102 research outputs found

    Monoclonal anti-envelope antibody AP33 protects humanized mice against a patient-derived hepatitis C virus challenge

    Get PDF
    End-stage liver disease caused by hepatitis C virus (HCV) infection is a major indication for liver transplantation. However, immediately after transplantation the liver graft of viremic patients universally becomes infected by circulating virus, resulting in accelerated liver disease progression. Currently available direct-acting antiviral therapies have reduced efficacy in patients with end-stage liver disease and prophylactic strategies to prevent HCV recurrence are still highly needed. In this study we compared the ability of two broadly reactive monoclonal antibodies (mAbs), designated 3/11 and AP33, recognizing a distinct but overlapping epitope in the viral E2 glycoprotein to protect humanized mice from a patient-derived HCV challenge. Their neutralizing activity was assessed using the HCVpp and HCVcc systems expressing multiple patient-derived envelopes and a human-liver chimeric mouse model. HCV RNA was readily detected in all control mice challenged with a patient-derived HCV genotype 1b isolate, while three out of four AP33-treated mice were completely protected. In contrast, only one out of four 3/11-treated mice remained HCV RNA negative throughout the observation period, while the other three had a viral load that was indistinguishable from that in the control group. The increased in vivo efficacy of AP33 was in line with its higher affinity and neutralizing capacity observed in vitro. Conclusion: Although mAbs AP33 and 3/11 target the same region in E2, only mAb AP33 can efficiently protect from challenge with a heterologous HCV population in vivo. Since mAb AP33 efficiently neutralizes viral variants that escaped the humoral immune response and re-infected the liver graft of transplant patients, it may be a valuable candidate to prevent HCV recurrence. In addition our data is valuable for the design of a prophylactic vaccine

    Removal of Hepatitis C Virus-Infected Cells by a Zymogenized Bacterial Toxin

    Get PDF
    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and has become a global health threat. No HCV vaccine is currently available and treatment with antiviral therapy is associated with adverse side effects. Moreover, there is no preventive therapy for recurrent hepatitis C post liver transplantation. The NS3 serine protease is necessary for HCV replication and represents a prime target for developing anti HCV therapies. Recently we described a therapeutic approach for eradication of HCV infected cells that is based on protein delivery of two NS3 protease-activatable recombinant toxins we named β€œzymoxins”. These toxins were inactivated by fusion to rationally designed inhibitory peptides via NS3-cleavable linkers. Once delivered to cells where NS3 protease is present, the inhibitory peptide is removed resulting in re-activation of cytotoxic activity. The zymoxins we described suffered from two limitations: they required high levels of protease for activation and had basal activities in the un-activated form that resulted in a narrow potential therapeutic window. Here, we present a solution that overcame the major limitations of the β€œfirst generation zymoxins” by converting MazF ribonuclease, the toxic component of the E. coli chromosomal MazEF toxin-antitoxin system, into an NS3-activated zymoxin that is introduced to cells by means of gene delivery. We constructed an expression cassette that encodes for a single polypeptide that incorporates both the toxin and a fragment of its potent natural antidote, MazE, linked via an NS3-cleavable linker. While covalently paired to its inhibitor, the ribonuclease is well tolerated when expressed in naΓ―ve, healthy cells. In contrast, activating proteolysis that is induced by even low levels of NS3, results in an eradication of NS3 expressing model cells and HCV infected cells. Zymoxins may thus become a valuable tool in eradicating cells infected by intracellular pathogens that express intracellular proteases

    Glycan shifting on hepatitis C virus (HCV) E2 glycoprotein is a mechanism for escape from broadly neutralizing antibodies

    Get PDF
    Hepatitis C virus (HCV) infection is a major cause of liver disease and hepatocellular carcinoma. Glycan shielding has been proposed to be a mechanism by which HCV masks broadly neutralizing epitopes on its viral glycoproteins. However, the role of altered glycosylation in HCV resistance to broadly neutralizing antibodies is not fully understood. Here, we have generated potent HCV neutralizing antibodies hu5B3.v3 and MRCT10.v362 that, similar to the previously described AP33 and HCV1, bind to a highly conserved linear epitope on E2. We utilize a combination of in vitro resistance selections using the cell culture infectious HCV and structural analyses to identify mechanisms of HCV resistance to hu5B3.v3 and MRCT10.v362. Ultra deep sequencing from in vitro HCV resistance selection studies identified resistance mutations at asparagine N417 (N417S, N417T and N417G) as early as 5Β days post treatment. Comparison of the glycosylation status of soluble versions of the E2 glycoprotein containing the respective resistance mutations revealed a glycosylation shift from N417 to N415 in the N417S and N417T E2 proteins. The N417G E2 variant was glycosylated neither at residue 415 nor at residue 417 and remained sensitive to MRCT10.v362. Structural analyses of the E2 epitope bound to hu5B3.v3 Fab and MRCT10.v362 Fab using X-ray crystallography confirmed that residue N415 is buried within the antibody–peptide interface. Thus, in addition to previously described mutations at N415 that abrogate the Ξ²-hairpin structure of this E2 linear epitope, we identify a second escape mechanism, termed glycan shifting, that decreases the efficacy of broadly neutralizing HCV antibodies

    Altered somatic hypermutation patterns in COVID-19 patients classifies disease severity

    Get PDF
    IntroductionThe success of the human body in fighting SARS-CoV2 infection relies on lymphocytes and their antigen receptors. Identifying and characterizing clinically relevant receptors is of utmost importance.MethodsWe report here the application of a machine learning approach, utilizing B cell receptor repertoire sequencing data from severely and mildly infected individuals with SARS-CoV2 compared with uninfected controls.ResultsIn contrast to previous studies, our approach successfully stratifies non-infected from infected individuals, as well as disease level of severity. The features that drive this classification are based on somatic hypermutation patterns, and point to alterations in the somatic hypermutation process in COVID-19 patients.DiscussionThese features may be used to build and adapt therapeutic strategies to COVID-19, in particular to quantitatively assess potential diagnostic and therapeutic antibodies. These results constitute a proof of concept for future epidemiological challenges

    Engineered Toxins β€œZymoxins” Are Activated by the HCV NS3 Protease by Removal of an Inhibitory Protein Domain

    Get PDF
    The synthesis of inactive enzyme precursors, also known as β€œzymogens,” serves as a mechanism for regulating the execution of selected catalytic activities in a desirable time and/or site. Zymogens are usually activated by proteolytic cleavage. Many viruses encode proteases that execute key proteolytic steps of the viral life cycle. Here, we describe a proof of concept for a therapeutic approach to fighting viral infections through eradication of virally infected cells exclusively, thus limiting virus production and spread. Using the hepatitis C virus (HCV) as a model, we designed two HCV NS3 protease-activated β€œzymogenized” chimeric toxins (which we denote β€œzymoxins”). In these recombinant constructs, the bacterial and plant toxins diphtheria toxin A (DTA) and Ricin A chain (RTA), respectively, were fused to rationally designed inhibitor peptides/domains via an HCV NS3 protease-cleavable linker. The above toxins were then fused to the binding and translocation domains of Pseudomonas exotoxin A in order to enable translocation into the mammalian cells cytoplasm. We show that these toxins exhibit NS3 cleavage dependent increase in enzymatic activity upon NS3 protease cleavage in vitro. Moreover, a higher level of cytotoxicity was observed when zymoxins were applied to NS3 expressing cells or to HCV infected cells, demonstrating a potential therapeutic window. The increase in toxin activity correlated with NS3 protease activity in the treated cells, thus the therapeutic window was larger in cells expressing recombinant NS3 than in HCV infected cells. This suggests that the β€œzymoxin” approach may be most appropriate for application to life-threatening acute infections where much higher levels of the activating protease would be expected

    Monoclonal antibodies for prophylactic and therapeutic use against viral infections

    Get PDF
    Neutralizing antibodies play an essential part in antiviral immunity and are instrumental in preventing or modulating viral diseases. Polyclonal antibody preparations are increasingly being replaced by highly potent monoclonal antibodies (mAbs). Cocktails of mAbs and bispecific constructs can be used to simultaneously target multiple viral epitopes and to overcome issues of neutralization escape. Advances in antibody engineering have led to a large array of novel mAb formats, while deeper insight into the biology of several viruses and increasing knowledge of their neutralizing epitopes has extended the list of potential targets. In addition, progress in developing inexpensive production platforms will make antiviral mAbs more widely available and affordable

    Structural Basis for Broad Neutralization of Hepatitis C Virus Quasispecies

    Get PDF
    Monoclonal antibodies directed against hepatitis C virus (HCV) E2 protein can neutralize cell-cultured HCV and pseudoparticles expressing envelopes derived from multiple HCV subtypes. For example, based on antibody blocking experiments and alanine scanning mutagenesis, it was proposed that the AR3B monoclonal antibody recognized a discontinuous conformational epitope comprised of amino acid residues 396–424, 436–447, and 523–540 of HCV E2 envelope protein. Intriguingly, one of these segments (436–447) overlapped with hypervariable region 3 (HVR3), a domain that exhibited significant intrahost and interhost genetic diversity. To reconcile these observations, amino-acid sequence variability was examined and homology-based structural modelling of E2 based on tick-borne encephalitis virus (TBEV) E protein was performed based on 413 HCV sequences derived from 18 subjects with chronic hepatitis C. Here we report that despite a high degree of amino-acid sequence variability, the three-dimensional structure of E2 is remarkably conserved, suggesting broad recognition of structural determinants rather than specific residues. Regions 396–424 and 523–540 were largely exposed and in close spatial proximity at the surface of E2. In contrast, region 436–447, which overlaps with HVR3, was >35 Γ… away, and estimates of buried surface were inconsistent with HVR3 being part of the AR3B binding interface. High-throughput structural analysis of HCV quasispecies could facilitate the development of novel vaccines that target conserved structural features of HCV envelope and elicit neutralizing antibody responses that are less vulnerable to viral escape
    • …
    corecore