para el proceso y las que se han utilizado como alimentación en las diferentes pruebas realizadas en la planta piloto. En el tercer capítulo, buscando ofrecer una visión completa de la investigación, se ha prescindido del formato artículo y se ha incluido una breve descripción del sistema experimental y un resumen del proceso que se ha seguido para llevar a cabo la puesta en marcha y operación de la instalación, junto con la metodología experimental empleada y los principales resultados obtenidos. El cuarto capítulo lo integra la publicación "Characterization and distillation of pyrolysis liquids coming from polyolefins segregated of MSW: Using as automotive diesel fuel", en la que se realiza una caracterización de los líquidos de pirólisis obtenidos en la planta piloto a partir de diferentes alimentaciones de plástico (principalmente polietileno de baja densidad) y sus fracciones destiladas, analizando las diferentes opciones para utilizarlos tanto como materia prima para la industria petroquímica como para su empleo como combustible de automoción. En el quinto capítulo se ha recogido la publicación "Simulation-assisted design of a catalytic hydrogenation reactor for plastic pyrolysis fuels", en la que se realiza un análisis de una de las posibilidades de upgrading de los líquidos de pirólisis bajo la perspectiva de la fluidodinámica computacional, estudiando el proceso catalítico de hidrogenación de olefinas mediante un modelo avanzado de un reactor multi-tubular.[CA] This PhD thesis aims to the development of a polyolefinic plastic valorization process. The technical viability of the process at pilot scale and in an industrial-relevant environment (TRL 7) has been shown. The focus of this work is on post-consumer plastic film originating from household waste and collected as part of mixed municipal solid waste (MSW). The works conducted during the PhD thesis are under the state programme "Ayudas para la formación de doctores en empresas - Doctorados Industriales" funded by the Ministerio de Economía, Industria y Competitividad. These works support the URBASER's strategy (Circular economy: from waste to resource) and are focused on the pilot plant commissioning, start-up and operation, as well as the characterization of feedstocks and products. The main tasks and results have been gathered in a number of papers, which allows this PhD thesis to be submitted in a "papers compendium" format. Chapter 1 deals with the current concerns about the generation of municipal plastic waste. In particular, it looks at the plastic film to evaluate the main available alternatives for sustainable management. This is in order to establish the interest of the study conducted and the objectives pursued. Chapter 2 includes the paper "Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the implementation of circular economy strategies", which comprises some characterizations of the targeted raw materials for the pyrolysis process and of the feedstocks used at pilot plant. Chapter 3, which is not in paper format, completes the previous chapter in order to give oversight of the investigation. It includes a description of the experimental facility, the steps taken to carry out the start-up and operation of the pilot plant, the experimental methodology, and the main experimental results. In this chapter, a developed patent from the pyrolysis process has also been included. In Chapter 4, the product characterization is shown in the paper "Characterization and distillation of pyrolysis liquids coming from polyolefins segregated of MSW: Using as automotive diesel fuel". These characterizations cover the pyrolysis liquids and their distilled fractions obtained from different feedstocks analyzed from two points of view according to the most feasible options: as raw material for the petrochemical industry and as diesel automotive fuel. The paper "Simulation-assisted design of a catalytic hydrogenation reactor for plastic pyrolysis fuels" makes up Chapter 5. This paper explores one of several upgrade options for the pyrolysis liquids consisting of catalytic olefin hydrogenation under a fluid dynamic computational perspective by developing an advanced simulation model for a catalytic multi-tubular reactor.[EN] La present Tesi Doctoral s'ha centrat en la demostració de la viabilitat tècnica d'un procés de valorització de residus plàstics de tipus poliolefínico a una escala de planta pilot i en un entorn industrial (TRL 7). Els residus plàstics objecte de l'estudi han sigut plàstics post-consum de tipus film segregats del corrent mesclat de residus sòlids urbans (RSU), també usualment denominada fracció reste o fracció "tot un". La realització de la present Tesi Doctoral s'emmarca dins del programa "Ayudas para la formación de doctores en empresas - Doctorados Industriales" del Ministeri d'Economia, Indústria i Competitivitat i està integrada en el marc d'una línia d'investigació estratègica per a l'empresa URBASER S.A (empresa líder en gestió de residus sòlids urbans a Espanya i amb presència en més de 20 països). Aquesta línia estratègica comprén el pas del residu al recurs sota el concepte d'economia circular. En aquest context, la Tesi Doctoral es centra en l'estudi experimental del procés de piròlisi prestant especial atenció a la posada en marxa i operació de la instal·lació experimental i a la caracterització dels materials de partida i dels productes obtinguts. Les principals tasques desenvolupades i resultats obtinguts en aquesta investigació s'han plasmat en una sèrie de publicacions científiques que han permés presentar la Tesi Doctoral en el format de "Compendi d'articles". En el primer capítol s'aborda la problemàtica actual de la generació de residus plàstics urbans, en particular del plàstic tipus film, i s'avaluen les diferents alternatives existents per a la seua gestió sostenible, establint l'interés de l'estudi realitzat i els objectius perseguits. El segon capítol correspon a la publicació "Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the implementation of circular economy strategies", en la qual es caracteritzen les matèries primeres d'interés per al procés i les que s'han utilitzat com a alimentació en les diferents proves realitzades en la planta pilot. En el tercer capítol, buscant oferir una visió completa de la investigació, s'ha prescindit del format article i s'ha inclòs una breu descripció del sistema experimental i un resum del procés que s'ha seguit per a dur a terme la posada en marxa i operació de la instal·lació, juntament amb la metodologia experimental empleada i els principals resultats obtinguts. El quart capítol integra la publicació "Characterization and distillation of pyrolysis liquids coming from polyolefins segregated of MSW: Using as automotive dièsel fuel", en la qual es realitza una caracterització dels líquids de piròlisis obtinguts en la planta pilot a partir de diferents alimentacions de plàstic (principalment polietilé de baixa densitat) i les seues fraccions destil·lades, analitzant les diferents opcions per a utilitzar-los tant com matèria primera per a la indústria petroquímica com per al seu ús com a combustible d'automoció. En el cinqué capítol s'ha recollit la publicació "Simulation-assisted design of a catalytic hydrogenation reactor for plastic pyrolysis fuels", en la qual es realitza una anàlisi d'una de les possibilitats de millora de la calitat dels líquids de piròlisis sota la perspectiva de la fluidodinámica computacional, estudiant el procés catalític d'hidrogenació d'olefines mitjançant un model avançat d'un reactor multi-tubular.El presente trabajo se ha realizado de manera conjunta en URBASER, S. A. y en el Instituto de Tecnología Química (ITQ) – Universidad Politécnica de Valencia, bajo la dirección de la Doctora Marta Guerrero Álvarez, por parte de URBASER, S. A. y del Doctor José Manuel Serra Alfaro, por parte del ITQ. Los trabajos realizados durante la realización de esta Tesis Doctoral han sido financiados en parte por el Ministerio de Ciencia, Innovación y Universidades a través del programa “Ayudas para la formación de doctores en empresas – Doctorados Industriales” (DI – 16 – 08700) y por el Centro para el Desarrollo Tecnológico Industrial a través de los proyectos “Del residuo al recurso mediante el reciclaje” 3R2020+ (IDI – 20150730) y “Economía circular para la valorización de los residuos plásticos urbanos” CEUS (IDI –20181081) dentro del programa estratégico de Consorcios de Investigación Empresarial Nacional (CIEN).Gala Buro, AJ. (2020). Estudio experimental a escala de planta piloto del proceso de valorización termoquímica de residuos plásticos urbanos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160033TESISCompendi

    Characterization and Distillation of Pyrolysis Liquids Coming from Polyolefins Segregated of MSW for Their Use as Automotive Diesel Fuel

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Energy & Fuels, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.energyfuels.0c00403.[EN] The liquids resulting from pyrolysis of industrial plastic waste (IPW) and postconsumer colored and white plastic film waste (PCPW and PWPW, respectively) at the pilot scale (80 kg/h) were widely characterized by different techniques to assess their potential as both petrochemical raw material and automotive diesel fuel. It was found that pyrolysis liquids mainly consisted of hydrocarbons in the diesel boiling point range (180-380 degrees C), amounting to approximately 50-55 vol %. Therefore, the results were further contrasted with limits established by the EN 590:2014 + A1:2017 standard for automotive diesel fuel. Although pyrolysis liquids showed good properties, they do not conform to some key fuel parameters for diesel engines, such as density, distillation curve, kinematic viscosity, flash point, and cold filter plugging point. To improve these properties, PWPW pyrolysis liquids were distilled in the diesel range and the liquid fractions were characterized according to automotive diesel standards. It was found that the diesel fraction met all specifications with the exception of the cold filter plugging point (-10 to 4 degrees C vs -10 degrees C winter/0 degrees C summer) and density (800-807 vs 820 kg/m(3)). To accomplish these standards, a blend of diesel obtained from PWPW pyrolysis liquids and commercial diesel (50/50 wt %) was also prepared and analyzed. Results revealed that the blend met the requirements of the 21 parameters demanded by the standard for a product to be marketed and used as automotive fuel in diesel engine vehicles.The authors acknowledge the financial support of the Centre for the Development of Industrial Technology (grant number IDI-20150730) and the Ministerio de Ciencia, Innovacion y Universidades (Spain) (grant number DI-16-08700).Gala, A.; Guerrero, M.; Guirao, B.; Domine, ME.; Serra Alfaro, JM. (2020). Characterization and Distillation of Pyrolysis Liquids Coming from Polyolefins Segregated of MSW for Their Use as Automotive Diesel Fuel. Energy & Fuels. 34(5):5969-5982. https://doi.org/10.1021/acs.energyfuels.0c00403S59695982345Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29(10), 2625-2643. doi:10.1016/j.wasman.2009.06.004Hestin, M.; Faninger, T.; Milios, L. Increased EU Plastics Recycling Targets: Environmental, Economic and Social Impact Assessment. 2015, https://www.plasticsrecyclers.eu/sites/default/files/BIO_Deloitte_PRE_Plastics%20Recycling%20Impact_Assesment_Final%20Report.pdf.Lopez, G., Artetxe, M., Amutio, M., Bilbao, J., & Olazar, M. (2017). Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renewable and Sustainable Energy Reviews, 73, 346-368. doi:10.1016/j.rser.2017.01.142Park, K.-B., Jeong, Y.-S., Guzelciftci, B., & Kim, J.-S. (2019). Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene. Energy, 166, 343-351. doi:10.1016/j.energy.2018.10.078Wang, C., Wang, H., Fu, J., & Liu, Y. (2015). Flotation separation of waste plastics for recycling—A review. Waste Management, 41, 28-38. doi:10.1016/j.wasman.2015.03.027Wong, S. L., Ngadi, N., Abdullah, T. A. T., & Inuwa, I. M. (2015). Current state and future prospects of plastic waste as source of fuel: A review. Renewable and Sustainable Energy Reviews, 50, 1167-1180. doi:10.1016/j.rser.2015.04.063Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuelA suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233-248. doi:10.1016/j.rser.2009.07.005Brems, A., Baeyens, J., & Dewil, R. (2012). Recycling and recovery of post-consumer plastic solid waste in a European context. Thermal Science, 16(3), 669-685. doi:10.2298/tsci120111121bHeydariaraghi, M., Ghorbanian, S., Hallajisani, A., & Salehpour, A. (2016). Fuel properties of the oils produced from the pyrolysis of commonly-used polymers: Effect of fractionating column. Journal of Analytical and Applied Pyrolysis, 121, 307-317. doi:10.1016/j.jaap.2016.08.010Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 amending Directive 1999/31/EC on the Landfill of Waste (Text with EEA Relevance); EU, 2018. https://eur-lex.europa.eu/legal-content/es/TXT/?uri=CELEX%3A32018L0850 (accessed May 29, 2019).Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24-58. doi:10.1016/j.wasman.2017.07.044Dahlbo, H., Poliakova, V., Mylläri, V., Sahimaa, O., & Anderson, R. (2018). Recycling potential of post-consumer plastic packaging waste in Finland. Waste Management, 71, 52-61. doi:10.1016/j.wasman.2017.10.033Lazarevic, D., Aoustin, E., Buclet, N., & Brandt, N. (2010). Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective. Resources, Conservation and Recycling, 55(2), 246-259. doi:10.1016/j.resconrec.2010.09.014Kunwar, B., Cheng, H. N., Chandrashekaran, S. R., & Sharma, B. K. (2016). Plastics to fuel: a review. Renewable and Sustainable Energy Reviews, 54, 421-428. doi:10.1016/j.rser.2015.10.015Angyal, A., Miskolczi, N., & Bartha, L. (2007). Petrochemical feedstock by thermal cracking of plastic waste. Journal of Analytical and Applied Pyrolysis, 79(1-2), 409-414. doi:10.1016/j.jaap.2006.12.031Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., & Jouhara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress, 3, 171-197. doi:10.1016/j.tsep.2017.06.003Diaz Silvarrey, L. S., & Phan, A. N. (2016). Kinetic study of municipal plastic waste. International Journal of Hydrogen Energy, 41(37), 16352-16364. doi:10.1016/j.ijhydene.2016.05.202Singh, R. K., Ruj, B., Sadhukhan, A. K., & Gupta, P. (2019). Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism. Journal of Environmental Management, 239, 395-406. doi:10.1016/j.jenvman.2019.03.067Khoo, H. H. (2019). LCA of plastic waste recovery into recycled materials, energy and fuels in Singapore. Resources, Conservation and Recycling, 145, 67-77. doi:10.1016/j.resconrec.2019.02.010Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2010). The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Progress in Energy and Combustion Science, 36(1), 103-129. doi:10.1016/j.pecs.2009.09.001Chen, D., Yin, L., Wang, H., & He, P. (2015). Reprint of: Pyrolysis technologies for municipal solid waste: A review. Waste Management, 37, 116-136. doi:10.1016/j.wasman.2015.01.022Sharma, B. K., Moser, B. R., Vermillion, K. E., Doll, K. M., & Rajagopalan, N. (2014). Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags. Fuel Processing Technology, 122, 79-90. doi:10.1016/j.fuproc.2014.01.019Kalargaris, I., Tian, G., & Gu, S. (2017). The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine. Energy, 131, 179-185. doi:10.1016/j.energy.2017.05.024Bagri, R., & Williams, P. T. (2002). Catalytic pyrolysis of polyethylene. Journal of Analytical and Applied Pyrolysis, 63(1), 29-41. doi:10.1016/s0165-2370(01)00139-5Marcilla, A., Beltrán, M. I., & Navarro, R. (2009). Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions. Applied Catalysis B: Environmental, 86(1-2), 78-86. doi:10.1016/j.apcatb.2008.07.026Uddin, M. A., Koizumi, K., Murata, K., & Sakata, Y. (1997). Thermal and catalytic degradation of structurally different types of polyethylene into fuel oil. Polymer Degradation and Stability, 56(1), 37-44. doi:10.1016/s0141-3910(96)00191-7Su, J., Fang, C., Yang, M., You, C., Lin, Q., Zhou, X., & Li, H. (2019). Catalytic pyrolysis of waste packaging polyethylene using AlCl3-NaCl eutectic salt as catalyst. Journal of Analytical and Applied Pyrolysis, 139, 274-281. doi:10.1016/j.jaap.2019.02.015Zhou, Q., Zheng, L., Wang, Y.-Z., Zhao, G.-M., & Wang, B. (2004). Catalytic degradation of low-density polyethylene and polypropylene using modified ZSM-5 zeolites. Polymer Degradation and Stability, 84(3), 493-497. doi:10.1016/j.polymdegradstab.2004.01.007Onwudili, J. A., Insura, N., & Williams, P. T. (2009). Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. Journal of Analytical and Applied Pyrolysis, 86(2), 293-303. doi:10.1016/j.jaap.2009.07.008Sakata, Y., Uddin, M. A., & Muto, A. (1999). Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts. Journal of Analytical and Applied Pyrolysis, 51(1-2), 135-155. doi:10.1016/s0165-2370(99)00013-3Williams, E. A., & Williams, P. T. (1997). The pyrolysis of individual plastics and a plastic mixture in a fixed bed reactor. Journal of Chemical Technology & Biotechnology, 70(1), 9-20. doi:10.1002/(sici)1097-4660(199709)70:13.0.co;2-eYan, G., Jing, X., Wen, H., & Xiang, S. (2015). Thermal Cracking of Virgin and Waste Plastics of PP and LDPE in a Semibatch Reactor under Atmospheric Pressure. Energy & Fuels, 29(4), 2289-2298. doi:10.1021/ef502919fMiskolczi, N., Angyal, A., Bartha, L., & Valkai, I. (2009). Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Processing Technology, 90(7-8), 1032-1040. doi:10.1016/j.fuproc.2009.04.019Joo, H. S., & Guin, J. A. (1998). Continuous upgrading of a plastics pyrolysis liquid to an environmentally favorable gasoline range product. Fuel Processing Technology, 57(1), 25-40. doi:10.1016/s0378-3820(98)00067-8Das, P., & Tiwari, P. (2018). The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel. Waste Management, 79, 615-624. doi:10.1016/j.wasman.2018.08.021Fernández, E.; Guerrero, M.; Gala, A. Procedimiento para convertir residuos plásticos en productos líquidos útiles en la industria petroquímica. P2019310332020.Corma, A., Martínez, C., & Sauvanaud, L. (2007). New materials as FCC active matrix components for maximizing diesel (light cycle oil, LCO) and minimizing its aromatic content. Catalysis Today, 127(1-4), 3-16. doi:10.1016/j.cattod.2007.03.056Pasquini, C., de Aquino, E. V., das Virgens Reboucas, M., & Gonzaga, F. B. (2007). Robust flow–batch coulometric/biamperometric titration system: Determination of bromine index and bromine number of petrochemicals. Analytica Chimica Acta, 600(1-2), 84-89. doi:10.1016/j.aca.2006.12.039Westerhout, R. W. J., Waanders, J., Kuipers, J. A. M., & van Swaaij, W. P. M. (1998). Recycling of Polyethene and Polypropene in a Novel Bench-Scale Rotating Cone Reactor by High-Temperature Pyrolysis. Industrial & Engineering Chemistry Research, 37(6), 2293-2300. doi:10.1021/ie970704qAbbas-Abadi, M. S., Haghighi, M. N., & Yeganeh, H. (2012). The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor. Journal of Analytical and Applied Pyrolysis, 95, 198-204. doi:10.1016/j.jaap.2012.02.007Lee, K.-H. (2007). Pyrolysis of municipal plastic wastes separated by difference of specific gravity. Journal of Analytical and Applied Pyrolysis, 79(1-2), 362-367. doi:10.1016/j.jaap.2006.12.020Speight, J. G. (2011). Hydrocarbons from Petroleum. Handbook of Industrial Hydrocarbon Processes, 85-126. doi:10.1016/b978-0-7506-8632-7.10003-9Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., Ismail, I. M. I., & Nizami, A. S. (2017). Effect of plastic waste types on pyrolysis liquid oil. International Biodeterioration & Biodegradation, 119, 239-252. doi:10.1016/j.ibiod.2016.09.017Serrano, D. P., Escola, J. M., Briones, L., & Arroyo, M. (2017). Hydroprocessing of the LDPE thermal cracking oil into transportation fuels over Pd supported on hierarchical ZSM-5 catalyst. Fuel, 206, 190-198. doi:10.1016/j.fuel.2017.06.003Walendziewski, J. (2002). Engine fuel derived from waste plastics by thermal treatment. Fuel, 81(4), 473-481. doi:10.1016/s0016-2361(01)00118-1Khan, M. Z. H., Sultana, M., Al-Mamun, M. R., & Hasan, M. R. (2016). Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization. Journal of Environmental and Public Health, 2016, 1-6. doi:10.1155/2016/7869080Spain. Real Decreto 61/2006 de 31 de enero de 2006, por el que se determinan las especificaciones de gasolinas, gasóleos, fuelóleos y gases licuados del petróleo y se regula el uso de determinados biocarburantes. BOE núm. 41. Reference: BOE-A-2006-2779, 2006. https://www.boe.es/buscar/act.php?id=BOE-A-2006-2779 (accessed July 18, 2019).Spain. Real Decreto 1088/2010, de 3 de septiembre, por el que se modifica el Real Decreto 61/2006, de 31 de enero, en lo relativo a las especificaciones de gasolinas, gasóleos, utilización de biocarburantes y contenido en azufre de los combustibles para uso marítimo. BOE núm. 215. Reference: BOE-A-2010-13704, 2010. https://www.boe.es/buscar/doc.php?id=BOE-A-2010-13704 (accessed July 18, 2019).Min, K., Valco, D. J., Oldani, A., Kim, K., Temme, J., Kweon, C.-B. M., & Lee, T. (2019). Autoignition of varied cetane number fuels at low temperatures. Proceedings of the Combustion Institute, 37(4), 5003-5011. doi:10.1016/j.proci.2018.05.078Bezaire, N., Wadumesthrige, K., Simon Ng, K. Y., & Salley, S. O. (2010). Limitations of the use of cetane index for alternative compression ignition engine fuels. Fuel, 89(12), 3807-3813. doi:10.1016/j.fuel.2010.07.013Sarkar, D. K. (2015). Fuels and Combustion. Thermal Power Plant, 91-137. doi:10.1016/b978-0-12-801575-9.00003-2Li, Z., Liu, G., Cui, X., Sun, X., Li, S., Qian, Y., … Lu, X. (2018). Effects of the variation in diesel fuel components on the particulate matter and unregulated gaseous emissions from a common rail diesel engine. Fuel, 232, 279-289. doi:10.1016/j.fuel.2018.05.170Mguni, L. L., Yao, Y., Liu, X., Yuan, Z., & Hildebrandt, D. (2019). Ultra-deep desulphurization of both model and commercial diesel fuels by adsorption method. Journal of Environmental Chemical Engineering, 7(2), 102957. doi:10.1016/j.jece.2019.102957Chandra Srivastava, V. (2012). An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Adv., 2(3), 759-783. doi:10.1039/c1ra00309gSørensen, G., Pedersen, D. V., Nørgaard, A. K., Sørensen, K. B., & Nygaard, S. D. (2011). Microbial growth studies in biodiesel blends. Bioresource Technology, 102(8), 5259-5264. doi:10.1016/j.biortech.2011.02.017López, A., de Marco, I., Caballero, B. M., Laresgoiti, M. F., & Adrados, A. (2011). Dechlorination of fuels in pyrolysis of PVC containing plastic wastes. Fuel Processing Technology, 92(2), 253-260. doi:10.1016/j.fuproc.2010.05.008Murata, K., Brebu, M., & Sakata, Y. (2009). The effect of PVC on thermal and catalytic degradation of polyethylene, polypropylene and polystyrene by a continuous flow reactor. Journal of Analytical and Applied Pyrolysis, 86(1), 33-38. doi:10.1016/j.jaap.2009.04.003Uddin, M. A., Sakata, Y., Shiraga, Y., Muto, A., & Murata, K. (1999). Dechlorination of Chlorine Compounds in Poly(vinyl chloride) Mixed Plastics Derived Oil by Solid Sorbents. Industrial & Engineering Chemistry Research, 38(4), 1406-1410. doi:10.1021/ie980445kLopez-Urionabarrenechea, A., de Marco, I., Caballero, B. M., Laresgoiti, M. F., & Adrados, A. (2015). Upgrading of chlorinated oils coming from pyrolysis of plastic waste. Fuel Processing Technology, 137, 229-239. doi:10.1016/j.fuproc.2015.04.015Knothe, G., & Steidley, K. R. (2005). Lubricity of Components of Biodiesel and Petrodiesel. The Origin of Biodiesel Lubricity. Energy & Fuels, 19(3), 1192-1200. doi:10.1021/ef049684cOmori, T.; Tanaka, A.; Yamada, K.; Bunne, S. In Biodiesel Deposit Formation Mechanism and Improvement of Fuel Injection Equipment (FIE), SAE International Powertrains, Fuels and Lubricants Meeting, SAE Technical Paper; SAE International, 2011.Candeia, R. A., Silva, M. C. D., Carvalho Filho, J. R., Brasilino, M. G. A., Bicudo, T. C., Santos, I. M. G., & Souza, A. G. (2009). Influence of soybean biodiesel content on basic properties of biodiesel–diesel blends. Fuel, 88(4), 738-743. doi:10.1016/j.fuel.2008.10.015Mostafa, S. S. M., & El-Gendy, N. S. (2017). Evaluation of fuel properties for microalgae Spirulina platensis bio-diesel and its blends with Egyptian petro-diesel. Arabian Journal of Chemistry, 10, S2040-S2050. doi:10.1016/j.arabjc.2013.07.034Chandran, D., Ng, H. K., Lau, H. L. N., Gan, S., & Choo, Y. M. (2017). Deterioration of palm biodiesel fuel under common rail diesel engine operation. Energy, 120, 854-863. doi:10.1016/j.energy.2016.11.136Ferris, A. M., & Rothamer, D. A. (2016). Methodology for the experimental measurement of vapor–liquid equilibrium distillation curves using a modified ASTM D86 setup. Fuel, 182, 467-479. doi:10.1016/j.fuel.2016.05.099Aydın, H., & İlkılıç, C. (2012). Optimization of fuel production from waste vehicle tires by pyrolysis and resembling to diesel fuel by various desulfurization methods. Fuel, 102, 605-612. doi:10.1016/j.fuel.2012.06.067Maceiras, R., Alfonsín, V., & Morales, F. J. (2017). Recycling of waste engine oil for diesel production. Waste Management, 60, 351-356. doi:10.1016/j.wasman.2016.08.009San José Alonso, J., López Sastre, J. A., Romero-Ávila, C., & López Romero, E. J. (2006). Combustion of rapeseed oil and diesel oil mixtures for use in the production of heat energy. Fuel Processing Technology, 87(2), 97-102. doi:10.1016/j.fuproc.2005.07.004Aleme, H. G., Assunção, R. A., Carvalho, M. M. O., & Barbeira, P. J. S. (2012). Determination of specific gravity and kinematic viscosity of diesel using distillation curves and multivariate calibration. Fuel Processing Technology, 102, 90-95. doi:10.1016/j.fuproc.2012.04.016Murphy, F., Devlin, G., & McDonnell, K. (2013). The Evaluation of Flash Point and Cold Filter Plugging Point with Blends of Diesel and Cyn-Diesel Pyrolysis Fuel for Automotive Engines. The Open Fuels & Energy Science Journal, 6(1), 1-8. doi:10.2174/1876973x01306010001Rashid, U., Anwar, F., & Knothe, G. (2009). Evaluation of biodiesel obtained from cottonseed oil. Fuel Processing Technology, 90(9), 1157-1163. doi:10.1016/j.fuproc.2009.05.016Sharma, B. K., Suarez, P. A. Z., Perez, J. M., & Erhan, S. Z. (2009). Oxidation and low temperature properties of biofuels obtained from pyrolysis and alcoholysis of soybean oil and their blends with petroleum diesel. Fuel Processing Technology, 90(10), 1265-1271. doi:10.1016/j.fuproc.2009.06.011Jeong, G.-T., Park, J.-H., Park, S.-H., & Park, D.-H. (2008). Estimating and improving cold filter plugging points by blending biodiesels with different fatty acid contents. Biotechnology and Bioprocess Engineering, 13(4), 505-510. doi:10.1007/s12257-008-0144-yKnothe, G., & Steidley, K. R. (2005). Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel, 84(9), 1059-1065. doi:10.1016/j.fuel.2005.01.016Escola, J. M., Aguado, J., Serrano, D. P., & Briones, L. (2014). Transportation fuel production by combination of LDPE thermal cracking and catalytic hydroreforming. Waste Management, 34(11), 2176-2184. doi:10.1016/j.wasman.2014.06.010Khalife, E., Tabatabaei, M., Demirbas, A., & Aghbashlo, M. (2017). Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in Energy and Combustion Science, 59, 32-78. doi:10.1016/j.pecs.2016.10.001İçıngür, Y., & Altiparmak, D. (2003). Effect of fuel cetane number and injection pressure on a DI Diesel engine performance and emissions. Energy Conversion and Management, 44(3), 389-397. doi:10.1016/s0196-8904(02)00063-8Faussone, G. C. (2018). Transportation fuel from plastic: Two cases of study. Waste Management, 73, 416-423. doi:10.1016/j.wasman.2017.11.02

    Application areas of social media in external B2B transactions - An empirical analysis of Finnish technology industry

    Get PDF
    Despite the topic popularity, social media research is still limited, and focuses largely on the role of consumer-to-consumer (C2C) and business-to-consumer (B2C) domains. In many parts, the B2C social media practices are not directly useful for inter-organizational and B2B purposes. Main aim of this paper is to help to understand the current application areas of social media especially in external B2B transactions. This is carried out by an extensive survey to companies representing the technology industry, which are operating purely in B2B markets, having only other companies as customers. We wanted to understand how industrial B2B companies currently apply social media in their own inter-organizational applications, which types of potential they see in social media in this context, and what kind of support they experience their companies to need for better adopting social media together with their customers and partners. A population of 2488 Finnish decision-makers were observed from the Federation of Finnish Technology Industries. From the answers of 143 different companies, 125 companies represented wholly (100%) B2B markets, which were chosen as the sample of this study. Researches on social media, especially survey-based studies, have not focused particularly on B2B companies only, especially on the inter-organizational applications of social media in B2B’s. Except for the B2B-marketing oriented study of Michaelidou et al., (2011), and study of social media utilization in B2B-relationships by Pettersson et al. (2014). This study extends the previous studies especially by creating new understanding on the maturity of social media integration to business, organizational business problems that companies perceive that can be solved with social media, and approaches that can support social media adoption in B2B companies. Managerially, the results can be used, for instance, to better understand the various types of possibilities of applying social media in the inter-organizational use in B2Bs, which are currently only superficially understood by a significant part of managers. This can help to support and facilitate external social media use in B2B

    Observaciones sobre el uso de cavidades en la arena por parte de la lagartija de los médanos (Liolaemus Multimaculatus)

    Get PDF
    La lagartija de los médanos, Liolaemus multimaculatus (Duméril & Bibron, 1837) es una especie endémica de las dunas costeras de las provincias de Buenos Aires y Río Negro (Cei, 1993). Esta lagartija es estrictamente arenícola, altamente selectiva en el uso de sus microhábitats (Vega, 2001) y posee adaptaciones especiales tanto anatómicas como comportamentales, para la vida en la arena (Halloy et al., 1998; Etheridge, 2000).. En la presente nota se describen las primeras observaciones sobre el uso de cavidades en la arena por parte de L. multimaculatus.Asociación Herpetológica Argentina (AHA

    Observaciones sobre el uso de cavidades en la arena por parte de la lagartija de los médanos (Liolaemus Multimaculatus)

    Get PDF
    La lagartija de los médanos, Liolaemus multimaculatus (Duméril & Bibron, 1837) es una especie endémica de las dunas costeras de las provincias de Buenos Aires y Río Negro (Cei, 1993). Esta lagartija es estrictamente arenícola, altamente selectiva en el uso de sus microhábitats (Vega, 2001) y posee adaptaciones especiales tanto anatómicas como comportamentales, para la vida en la arena (Halloy et al., 1998; Etheridge, 2000).. En la presente nota se describen las primeras observaciones sobre el uso de cavidades en la arena por parte de L. multimaculatus.Asociación Herpetológica Argentina (AHA

    Occupational stress and burnout among physiotherapists: a cross-sectional survey in Cadiz (Spain)

    Get PDF
    Background Occupational stress is considered an ongoing epidemic. An inadequate response to a stressful situation can trigger burnout syndrome. In this way, the assistant services (health and teaching) often reach higher levels of burnout. The present study aimed to measure the level of occupational stress and burnout in physiotherapists in the province of Cadiz (Spain), working in the public and/or private sector. Methods This was an observational, descriptive and cross-sectional study. A sample of 272 physiotherapists took part in the study. The variables measured were sociodemographic variables, working conditions, level of occupational stress and burnout. Burnout includes three characteristics or dimensions: emotional exhaustion (EE), depersonalization (DP) and personal accomplishment (PA). Correspondence analysis of the sociodemographic, organizational and psychological variables were analyzed using Chi-squared significance tests. Spearman correlations and a linear regression analysis were also carried out to determine the dependence between occupational stress and burnout. Results The results showed that 30.51% of physiotherapists suffered from a high level of occupational stress, while 34.56% suffered from an average level. There was a clear dependence between a high level of stress and professionals who felt stressed during their academic training period (p = 0.02), those who were in temporary work (p = 0.03) and those with over 10 years of professional experience (p = 0.05). The overall level of burnout was low, since only the EE dimension had a high value; the average was 21.64 +/- 10.57. The DP (6.57 +/- 4.65) and PA (39.52 +/- 5.97) levels were low. There was a significant dependence (p < 0.05) between EE and the following sociodemographic variables: work shift, willingness to study the same degree, stress and inadequate academic training, and a stressful job. In addition, a significant correlation was found between occupational stress and the EE and DP dimensions of burnout. Conclusions A high prevalence of occupational stress was detected among physiotherapists in Cadiz (Spain). The levels of occupational stress and its correlation with burnout show that the cumulative effect of stress could lead to burnout. Furthermore, these results regarding occupational stress show the necessity of developing coping strategies for physiotherapists and healthcare staff

    Knowledge Management and Emerging Collaborative Networks in Tourism Business Ecosystems

    Get PDF
    If we critically look at the evolution of the Tourism Industry (TI), we can note that, in the past decade, nothing has changed as much as ICTs and the Internet which caused an extensive transformation of the TI. Both demand and supply of ICT, together with innovation in transportation and international trade agreements, have evolved the tourism sector in operational workflows, management and marketing of new of tourism experiences. The massive use of new technologies has facilitated the rise of new flat organizational models where traditional brokers have disappeared, replaced by direct connections between local providers and tourists, or they have been reconfigured into new forms of dynamic and web-based tourism package providers. The depicted industry evolution shows potential, unthinkable just a few years ago, for local service providers usually marginalized from main tourism flows, due to their small sizes, and who are unable to compete in the globalized market. In many regions characterized by a niche tourism vocation, local tourism operators have started organizing themselves spontaneously in Collaborative Networks in order to create aggregate tourism offers that are able to compete with big tourism operators thus transforming regions with potential and vocation in real tourism destinations. The main socialeffect of instantiating these tourism partnerships, is the stimulus towards Tourism Business Ecosystems (TBEs) giving local tourism service providers a means for economic growth. The aim of this paper is to describe how the organizational paradigm of CNs, applied to the TBEs knowledge management and supported by ICTs, can be the key means for the growth of emerging TBEs. Such models are able to reengineer the tourism destination management model in order to gain much more flexibility in service provision and provide tourists the possibility to live an augmented tourism experience.In this paper we point out that tourism destinations, in an effort to give services able to actively support each phase of the 2.0 tourist lifecycle, can benefit from collaborative network models

    Challenges associated with biomarker-based classification systems for Alzheimer's disease

    Get PDF
    Altres ajuts: This work was also supported by research grants from the Carlos III Institute of Health, Spain and the CIBERNED program (Program 1, Alzheimer Disease to Alberto Lleó and SIGNAL study, www.signalstudy.es), partly funded by Fondo Europeo de Desarrollo Regional (FEDER), Unión Europea, "Una manera de hacer Europa". This work has also been supported by a "Marató TV3" grant (20141210 to Juan Fortea and 044412 to Rafael Blesa) and by Generalitat de Catalunya and a grant from the Fundació Bancaria La Caixa to Rafael Blesa. I. Illán-Gala is supported by the i-PFIS grant from the FIS, Instituto de Salud Carlos III and the Rio Hortega grant (CM17/00074) from "Acción estratégica en Salud 2013-2016" and the European Social Fund. USPHS NIH grants awarded to M.J.d.L. include: AG13616, AG022374, AG12101, and AG057570.We aimed to evaluate the consistency of the A/T/N classification system. We included healthy controls, mild cognitive impairment, and dementia patients from Alzheimer's disease Neuroimaging Initiative. We assessed subject classification consistency with different biomarker combinations and the agreement and correlation between biomarkers. Subject classification discordance ranged from 12.2% to 44.5% in the whole sample; 17.3%-46.4% in healthy controls; 11.9%-46.5% in mild cognitive impairment, and 1%-35.7% in dementia patients. Amyloid, but not neurodegeneration biomarkers, showed good agreement both in the whole sample and in the clinical subgroups. Amyloid biomarkers were correlated in the whole sample, but not along the Alzheimer's disease continuum (as defined by a positive amyloid positron emission tomography). Neurodegeneration biomarkers were poorly correlated both in the whole sample and along the Alzheimer's disease continuum. The relationship between biomarkers was stage-dependent. Our findings suggest that the current A/T/N classification system does not achieve the required consistency to be used in the clinical setting

    Different pattern of CSF glial markers between dementia with Lewy bodies and Alzheimer's disease

    Get PDF
    The role of innate immunity in dementia with Lewy bodies (DLB) has been little studied. We investigated the levels in cerebrospinal fluid (CSF) of glial proteinsYKL-40, soluble TREM2 (sTREM2) and progranulin in DLB and their relationship with Alzheimer's disease (AD) biomarkers. We included patients with DLB (n = 37), prodromal DLB (prodDLB, n= 23), AD dementia (n = 50), prodromal AD (prodAD, n= 53), and cognitively normal subjects (CN, n= 44).We measured levels ofYKL-40, sTREM2, progranulin, A beta(1-42), total tau (t-tau) and phosphorylated tau (p-tau) in CSF. We stratified the group DLB according to the ratio t-tau/A beta(1-42 ) (>= 0.52, indicative of AD pathology) and the A/T classification. YKL-40, sTREM2 and progranulin levels did not differ between DLB groups and CN.YKL-40 levels were higher in AD and prodAD compared to CN and to DLB and prodDLB. Patients with DLB with a CSF profile suggestive of AD copathology had higher levels of YKL-40, but not sTREM2 or PGRN, than those without. T+ DLB patients had also higherYKL-40 levels than T-. Of these glial markers, onlyYKL-40 correlated with t-tau and p-tau in DLB and in prodDLB. In contrast, in prodAD, sTREM2 and PGRN also correlated with t-tau and p-tau. In conclusion, sTREM2 and PGRN are not increased in the CSF of DLB patients. YKL-40 is only increased in DLB patients with an AD biomarker profile, suggesting that the increase is driven by AD-related neurodegeneration. These data suggest a differential glial activation between DLB and AD
    corecore